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Introduction

Hilbert’s twenty-first problem asks about the existence of linear differential
equations having prescribed monodromic group.

A theorem of Fuchs, Turrittin and Lutz shows that finding regular singular
points is equivalent to searching for cyclic vectors.

In a paper, Katz gives an explicit formula for cyclic vectors in “good” cases as
well as provides a number of examples.
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ODE on nonsingular curve

The data in this setting is

X/C: a complete connected nonsingular curve.

U
open
⊂ X: a non-empty Zariski open set.

Uan: the complex manifold corresponds to U in the GAGA principle.

Definition 2.1

Define an ODE of rank n over U to be a pair of (M,∇) consisting of a locally free
coherent sheaf M of rank n on U together with a connection ∇ : M → M ⊗ Ω1

U/C.
The solution of an ODE (M,∇) is defined to be the kernel of ∇.
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Example

Example 2.2

Let X = P1, U ⊂ P1 − {∞}, then an equation over U is simply means a
(n× n)-system

d

dz
f = P (z) · f .

This class of equations includes the case linear equations of order n

f (n) = pn−1f
(n−1) + · · ·+ p1f

′ + p0f,

by taking the matrix P (z) to be a particular choice

P (z) =


0 1 ... 0 0
0 . 1 0 0
...

. . .
. . .

...
0 0 0 1
p0 p1 · · · pn−2 pn−1
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Monodromy representation

Fix a point z0 ∈ U , denote by S the germ of local holomorphic solutions near z0,
then:

S is a complex vector space of dimension rank(M), by the local existence
theorem for differential equations.

Given a loop γ in Uan starting and ending at z0, then the analytic continuation
along γ defines an automorphism of S.

In this way the fundamental group π1(U
an, z0) acts on S, this is called the

monodromy representation of the differential equation.
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Example

Example 2.3

Consider the differential equation

z
df

dz
= αf, α ∈ C

on the punctured plane C− {0}.

Choose a branch cut, the local solution is easily
seen to be

zα = exp(αlog(z)).

If we take the analytic continuation along the homotopy class of the curve γ looping
counterclockwise around the origin an angle of 2π then the solution turns out to be
e2πiαzα.
We have π1(C− {0}) ∼= Z with generator [γ], the corresponding monodromy
representation in C× = GL(1,C) is given by γ 7→ e2πiα.
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Regular singular points

Consider a ODE in one complex variable z ∈ C

f (n) = pn−1f
(n−1) + · · ·+ p1f

′ + p0f,

where pi are meromorphic functions.

The above equation is said to have a regular
singular point at a ∈ C if all pn−i have a pole of order at most i at a. In such a case,
by a routine computation, the equation can be transformed into the form

D(n)f = bn−1D
(n−1)f + ...+ b0f,

where D = (z − a) d
dz
. The original one has a regular singular point at a iff all bi are

holomorphic at a.
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Hilbert’s twenty-first problem

Hilbert’s twenty-first problem. Let X be a nonsingular curve over C, U one of
its non-empty Zariski open set. Hilbert’s twenty-first problem asks whether any
finite-dimensional representation of π1(U

an) can be obtained as a monodromy
representation of a differential equation on U with regular singular points.

Question. Why do we insist on regular singular points?

Example 2.4

Let U = A1, Uan = C, and consider π1(U
an) = 0 → C× the trivial representation.

For any polynomial P ∈ C[z], the equation

df

dz
= P (z).f has solution f(z) = exp

(∫ z

0

P (t)dt

)
,

which is an entire function, so without monodromy. But as differential equations on
the algebraic variety A1, these are pairwise non-isomorphic; only the choice P ≡ 0
gives regular singular points (include ∞). Indeed, if z = 1/w then the equation

df

dw
= − Q(w)

wdeg(P )+2
.f where wdegP (1/w) = Q(w)

has a regular singular point at w = 0 iff Q(w) ≡ 0.
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Khoa Bang Pham Séminaire, Rennes 1 UniversityA simple algorithm for cyclic vectors February 14, 2022 9 / 21



Hilbert’s twenty-first problem

Hilbert’s twenty-first problem. Let X be a nonsingular curve over C, U one of
its non-empty Zariski open set. Hilbert’s twenty-first problem asks whether any
finite-dimensional representation of π1(U

an) can be obtained as a monodromy
representation of a differential equation on U with regular singular points.
Question. Why do we insist on regular singular points?

Example 2.4

Let U = A1, Uan = C, and consider π1(U
an) = 0 → C× the trivial representation.

For any polynomial P ∈ C[z], the equation

df

dz
= P (z).f has solution f(z) = exp

(∫ z

0

P (t)dt

)
,

which is an entire function, so without monodromy. But as differential equations on
the algebraic variety A1, these are pairwise non-isomorphic; only the choice P ≡ 0
gives regular singular points (include ∞).

Indeed, if z = 1/w then the equation

df

dw
= − Q(w)

wdeg(P )+2
.f where wdegP (1/w) = Q(w)

has a regular singular point at w = 0 iff Q(w) ≡ 0.
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Connections and regular singular points

Our data in this section includes:

k: an algebraically closed field of characteristic 0.

F/k: a function field in one variable over k. For instance, F can be the function
field of a smooth, projective curve over k.

W : a vector space over F of dimension n.

Definition 3.1 (Connections)

A connection ∇ on W is an additive mapping ∇ : W → Ω1
F/k ⊗W satisfying the

Leibniz rule
∇(fw) = df ⊗ w + f∇(w) ∀f ∈ K,w ∈ W.

Equivalently, ∇ can be defined as a F -linear mapping

∇ : Derk(F, F ) → Endk(W )

such that

(∇(D))(fw) = D(f)w + f(∇(D))w ∀D ∈ Derk(F, F ), f ∈ F,w ∈ W.

Khoa Bang Pham Séminaire, Rennes 1 UniversityA simple algorithm for cyclic vectors February 14, 2022 10 / 21



Connections and regular singular points

Our data in this section includes:

k: an algebraically closed field of characteristic 0.

F/k: a function field in one variable over k. For instance, F can be the function
field of a smooth, projective curve over k.

W : a vector space over F of dimension n.

Definition 3.1 (Connections)

A connection ∇ on W is an additive mapping ∇ : W → Ω1
F/k ⊗W satisfying the

Leibniz rule
∇(fw) = df ⊗ w + f∇(w) ∀f ∈ K,w ∈ W.

Equivalently, ∇ can be defined as a F -linear mapping

∇ : Derk(F, F ) → Endk(W )

such that

(∇(D))(fw) = D(f)w + f(∇(D))w ∀D ∈ Derk(F, F ), f ∈ F,w ∈ W.
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Khoa Bang Pham Séminaire, Rennes 1 UniversityA simple algorithm for cyclic vectors February 14, 2022 10 / 21



For every closed point p (we also call a closed point a place) we do have

Op = {f ∈ K | ordp(f) ≥ 0}
mp = {f ∈ K | ordp(f) ≥ 1} ,

where ordp : F → Z ∪ {∞} is the discrete valuation at p.

Definition 3.2 (Regular singular points)

Let p be a place of F/k, let ∇ be a connection on W . We say that ∇ has a regular
singular point at p if there exists a basis e of W and a matrix P ∈ Mn(Op) such that

∇
(
h

d

dh

)
e = Pe,

where h is an uniformizer at p.

Definition 3.3 (Cyclic vectors)

Let ∇ be a connection on W . A vector w ∈ W is said to be cyclic if there exists a
non-zero derivation D ∈ Derk(F, F ) such that

SpanK

〈
w, (∇(D))(w), ..., (∇(D))n−1(w)

〉
= W.

In that case, we call (W,∇) a cyclic object.
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Turrittin’s theorem

Theorem 3.4 (Fuchs, Turrittin, Lutz, [2])

Suppose that (W,∇) has a cyclic vector w ∈ W , p is a place of F/k, h is a
uniformizer at p and n = dimF (W ). Then the following conditions are equivalent:

(W,∇) does not have a regular singular point at p.

In terms of the basis

e =


w

∇
(
h d

dh

)
(w)

...(
∇
(
h d

dh

))n−1
(w)


of W , the connection matrix is expressed as

∇
(
h

d

dh

)
e =


0 1 ... 0 0
0 . 1 0 0
...

. . .
. . .

...
0 0 0 1
p0 p1 · · · pn−2 pn−1

 e

and, for some value of i, we have ordp(pi) < 0.
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∇
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Setting

R: a commutative ring with unity.

∂ : R → R is a derivation of R to itself.

t ∈ R an element with ∂(t) = 1.

R∂ = {a ∈ R | ∂(a) = 0} the subring of ”constants”.

A fixed integer n ≥ 1 and a triple (V,D, e) consisting of a free R-module V of
rank n, an additive mapping D : V → V satisfying

D(fv) = ∂(f)v + fD(v)

for all f ∈ R, v ∈ V , and a R-basis e = (e0, ..., en−1) of V .

Definition 4.1

An element v ∈ V is said to be a cyclic vector if v,Dv, ...,Dn−1(v) is a R-basis of V .

Suppose now that (n− 1)! is invertible in R. For each constant a ∈ R∂ , we define an
element c(e, t− a) in V by the following formula

c(e, t− a) =

n−1∑
j=0

(t− a)j

j!

j∑
k=0

(−1)k
(
j

k

)
Dk(en−k).
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First main result

Theorem 4.2 (N. M. Katz, [1])

Suppose R is a local Z[1/(n− 1)!]-algebra whose maximal ideal contains t− a. Then
c(e, t− a) is a cyclic vector.

Proof.

Define elements c(i, j) inductively by the formulas

c(0, j) =

{∑j
k=0(−1)k

(
j
k

)
Dk(ej−k) j ≤ n− 1,

0 j ≥ n.

c(i+ 1, j) = c(i, j + 1) +D(c(i, j)).

By definition of c(e, t− a), we have

c(e, t− a) =

n−1∑
j=0

(t− a)j

j!
c(0, j).

Khoa Bang Pham Séminaire, Rennes 1 UniversityA simple algorithm for cyclic vectors February 14, 2022 14 / 21



First main result

Theorem 4.2 (N. M. Katz, [1])

Suppose R is a local Z[1/(n− 1)!]-algebra whose maximal ideal contains t− a. Then
c(e, t− a) is a cyclic vector.

Proof.

Define elements c(i, j) inductively by the formulas

c(0, j) =

{∑j
k=0(−1)k

(
j
k

)
Dk(ej−k) j ≤ n− 1,

0 j ≥ n.

c(i+ 1, j) = c(i, j + 1) +D(c(i, j)).

By definition of c(e, t− a), we have

c(e, t− a) =

n−1∑
j=0

(t− a)j

j!
c(0, j).
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Khoa Bang Pham Séminaire, Rennes 1 UniversityA simple algorithm for cyclic vectors February 14, 2022 14 / 21



First main result

Proof.

By induction,

Dic(e, t− a) =

n−1∑
j=0

(t− a)j

j!
c(i, j) = c(i, 0) + (t− a)(smth) ∀ i, j ≥ 0

c(i, j) =

j∑
k=0

(−1)k
(
j

k

)
D(ei+j−k) ∀ i+ j ≤ n− 1.

In particular, c(i, 0) = ei ∀ i = 0, n− 1, which implies that

Dic(e, t− a) ≡ ei mod (t− a)V.

Hence,

V = (t− a)V +
〈
Dic(e, t− a)

〉
⊂ mV +

〈
Dic(e, t− a)

〉
⊂ V.

Since V is finitely generated, we can apply Nakayama’s lemma to conclude that
V =

〈
Dic(e, t− a)

〉
; in other words, c(e, t− a) is a cyclic vector.
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Second main result

Theorem 4.3 (N. M. Katz, [1])

Let R be a ring in which (n− 1)! is invertible, and let k be a subfield of R∂ . Suppose
that |k| > n(n− 1), and let a0, a1, ..., an(n−1) be n(n− 1) + 1 distinct elements of k.

Then Zarisky locally on Spec(R), one of the vectors c(e, t− ai), i = 0, n(n− 1), is a
cyclic vector.

Proof.

For i = 0, n− 1, X ∈ R, we define elements ci(e, X) by

ci(e, X) =

n−1∑
j=0

Xj

j!
c(i, j).

Taking wedge product gives us

c0(e, X) ∧ · · · ∧ cn−1(e, X) = P (X)e0 ∧ · · · ∧ en−1,

where P is a polynomial of degree ≤ n(n− 1) in R[T ].
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Frame Title

Proof.

We do have

ci(e, 0) = ei ⇒ P (0) = 1

ci(e, t− a) = Dic(e, t− a).

Therefore, c(e, t− a) is cyclic if and only if P (t− a) ∈ R×.

We must show that
⟨P (t− ai)⟩ = R. Let’s write explicitly

P (X) =

n(n−1)∑
j=0

rjX
j .

This yields a system of equations P (t− ai) =
∑n(n−1)

j=0 rj(t− ai)
j , whose determinant

is the well-known Van der Monde one

det
(
(t− ai)

j
0≤i,j≤n(n−1)

)
=

∏
0≤i<j≤n(n−1)

(ai − aj) ∈ k× ⊂ R×.

Consequently, R
P (0)=1
= ⟨P (0)⟩ r0=P (0)

= ⟨ri⟩ = ⟨P (t− ai)⟩ .
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Therefore, c(e, t− a) is cyclic if and only if P (t− a) ∈ R×. We must show that
⟨P (t− ai)⟩ = R. Let’s write explicitly

P (X) =

n(n−1)∑
j=0

rjX
j .

This yields a system of equations P (t− ai) =
∑n(n−1)

j=0 rj(t− ai)
j , whose determinant

is the well-known Van der Monde one

det
(
(t− ai)

j
0≤i,j≤n(n−1)

)
=

∏
0≤i<j≤n(n−1)

(ai − aj) ∈ k× ⊂ R×.

Consequently, R
P (0)=1
= ⟨P (0)⟩ r0=P (0)

= ⟨ri⟩ = ⟨P (t− ai)⟩ .
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Motivation for the chosen formula

Consider R = C[[t]], the formal power series over C in one variable, ∂ = d/dt is the
formal derivative. If (h0, ..., hn−1) is a horizontal basis of V , i.e. a R-basis such that
Dhi = 0 ∀ i = 0, n− 1. Then it can be seen easily that

n−1∑
j=0

tj

j!
hj

is a cyclic vector.

Given any v ∈ V , the t-adic sequence

ṽ =
∑
k≥0

(−1)k
tk

k!
Dk(v)

is the unique solution of
ṽ ≡ v mod tV, D(ṽ) = 0.

Therefore if e = (e0, ..., en−1) is any R-basis of V , then (ẽ0, ..., ẽn−1) is, by
Nakayama’s lemma, a horizontal R-basis, and consequently

n−1∑
j=0

tj

j!
ẽj =

n−1∑
j=0

tj

j!

∑
k≥0

(−1)k
tk

k!
Dk(ej)

is a cyclic vector.
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ẽj =

n−1∑
j=0

tj

j!

∑
k≥0

(−1)k
tk

k!
Dk(ej)

is a cyclic vector.
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Motivation for the chosen formula

But if v is a cyclic vector, then so, by Nakayama’s lemma, is v + tnv0 for any v0 ∈ V ,
simply because, for i = 0, n− 1,

Di(v + tnv0) ≡ Div mod tn−iV.

Therefore in the above double sum, we may neglect all terms with j + k ≥ n, to
conclude that

n−1∑
j=0

tj

j!

n−1−j∑
k=0

(−1)k
tk

k!
Dk(ej)

is a cyclic vector. But this last vector is easily seen to be c(e, t).
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Thank you for your listening!
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