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We obtain our first two perfectoid fields : Q:(;»:%) and its tilt Fp'(ft?%)).




lI.A. Valuation

Absolute value : |.| : R (integral domain) —— R, forall x,y in R :
I. x| =01iff x=0.
2. [xyl = x|y

3. eyl < Il + .

Distance : d is defined by for all x,y in R : d(x,y) = |x — y|.

Ultrametric absolute value : absolute value |.| with :

3 bis. |x+y| < max(|x],[y)).




lI.A. Valuation

Valuation : v : R (ring) — I" U {+o0} (abelian totally ordered group with infinity such that
Vyer, +oo > v and (+00)+v = v+ (+00) = (+o0) + (+o0) = +oo ), forall x,y in R :

l. V(OR) = +o0 and V(IR) = Or.

2. v(xy) = v(x) + v(p).
3. v(x+y) = min(v(x),v(y)).

Ultrametric absolute value: If R is an integral domain and I" is the totally ordered group of real
number with +, then |.|,, defined by for all x in R, |x|, = exp(-v(x)), is an ultrametric absolute value.




lI.A. Valuation

Valuation ring : The valuation ring of a valued field K is the ring {x in K | v(x) > 0}.

Rank of a valuation : The rank of a valuation is the Krull dimension of its valuation ring.

A valuation ring is a local ring. So, if K is a valued field, the residue field of K is the residue field of
its valuation ring.



11.B. Perfectoid field

Perfectoid field : A perfectoid field K 1s a complete
topological field whose topology 1s induced by a non-
discrete valuation of rank 1, such that the Frobenius
endomorphism 1s surjective on K°/(p) where K°
denotes the valuation ring of K where p is the
characteristic of the residue field of K.




|1.B. Perfectoid field

A field of characteristic p>0 is a perfectoid field iff it is complete and perfect.
If L 1s a finite extension of a perfectoid field K, then L is perfectoid.

If L is an algebraic extension of a perfectoid field K, then [, is perfectoid.




I1.C. Tilt of a perfectoid field

Tilt : Let K be a perfectoid field, the tilt of K, denoted
K, is the following inverse limit (projective limit) :
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I1.C. Tilt of a perfectoid field
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Qp (pz%”) is a perfectoid field and its tilt is ]Fp((tp% ).

e

Cp := Q, is a perfectoid field and its tilt is C> =TFp((2)).




I1.C. Tilt of a perfectoid field

The tilt of a perfectoid field which has residue field of characteristic p>0 is also a perfectoid field
and its characteristic is p.

If K 1s a perfectoid field of characteristic p>0, then it is its own tilt.
A perfectoid field K is algebraically closed iff K * is algebraically closed.

Theorem (Fontaine and Wintenberger):

Gal(K*?/K) ~ Gal(K*"" /K?)




lIl.A. Adic space

[-adic topology : Let R be a commutative ring and / an ideal of R. The /-adic topology on the ring R
is the unique topology such that /”, with » in N, form a neighborhood basis of 0.

An /[-adic ring is a ring with a I-adic topology.

Huber ring : A Huber ring 4 is a topological commutative ring which has an open subring which is

an /-adic ring R where [ is a finitely generated ideal. The open subring is called the definition ring
of 4 and I is called the definition ideal of A.

For example, Q, 1s a Huber ring, Z, 1s its definition ring and (p) its definition ideal.



lIl.A. Adic space

A power-bounded element @ of a topological ring R is an element such that for all neighborhood U
of 0, there exists an other neighborhood V such that for all » in N, @"VcU.

We denote R° the subring of all power-bounded elements of R.

A topologically nilpotent element @ of a topological ring is an element such that @” tends to 0 when
n tends to +oo,

A pseudo-uniformizer @ of a topological ring is a topologically nilpotent element which is
invertible.

Tate ring : A Tate ring is a Huber ring including a pseudo-uniformizer.

For example, Q, is a Tate ring and p is one of its pseudo-uniformizer.



lIl.A. Adic space

Huber pair : Let R be a commutative ring and / an ideal of R. A Huber pair (R, R") i1s a tuple where
1s a Huber ring and R" is a integrally closed open subring of R°.

Tate pair : A Tate pair (R, R") is a Huber pair where R is a Tate ring.

Two valuations are said to be equivalent if they have the same valuation ring.

Adic spectrum: The adic spectrum Spa(A4, A") of a Huber pair (4, A") is the set of equivalence
classes of valuation continuous on 4 and positive on A".

A rational subset of an adic spectrum X of a Huber pair (4, A") is a subset :

R <M> = {v e X|Vi € [I;n],v(fi) > v(g) # +oo} = {v e X|Vi € [1;n],|filo < |g|» # 0}

9

with f,...,f, in A generating an open ideal and g in 4.



lIl.A. Adic space

We put on an adic spectrum a topology such that the rational subsets form an open basis.

We define O'x = ﬁspa( A,A+)as a presheaf of ring on an adic space X such that for all U rational

subset Ox (U) = A[%, s %] and Ox (U) = 1(1__111 Z0(V) otherwise with .% the

VCU, Ve®
ZB-sheaf with 44 the open basis of rational subsets.

This isn’t always a sheaf.




lll.A. Adic space

Adic space : An affinoid adic space is a topologically locally ringed space
such that all stalks are valuation ring, which 1s isomorphic to an adic

spectrum Spa(A4, A7). An adic space 1s a topologically locally ringed space
such that all stalks are valuation ring, admitting an open cover of affinoid

adic spaces. If (4, 4") 1s a Tate pair, the affinoid adic space 1s called
analytic affinoid adic space.



I11.B. Perfectoid space

Perfectoid algebra : Let K be a perfectoid field. A perfectoid K-algebra A4 is a Banach K-algebra
such that A4° 1s open and bounded and the Frobenius endomorphism is surjective on 4A°/(p).

Theorem (Tilting equivalence):
There is equivalence of categories, called the tilting equivalence, between the category of
perfectoid K-algebras and the category of perfectoid K *-algebras.




I11.B. Perfectoid space

Perfectoid affinoid algebra : Let K be a field. An affinoid K-algebra (4, 4") 1s a Tate pair such that 4
is a K-algebra.

Let K be a perfectoid field. A perfectoid affinoid K-algebra (4, 4") is an affinoid K-algebra which is
a perfectoid K-algebra.

Perfectoid space : An affinoid perfectoid space over a perfectoid field K is an analytic affinoid adic
space which 1s isomorphic to Spa(4, 4") where (4, A4") 1s a perfectoid affinoid K-algebra. A
perfectoid space over a perfectoid field K is an analytic adic space locally isomorphic to an

affinoid perfectoid space.




I11.B. Perfectoid space

Theorem :
There is equivalence of categories between the category of perfectoid space over K and the
category of perfectoid space over K .




I11.B. Perfectoid space

Theorem (Almost purity theorem):
Let K be a perfectoid field.
If X — Y is a finite étale morphism of adic spaces over K and Y is perfectoid, then X also is

perfectoid.
A morphism X — Y of perfectoid spaces over K is finite étale if and only if the tilt X* — Y’ is

finite étale over K",




