A simple algorithm for cyclic vectors

Khoa Bang Pham
Séminaire, Rennes 1 University

February 14, 2022

Outline

(1) Introduction

(2) Complex ODE in one variable
(3) Classical theory of regular singular points
(4) A simple algorithm for cyclic vectors

Introduction

- Hilbert's twenty-first problem asks about the existence of linear differential equations having prescribed monodromic group.

Introduction

- Hilbert's twenty-first problem asks about the existence of linear differential equations having prescribed monodromic group.
- A theorem of Fuchs, Turrittin and Lutz shows that finding regular singular points is equivalent to searching for cyclic vectors.

Introduction

- Hilbert's twenty-first problem asks about the existence of linear differential equations having prescribed monodromic group.
- A theorem of Fuchs, Turrittin and Lutz shows that finding regular singular points is equivalent to searching for cyclic vectors.
- In a paper, Katz gives an explicit formula for cyclic vectors in "good" cases as well as provides a number of examples.

ODE on nonsingular curve

The data in this setting is

- X / \mathbb{C} : a complete connected nonsingular curve.

ODE on nonsingular curve

The data in this setting is

- X / \mathbb{C} : a complete connected nonsingular curve.
- $U \stackrel{\text { open }}{\subset} X$: a non-empty Zariski open set.

ODE on nonsingular curve

The data in this setting is

- X / \mathbb{C} : a complete connected nonsingular curve.
- $U \stackrel{\text { open }}{\subset} X$: a non-empty Zariski open set.
- $U^{a n}$: the complex manifold corresponds to U in the GAGA principle.

ODE on nonsingular curve

The data in this setting is

- X / \mathbb{C} : a complete connected nonsingular curve.
- $U \stackrel{\text { open }}{\subset} X$: a non-empty Zariski open set.
- $U^{a n}$: the complex manifold corresponds to U in the GAGA principle.

Definition 2.1

Define an ODE of rank n over U to be a pair of (M, ∇) consisting of a locally free coherent sheaf M of rank n on U together with a connection $\nabla: M \rightarrow M \otimes \Omega_{U / \mathbb{C}}^{1}$. The solution of an ODE (M, ∇) is defined to be the kernel of ∇.

Example

Example 2.2

Let $X=\mathbb{P}^{1}, U \subset \mathbb{P}^{1}-\{\infty\}$, then an equation over U is simply means a $(n \times n)$-system

$$
\frac{d}{d z} \mathbf{f}=P(z) \cdot \mathbf{f}
$$

Example

Example 2.2

Let $X=\mathbb{P}^{1}, U \subset \mathbb{P}^{1}-\{\infty\}$, then an equation over U is simply means a $(n \times n)$-system

$$
\frac{d}{d z} \mathbf{f}=P(z) \cdot \mathbf{f}
$$

This class of equations includes the case linear equations of order n

$$
f^{(n)}=p_{n-1} f^{(n-1)}+\cdots+p_{1} f^{\prime}+p_{0} f
$$

Example

Example 2.2

Let $X=\mathbb{P}^{1}, U \subset \mathbb{P}^{1}-\{\infty\}$, then an equation over U is simply means a $(n \times n)$-system

$$
\frac{d}{d z} \mathbf{f}=P(z) \cdot \mathbf{f}
$$

This class of equations includes the case linear equations of order n

$$
f^{(n)}=p_{n-1} f^{(n-1)}+\cdots+p_{1} f^{\prime}+p_{0} f
$$

by taking the matrix $P(z)$ to be a particular choice

$$
P(z)=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & \cdot & 1 & 0 & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & 0 & & 0 & 1 \\
p_{0} & p_{1} & \cdots & p_{n-2} & p_{n-1}
\end{array}\right)
$$

Monodromy representation

Fix a point $z_{0} \in U$, denote by S the germ of local holomorphic solutions near z_{0}, then:

Monodromy representation

Fix a point $z_{0} \in U$, denote by S the germ of local holomorphic solutions near z_{0}, then:

- S is a complex vector space of dimension $\operatorname{rank}(M)$, by the local existence theorem for differential equations.

Monodromy representation

Fix a point $z_{0} \in U$, denote by S the germ of local holomorphic solutions near z_{0}, then:

- S is a complex vector space of dimension $\operatorname{rank}(M)$, by the local existence theorem for differential equations.
- Given a loop γ in $U^{a n}$ starting and ending at z_{0}, then the analytic continuation along γ defines an automorphism of S.

Monodromy representation

Fix a point $z_{0} \in U$, denote by S the germ of local holomorphic solutions near z_{0}, then:

- S is a complex vector space of dimension $\operatorname{rank}(M)$, by the local existence theorem for differential equations.
- Given a loop γ in $U^{a n}$ starting and ending at z_{0}, then the analytic continuation along γ defines an automorphism of S.
In this way the fundamental group $\pi_{1}\left(U^{a n}, z_{0}\right)$ acts on S, this is called the monodromy representation of the differential equation.

Example

Example 2.3

Consider the differential equation

$$
z \frac{d f}{d z}=\alpha f, \alpha \in \mathbb{C}
$$

on the punctured plane $\mathbb{C}-\{0\}$.

Example

Example 2.3

Consider the differential equation

$$
z \frac{d f}{d z}=\alpha f, \alpha \in \mathbb{C}
$$

on the punctured plane $\mathbb{C}-\{0\}$. Choose a branch cut, the local solution is easily seen to be

$$
z^{\alpha}=\exp (\alpha \log (z))
$$

Example

Example 2.3

Consider the differential equation

$$
z \frac{d f}{d z}=\alpha f, \alpha \in \mathbb{C}
$$

on the punctured plane $\mathbb{C}-\{0\}$. Choose a branch cut, the local solution is easily seen to be

$$
z^{\alpha}=\exp (\alpha \log (z))
$$

If we take the analytic continuation along the homotopy class of the curve γ looping counterclockwise around the origin an angle of 2π then the solution turns out to be $e^{2 \pi \mathbf{i} \alpha} z^{\alpha}$.

Example

Example 2.3

Consider the differential equation

$$
z \frac{d f}{d z}=\alpha f, \alpha \in \mathbb{C}
$$

on the punctured plane $\mathbb{C}-\{0\}$. Choose a branch cut, the local solution is easily seen to be

$$
z^{\alpha}=\exp (\alpha \log (z))
$$

If we take the analytic continuation along the homotopy class of the curve γ looping counterclockwise around the origin an angle of 2π then the solution turns out to be $e^{2 \pi \mathbf{i} \alpha} z^{\alpha}$.
We have $\pi_{1}(\mathbb{C}-\{0\}) \cong \mathbb{Z}$ with generator $[\gamma]$, the corresponding monodromy representation in $\mathbb{C}^{\times}=\mathrm{GL}(1, \mathbb{C})$ is given by $\gamma \mapsto e^{2 \pi \mathrm{i} \alpha}$.

Regular singular points

Consider a ODE in one complex variable $z \in \mathbb{C}$

$$
f^{(n)}=p_{n-1} f^{(n-1)}+\cdots+p_{1} f^{\prime}+p_{0} f,
$$

where p_{i} are meromorphic functions.

Regular singular points

Consider a ODE in one complex variable $z \in \mathbb{C}$

$$
f^{(n)}=p_{n-1} f^{(n-1)}+\cdots+p_{1} f^{\prime}+p_{0} f,
$$

where p_{i} are meromorphic functions. The above equation is said to have a regular singular point at $a \in \mathbb{C}$ if all p_{n-i} have a pole of order at most i at a.

Regular singular points

Consider a ODE in one complex variable $z \in \mathbb{C}$

$$
f^{(n)}=p_{n-1} f^{(n-1)}+\cdots+p_{1} f^{\prime}+p_{0} f,
$$

where p_{i} are meromorphic functions. The above equation is said to have a regular singular point at $a \in \mathbb{C}$ if all p_{n-i} have a pole of order at most i at a. In such a case, by a routine computation, the equation can be transformed into the form

$$
D^{(n)} f=b_{n-1} D^{(n-1)} f+\ldots+b_{0} f,
$$

where $D=(z-a) \frac{d}{d z}$. The original one has a regular singular point at a iff all b_{i} are holomorphic at a.

Hilbert's twenty-first problem

Hilbert's twenty-first problem. Let X be a nonsingular curve over $\mathbb{C}, ~ U$ one of its non-empty Zariski open set. Hilbert's twenty-first problem asks whether any finite-dimensional representation of $\pi_{1}\left(U^{a n}\right)$ can be obtained as a monodromy representation of a differential equation on U with regular singular points.

Hilbert's twenty-first problem

Hilbert's twenty-first problem. Let X be a nonsingular curve over $\mathbb{C}, ~ U$ one of its non-empty Zariski open set. Hilbert's twenty-first problem asks whether any finite-dimensional representation of $\pi_{1}\left(U^{a n}\right)$ can be obtained as a monodromy representation of a differential equation on U with regular singular points. Question. Why do we insist on regular singular points?

Hilbert's twenty-first problem

Hilbert's twenty-first problem. Let X be a nonsingular curve over $\mathbb{C}, ~ U$ one of its non-empty Zariski open set. Hilbert's twenty-first problem asks whether any finite-dimensional representation of $\pi_{1}\left(U^{a n}\right)$ can be obtained as a monodromy representation of a differential equation on U with regular singular points.
Question. Why do we insist on regular singular points?

Example 2.4

Let $U=\mathbb{A}^{1}, U^{a n}=\mathbb{C}$, and consider $\pi_{1}\left(U^{a n}\right)=0 \rightarrow \mathbb{C}^{\times}$the trivial representation. For any polynomial $P \in \mathbb{C}[z]$, the equation

$$
\frac{d f}{d z}=P(z) \cdot f \text { has solution } f(z)=\exp \left(\int_{0}^{z} P(t) d t\right)
$$

which is an entire function, so without monodromy. But as differential equations on the algebraic variety \mathbb{A}^{1}, these are pairwise non-isomorphic; only the choice $P \equiv 0$ gives regular singular points (include ∞).

Hilbert's twenty-first problem

Hilbert's twenty-first problem. Let X be a nonsingular curve over $\mathbb{C}, ~ U$ one of its non-empty Zariski open set. Hilbert's twenty-first problem asks whether any finite-dimensional representation of $\pi_{1}\left(U^{a n}\right)$ can be obtained as a monodromy representation of a differential equation on U with regular singular points.
Question. Why do we insist on regular singular points?

Example 2.4

Let $U=\mathbb{A}^{1}, U^{a n}=\mathbb{C}$, and consider $\pi_{1}\left(U^{a n}\right)=0 \rightarrow \mathbb{C}^{\times}$the trivial representation. For any polynomial $P \in \mathbb{C}[z]$, the equation

$$
\frac{d f}{d z}=P(z) \cdot f \text { has solution } f(z)=\exp \left(\int_{0}^{z} P(t) d t\right)
$$

which is an entire function, so without monodromy. But as differential equations on the algebraic variety \mathbb{A}^{1}, these are pairwise non-isomorphic; only the choice $P \equiv 0$ gives regular singular points (include ∞). Indeed, if $z=1 / w$ then the equation

$$
\frac{d f}{d w}=-\frac{Q(w)}{w^{\operatorname{deg}(P)+2}} \cdot f \text { where } w^{\operatorname{deg}} P(1 / w)=Q(w)
$$

has a regular singular point at $w=0$ iff $Q(w) \equiv 0$.

Connections and regular singular points

Our data in this section includes:

- k : an algebraically closed field of characteristic 0 .

Connections and regular singular points

Our data in this section includes:

- k : an algebraically closed field of characteristic 0 .
- F / k : a function field in one variable over k. For instance, F can be the function field of a smooth, projective curve over k.

Connections and regular singular points

Our data in this section includes:

- k : an algebraically closed field of characteristic 0 .
- F / k : a function field in one variable over k. For instance, F can be the function field of a smooth, projective curve over k.
- W : a vector space over F of dimension n.

Connections and regular singular points

Our data in this section includes:

- k : an algebraically closed field of characteristic 0 .
- F / k : a function field in one variable over k. For instance, F can be the function field of a smooth, projective curve over k.
- W : a vector space over F of dimension n.

Definition 3.1 (Connections)

A connection ∇ on W is an additive mapping $\nabla: W \rightarrow \Omega_{F / k}^{1} \otimes W$ satisfying the Leibniz rule

$$
\nabla(f w)=d f \otimes w+f \nabla(w) \forall f \in K, w \in W
$$

Connections and regular singular points

Our data in this section includes:

- k : an algebraically closed field of characteristic 0 .
- F / k : a function field in one variable over k. For instance, F can be the function field of a smooth, projective curve over k.
- W : a vector space over F of dimension n.

Definition 3.1 (Connections)

A connection ∇ on W is an additive mapping $\nabla: W \rightarrow \Omega_{F / k}^{1} \otimes W$ satisfying the Leibniz rule

$$
\nabla(f w)=d f \otimes w+f \nabla(w) \forall f \in K, w \in W
$$

Equivalently, ∇ can be defined as a F-linear mapping

$$
\nabla: \operatorname{Der}_{k}(F, F) \rightarrow \operatorname{End}_{k}(W)
$$

such that

$$
(\nabla(D))(f w)=D(f) w+f(\nabla(D)) w \forall D \in \operatorname{Der}_{k}(F, F), f \in F, w \in W
$$

For every closed point \mathfrak{p} (we also call a closed point a place) we do have

$$
\begin{aligned}
\mathcal{O}_{\mathfrak{p}} & =\left\{f \in K \mid \operatorname{ord}_{\mathfrak{p}}(f) \geq 0\right\} \\
\mathfrak{m}_{\mathfrak{p}} & =\left\{f \in K \mid \operatorname{ord}_{\mathfrak{p}}(f) \geq 1\right\}
\end{aligned}
$$

where $\operatorname{ord}_{\mathfrak{p}}: F \rightarrow \mathbb{Z} \cup\{\infty\}$ is the discrete valuation at \mathfrak{p}.

For every closed point \mathfrak{p} (we also call a closed point a place) we do have

$$
\begin{aligned}
\mathcal{O}_{\mathfrak{p}} & =\left\{f \in K \mid \operatorname{ord}_{\mathfrak{p}}(f) \geq 0\right\} \\
\mathfrak{m}_{\mathfrak{p}} & =\left\{f \in K \mid \operatorname{ord}_{\mathfrak{p}}(f) \geq 1\right\}
\end{aligned}
$$

where $\operatorname{ord}_{\mathfrak{p}}: F \rightarrow \mathbb{Z} \cup\{\infty\}$ is the discrete valuation at \mathfrak{p}.

Definition 3.2 (Regular singular points)

Let \mathfrak{p} be a place of F / k, let ∇ be a connection on W. We say that ∇ has a regular singular point at \mathfrak{p} if there exists a basis \mathbf{e} of W and a matrix $P \in M_{n}\left(\mathcal{O}_{\mathfrak{p}}\right)$ such that

$$
\nabla\left(h \frac{d}{d h}\right) \mathbf{e}=P \mathbf{e}
$$

where h is an uniformizer at \mathfrak{p}.

For every closed point \mathfrak{p} (we also call a closed point a place) we do have

$$
\begin{aligned}
\mathcal{O}_{\mathfrak{p}} & =\left\{f \in K \mid \operatorname{ord}_{\mathfrak{p}}(f) \geq 0\right\} \\
\mathfrak{m}_{\mathfrak{p}} & =\left\{f \in K \mid \operatorname{ord}_{\mathfrak{p}}(f) \geq 1\right\}
\end{aligned}
$$

where $\operatorname{ord}_{\mathfrak{p}}: F \rightarrow \mathbb{Z} \cup\{\infty\}$ is the discrete valuation at \mathfrak{p}.

Definition 3.2 (Regular singular points)

Let \mathfrak{p} be a place of F / k, let ∇ be a connection on W. We say that ∇ has a regular singular point at \mathfrak{p} if there exists a basis \mathbf{e} of W and a matrix $P \in M_{n}\left(\mathcal{O}_{\mathfrak{p}}\right)$ such that

$$
\nabla\left(h \frac{d}{d h}\right) \mathbf{e}=P \mathbf{e}
$$

where h is an uniformizer at \mathfrak{p}.

Definition 3.3 (Cyclic vectors)

Let ∇ be a connection on W. A vector $w \in W$ is said to be cyclic if there exists a non-zero derivation $D \in \operatorname{Der}_{k}(F, F)$ such that

$$
\operatorname{Span}_{K}\left\langle w,(\nabla(D))(w), \ldots,(\nabla(D))^{n-1}(w)\right\rangle=W
$$

In that case, we call (W, ∇) a cyclic object.

Turrittin's theorem

Theorem 3.4 (Fuchs, Turrittin, Lutz, [2])

Turrittin's theorem

Theorem 3.4 (Fuchs, Turrittin, Lutz, [2])

Suppose that (W, ∇) has a cyclic vector $w \in W, \mathfrak{p}$ is a place of $F / k, h$ is a uniformizer at \mathfrak{p} and $n=\operatorname{dim}_{F}(W)$. Then the following conditions are equivalent:

Turrittin's theorem

Theorem 3.4 (Fuchs, Turrittin, Lutz, [2])

Suppose that (W, ∇) has a cyclic vector $w \in W, \mathfrak{p}$ is a place of $F / k, h$ is a uniformizer at \mathfrak{p} and $n=\operatorname{dim}_{F}(W)$. Then the following conditions are equivalent:

- (W, ∇) does not have a regular singular point at \mathfrak{p}.

Turrittin's theorem

Theorem 3.4 (Fuchs, Turrittin, Lutz, [2])

Suppose that (W, ∇) has a cyclic vector $w \in W, \mathfrak{p}$ is a place of $F / k, h$ is a uniformizer at \mathfrak{p} and $n=\operatorname{dim}_{F}(W)$. Then the following conditions are equivalent:

- (W, ∇) does not have a regular singular point at \mathfrak{p}.
- In terms of the basis

$$
\mathbf{e}=\left(\begin{array}{c}
w \\
\nabla\left(h \frac{d}{d h}\right)(w) \\
\vdots \\
\left(\nabla\left(h \frac{d}{d h}\right)\right)^{n-1}(w)
\end{array}\right)
$$

of W, the connection matrix is expressed as

$$
\nabla\left(h \frac{d}{d h}\right) \mathbf{e}=\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & \cdot & 1 & 0 & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & 0 & & 0 & 1 \\
p_{0} & p_{1} & \cdots & p_{n-2} & p_{n-1}
\end{array}\right) \mathbf{e}
$$

and, for some value of i, we have $\operatorname{ord}_{\mathfrak{p}}\left(p_{i}\right)<0$.

Setting

- R : a commutative ring with unity.

Setting

- R : a commutative ring with unity.
- $\partial: R \rightarrow R$ is a derivation of R to itself.

Setting

- R : a commutative ring with unity.
- $\partial: R \rightarrow R$ is a derivation of R to itself.
- $t \in R$ an element with $\partial(t)=1$.

Setting

- R : a commutative ring with unity.
- $\partial: R \rightarrow R$ is a derivation of R to itself.
- $t \in R$ an element with $\partial(t)=1$.
- $R^{\partial}=\{a \in R \mid \partial(a)=0\}$ the subring of "constants".

Setting

- R : a commutative ring with unity.
- $\partial: R \rightarrow R$ is a derivation of R to itself.
- $t \in R$ an element with $\partial(t)=1$.
- $R^{\partial}=\{a \in R \mid \partial(a)=0\}$ the subring of "constants".
- A fixed integer $n \geq 1$ and a triple (V, D, \mathbf{e}) consisting of a free R-module V of rank n, an additive mapping $D: V \rightarrow V$ satisfying

$$
D(f v)=\partial(f) v+f D(v)
$$

for all $f \in R, v \in V$, and a R-basis $\mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right)$ of V.

Setting

- R : a commutative ring with unity.
- $\partial: R \rightarrow R$ is a derivation of R to itself.
- $t \in R$ an element with $\partial(t)=1$.
- $R^{\partial}=\{a \in R \mid \partial(a)=0\}$ the subring of "constants".
- A fixed integer $n \geq 1$ and a triple (V, D, \mathbf{e}) consisting of a free R-module V of rank n, an additive mapping $D: V \rightarrow V$ satisfying

$$
D(f v)=\partial(f) v+f D(v)
$$

for all $f \in R, v \in V$, and a R-basis $\mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right)$ of V.

Definition 4.1

An element $v \in V$ is said to be a cyclic vector if $v, D v, \ldots, D^{n-1}(v)$ is a R-basis of V.

Setting

- R : a commutative ring with unity.
- $\partial: R \rightarrow R$ is a derivation of R to itself.
- $t \in R$ an element with $\partial(t)=1$.
- $R^{\partial}=\{a \in R \mid \partial(a)=0\}$ the subring of "constants".
- A fixed integer $n \geq 1$ and a triple (V, D, \mathbf{e}) consisting of a free R-module V of rank n, an additive mapping $D: V \rightarrow V$ satisfying

$$
D(f v)=\partial(f) v+f D(v)
$$

for all $f \in R, v \in V$, and a R-basis $\mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right)$ of V.

Definition 4.1

An element $v \in V$ is said to be a cyclic vector if $v, D v, \ldots, D^{n-1}(v)$ is a R-basis of V.
Suppose now that $(n-1)$! is invertible in R. For each constant $a \in R^{\partial}$, we define an element $c(\mathbf{e}, t-a)$ in V by the following formula

$$
c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} \sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D^{k}\left(e_{n-k}\right) .
$$

First main result

Theorem 4.2 (N. M. Katz, [1])

Suppose R is a local $\mathbb{Z}[1 /(n-1)!]$-algebra whose maximal ideal contains $t-a$. Then $c(\mathbf{e}, t-a)$ is a cyclic vector.

First main result

Theorem 4.2 (N. M. Katz, [1])

Suppose R is a local $\mathbb{Z}[1 /(n-1)!]$-algebra whose maximal ideal contains $t-a$. Then $c(\mathbf{e}, t-a)$ is a cyclic vector.

Proof.

Define elements $c(i, j)$ inductively by the formulas

$$
\begin{aligned}
c(0, j) & = \begin{cases}\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D^{k}\left(e_{j-k}\right) & j \leq n-1, \\
0 & j \geq n .\end{cases} \\
c(i+1, j) & =c(i, j+1)+D(c(i, j)) .
\end{aligned}
$$

First main result

Theorem 4.2 (N. M. Katz, [1])

Suppose R is a local $\mathbb{Z}[1 /(n-1)!]$-algebra whose maximal ideal contains $t-a$. Then $c(\mathbf{e}, t-a)$ is a cyclic vector.

Proof.

Define elements $c(i, j)$ inductively by the formulas

$$
\begin{aligned}
c(0, j) & = \begin{cases}\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D^{k}\left(e_{j-k}\right) & j \leq n-1, \\
0 & j \geq n .\end{cases} \\
c(i+1, j) & =c(i, j+1)+D(c(i, j)) .
\end{aligned}
$$

By definition of $c(\mathbf{e}, t-a)$, we have

$$
c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(0, j)
$$

First main result

Proof.

By induction,

$$
D^{i} c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(i, j)=c(i, 0)+(t-a)(\text { smth }) \forall i, j \geq 0
$$

First main result

Proof.

By induction,

$$
D^{i} c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(i, j)=c(i, 0)+(t-a)(\text { smth }) \forall i, j \geq 0
$$

First main result

Proof.

By induction,

$$
\begin{gathered}
D^{i} c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(i, j)=c(i, 0)+(t-a)(\mathrm{smth}) \forall i, j \geq 0 \\
c(i, j)=\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D\left(e_{i+j-k}\right) \forall i+j \leq n-1 .
\end{gathered}
$$

First main result

Proof.

By induction,

$$
\begin{gathered}
D^{i} c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(i, j)=c(i, 0)+(t-a)(\mathrm{smth}) \forall i, j \geq 0 \\
c(i, j)=\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D\left(e_{i+j-k}\right) \forall i+j \leq n-1 .
\end{gathered}
$$

In particular, $c(i, 0)=e_{i} \forall i=\overline{0, n-1}$, which implies that

$$
D^{i} c(\mathbf{e}, t-a) \equiv e_{i} \bmod (t-a) V
$$

First main result

Proof.

By induction,

$$
\begin{gathered}
D^{i} c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(i, j)=c(i, 0)+(t-a)(\mathrm{smth}) \forall i, j \geq 0 \\
c(i, j)=\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D\left(e_{i+j-k}\right) \forall i+j \leq n-1 .
\end{gathered}
$$

In particular, $c(i, 0)=e_{i} \forall i=\overline{0, n-1}$, which implies that

$$
D^{i} c(\mathbf{e}, t-a) \equiv e_{i} \bmod (t-a) V
$$

Hence,

$$
V=(t-a) V+\left\langle D^{i} c(\mathbf{e}, t-a)\right\rangle \subset \mathfrak{m} V+\left\langle D^{i} c(\mathbf{e}, t-a)\right\rangle \subset V
$$

First main result

Proof.

By induction,

$$
\begin{gathered}
D^{i} c(\mathbf{e}, t-a)=\sum_{j=0}^{n-1} \frac{(t-a)^{j}}{j!} c(i, j)=c(i, 0)+(t-a)(\text { smth }) \forall i, j \geq 0 \\
c(i, j)=\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} D\left(e_{i+j-k}\right) \forall i+j \leq n-1 .
\end{gathered}
$$

In particular, $c(i, 0)=e_{i} \forall i=\overline{0, n-1}$, which implies that

$$
D^{i} c(\mathbf{e}, t-a) \equiv e_{i} \bmod (t-a) V
$$

Hence,

$$
V=(t-a) V+\left\langle D^{i} c(\mathbf{e}, t-a)\right\rangle \subset \mathfrak{m} V+\left\langle D^{i} c(\mathbf{e}, t-a)\right\rangle \subset V
$$

Since V is finitely generated, we can apply Nakayama's lemma to conclude that $V=\left\langle D^{i} c(\mathbf{e}, t-a)\right\rangle ;$ in other words, $c(\mathbf{e}, t-a)$ is a cyclic vector.

Second main result

Theorem 4.3 (N. M. Katz, [1])

Let R be a ring in which $(n-1)$! is invertible, and let k be a subfield of R^{∂}. Suppose that $|k|>n(n-1)$, and let $a_{0}, a_{1}, \ldots, a_{n(n-1)}$ be $n(n-1)+1$ distinct elements of k. Then Zarisky locally on $\operatorname{Spec}(R)$, one of the vectors $c\left(\mathbf{e}, t-a_{i}\right), i=\overline{0, n(n-1)}$, is a cyclic vector.

Second main result

Theorem 4.3 (N. M. Katz, [1])

Let R be a ring in which $(n-1)$! is invertible, and let k be a subfield of R^{∂}. Suppose that $|k|>n(n-1)$, and let $a_{0}, a_{1}, \ldots, a_{n(n-1)}$ be $n(n-1)+1$ distinct elements of k. Then Zarisky locally on $\operatorname{Spec}(R)$, one of the vectors $c\left(\mathbf{e}, t-a_{i}\right), i=\overline{0, n(n-1)}$, is a cyclic vector.

Proof.

For $i=\overline{0, n-1}, X \in R$, we define elements $c_{i}(\mathbf{e}, X)$ by

$$
c_{i}(\mathbf{e}, X)=\sum_{j=0}^{n-1} \frac{X^{j}}{j!} c(i, j)
$$

Second main result

Theorem 4.3 (N. M. Katz, [1])

Let R be a ring in which $(n-1)$! is invertible, and let k be a subfield of R^{∂}. Suppose that $|k|>n(n-1)$, and let $a_{0}, a_{1}, \ldots, a_{n(n-1)}$ be $n(n-1)+1$ distinct elements of k. Then Zarisky locally on $\operatorname{Spec}(R)$, one of the vectors $c\left(\mathbf{e}, t-a_{i}\right), i=\overline{0, n(n-1)}$, is a cyclic vector.

Proof.

For $i=\overline{0, n-1}, X \in R$, we define elements $c_{i}(\mathbf{e}, X)$ by

$$
c_{i}(\mathbf{e}, X)=\sum_{j=0}^{n-1} \frac{X^{j}}{j!} c(i, j)
$$

Taking wedge product gives us

$$
c_{0}(\mathbf{e}, X) \wedge \cdots \wedge c_{n-1}(\mathbf{e}, X)=P(X) e_{0} \wedge \cdots \wedge e_{n-1}
$$

where P is a polynomial of degree $\leq n(n-1)$ in $R[T]$.

Frame Title

Proof.

We do have

$$
\begin{aligned}
c_{i}(\mathbf{e}, 0)=e_{i} & \Rightarrow P(0)=1 \\
c_{i}(\mathbf{e}, t-a) & =D^{i} c(\mathbf{e}, t-a)
\end{aligned}
$$

Therefore, $c(\mathbf{e}, t-a)$ is cyclic if and only if $P(t-a) \in R^{\times}$.

Frame Title

Proof.

We do have

$$
\begin{aligned}
c_{i}(\mathbf{e}, 0)=e_{i} & \Rightarrow P(0)=1 \\
c_{i}(\mathbf{e}, t-a) & =D^{i} c(\mathbf{e}, t-a)
\end{aligned}
$$

Therefore, $c(\mathbf{e}, t-a)$ is cyclic if and only if $P(t-a) \in R^{\times}$. We must show that $\left\langle P\left(t-a_{i}\right)\right\rangle=R$. Let's write explicitly

$$
P(X)=\sum_{j=0}^{n(n-1)} r_{j} X^{j}
$$

Frame Title

Proof.

We do have

$$
\begin{aligned}
c_{i}(\mathbf{e}, 0)=e_{i} & \Rightarrow P(0)=1 \\
c_{i}(\mathbf{e}, t-a) & =D^{i} c(\mathbf{e}, t-a)
\end{aligned}
$$

Therefore, $c(\mathbf{e}, t-a)$ is cyclic if and only if $P(t-a) \in R^{\times}$. We must show that $\left\langle P\left(t-a_{i}\right)\right\rangle=R$. Let's write explicitly

$$
P(X)=\sum_{j=0}^{n(n-1)} r_{j} X^{j}
$$

This yields a system of equations $P\left(t-a_{i}\right)=\sum_{j=0}^{n(n-1)} r_{j}\left(t-a_{i}\right)^{j}$, whose determinant is the well-known Van der Monde one

Frame Title

Proof.

We do have

$$
\begin{aligned}
c_{i}(\mathbf{e}, 0)=e_{i} & \Rightarrow P(0)=1 \\
c_{i}(\mathbf{e}, t-a) & =D^{i} c(\mathbf{e}, t-a)
\end{aligned}
$$

Therefore, $c(\mathbf{e}, t-a)$ is cyclic if and only if $P(t-a) \in R^{\times}$. We must show that $\left\langle P\left(t-a_{i}\right)\right\rangle=R$. Let's write explicitly

$$
P(X)=\sum_{j=0}^{n(n-1)} r_{j} X^{j}
$$

This yields a system of equations $P\left(t-a_{i}\right)=\sum_{j=0}^{n(n-1)} r_{j}\left(t-a_{i}\right)^{j}$, whose determinant is the well-known Van der Monde one

$$
\operatorname{det}\left(\left(t-a_{i}\right)_{0 \leq i, j \leq n(n-1)}^{j}\right)=\prod_{0 \leq i<j \leq n(n-1)}\left(a_{i}-a_{j}\right) \in k^{\times} \subset R^{\times}
$$

Consequently, $R \stackrel{P(0)=1}{=}\langle P(0)\rangle \stackrel{r_{0}=P(0)}{=}\left\langle r_{i}\right\rangle=\left\langle P\left(t-a_{i}\right)\right\rangle$.

Motivation for the chosen formula

Consider $R=\mathbb{C}[[t]]$, the formal power series over \mathbb{C} in one variable, $\partial=d / d t$ is the formal derivative. If $\left(h_{0}, \ldots, h_{n-1}\right)$ is a horizontal basis of V, i.e. a R-basis such that $D h_{i}=0 \forall i=\overline{0, n-1}$. Then it can be seen easily that

$$
\sum_{j=0}^{n-1} \frac{t^{j}}{j!} h_{j}
$$

is a cyclic vector.

Motivation for the chosen formula

Consider $R=\mathbb{C}[[t]]$, the formal power series over \mathbb{C} in one variable, $\partial=d / d t$ is the formal derivative. If $\left(h_{0}, \ldots, h_{n-1}\right)$ is a horizontal basis of V, i.e. a R-basis such that $D h_{i}=0 \forall i=\overline{0, n-1}$. Then it can be seen easily that

$$
\sum_{j=0}^{n-1} \frac{t^{j}}{j!} h_{j}
$$

is a cyclic vector. Given any $v \in V$, the t-adic sequence

$$
\widetilde{v}=\sum_{k \geq 0}(-1)^{k} \frac{t^{k}}{k!} D^{k}(v)
$$

is the unique solution of

$$
\widetilde{v} \equiv v \bmod t V, D(\widetilde{v})=0
$$

Motivation for the chosen formula

Consider $R=\mathbb{C}[[t]]$, the formal power series over \mathbb{C} in one variable, $\partial=d / d t$ is the formal derivative. If $\left(h_{0}, \ldots, h_{n-1}\right)$ is a horizontal basis of V, i.e. a R-basis such that $D h_{i}=0 \forall i=\overline{0, n-1}$. Then it can be seen easily that

$$
\sum_{j=0}^{n-1} \frac{t^{j}}{j!} h_{j}
$$

is a cyclic vector. Given any $v \in V$, the t-adic sequence

$$
\widetilde{v}=\sum_{k \geq 0}(-1)^{k} \frac{t^{k}}{k!} D^{k}(v)
$$

is the unique solution of

$$
\widetilde{v} \equiv v \bmod t V, D(\widetilde{v})=0
$$

Therefore if $\mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right)$ is any R-basis of V, then $\left(\widetilde{e}_{0}, \ldots, \widetilde{e}_{n-1}\right)$ is, by Nakayama's lemma, a horizontal R-basis, and consequently

$$
\sum_{j=0}^{n-1} \frac{t^{j}}{j!} \widetilde{!}_{j}=\sum_{j=0}^{n-1} \frac{t^{j}}{j!} \sum_{k \geq 0}(-1)^{k} \frac{t^{k}}{k!} D^{k}\left(e_{j}\right)
$$

is a cyclic vector.

Motivation for the chosen formula

But if v is a cyclic vector, then so, by Nakayama's lemma, is $v+t^{n} v_{0}$ for any $v_{0} \in V$, simply because, for $i=\overline{0, n-1}$,

$$
D^{i}\left(v+t^{n} v_{0}\right) \equiv D^{i} v \bmod t^{n-i} V
$$

Motivation for the chosen formula

But if v is a cyclic vector, then so, by Nakayama's lemma, is $v+t^{n} v_{0}$ for any $v_{0} \in V$, simply because, for $i=\overline{0, n-1}$,

$$
D^{i}\left(v+t^{n} v_{0}\right) \equiv D^{i} v \bmod t^{n-i} V
$$

Therefore in the above double sum, we may neglect all terms with $j+k \geq n$, to conclude that

$$
\sum_{j=0}^{n-1} \frac{t^{j}}{j!} \sum_{k=0}^{n-1-j}(-1)^{k} \frac{t^{k}}{k!} D^{k}\left(e_{j}\right)
$$

is a cyclic vector. But this last vector is easily seen to be $c(\mathbf{e}, t)$.

Thank you for your listening!

References I

[1] Nicholas M. Katz. "A simple algorithm for cyclic vectors". in Amer. J. Math.: 109.1 (1987), pages 65-70. ISSN: 0002-9327. DOI: $10.2307 / 2374551$. URL: https://doi.org/10.2307/2374551.
[2] Nicholas M. Katz. "Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin". inInst. Hautes Études Sci. Publ. Math.: 39 (1970), pages 175-232. ISSN: 0073-8301. URL:
http://www.numdam.org/item?id=PMIHES_1970__39__175_0.

