Perfectoid fields & spaces

- Problems of mixed characteristic
- Peter Scholze (German)
- 2012

Summary

- I. First examples
- II. Perfectoid field
 - A. Valuation
 - B. Perfectoid field
 - C. Tilt of a perfectoid field
- III. Perfectoid space
 - A. Adic space
 - B. Perfectoid space

$$n = a_d p^d + \dots + a_1 p + a_0 = \sum_{i=0}^d a_i p^i \text{ with for all } i, \quad a_i \in [0; p-1]].$$
$$f(t) = \overline{a_d} t^d + \dots + \overline{a_1} t + \overline{a_0} = \sum_{i=0}^d \overline{a_i} t^i \text{ with for all } i, \quad \overline{a_i} \in \mathbb{F}_p.$$

$$\mathbb{N} \quad \longleftrightarrow \quad \mathbb{F}_{p}[t]$$

$$\sum_{i=0}^{d} a_{i} p^{i} \quad \longmapsto \quad \sum_{i=0}^{d} \overline{a_{i}} t^{i}$$

This bijection does not preserve the operations + and x.

3

N	$\mathbb{F}_p[t]$
$\mathbb{N}[p^{-1}]$	$\mathbb{F}_p[t, t^{-1}]$
Q	$\mathbb{F}_p(t)$
$\mathbb{N}[p^{rac{1}{p^n}}]$	$\mathbb{F}_p[t^{\frac{1}{p^n}}]$
$\mathbb{N}[p^{\frac{1}{p^{\infty}}}]$	$\mathbb{F}_p[t^{\frac{1}{p^{\infty}}}]$
\mathbb{Z}_p	$\mathbb{F}_p[[t]]$
\mathbb{Q}_p	$\mathbb{F}_p((t))$
$\mathbb{Q}(p^{\frac{1}{p^{\infty}}})$	$\mathbb{F}_p(t^{\frac{1}{p^{\infty}}})$
$\mathbb{Z}_p[p^{\frac{1}{p^{\infty}}}]$	$\mathbb{F}_p[[t^{\frac{1}{p^{\infty}}}]]$
$\widehat{\mathbb{Z}_p[p^{\frac{1}{p^{\infty}}}]}$	$\widehat{\mathbb{F}_p[[t^{\frac{1}{p^{\infty}}}]]}$
$\mathbb{Q}_p(p^{rac{1}{p^{\infty}}})$	$\mathbb{F}_p((t^{\frac{1}{p^{\infty}}}))$
$\widehat{\mathbb{Q}_p(p^{\frac{1}{p^{\infty}}})}$	$\widehat{\mathbb{F}_p((t^{\frac{1}{p^{\infty}}}))}$

We obtain our first two perfectoid fields : $\widehat{\mathbb{Q}_p(p^{\frac{1}{p^{\infty}}})}$ and its tilt $\widehat{\mathbb{F}_p((t^{\frac{1}{p^{\infty}}}))}$.

II.A. Valuation

<u>Absolute value</u>: |.|: R (integral domain) $\longrightarrow \mathbb{R}_+$, for all x, y in R:

1. |x| = 0 iff x = 0.

- 2. |xy| = |x||y|.
- 3. $|x+y| \le |x| + |y|$.

<u>Distance</u> : *d* is defined by for all x, y in R : d(x, y) = |x - y|.

<u>Ultrametric absolute value :</u> absolute value |.| with :

3 bis. $|x+y| \le \max(|x|,|y|)$.

II.A. Valuation

<u>Valuation</u>: v : R (ring) $\longrightarrow \Gamma \cup \{+\infty\}$ (abelian totally ordered group with infinity such that $\forall \gamma \in \Gamma, +\infty \ge \gamma$ and $(+\infty) + \gamma = \gamma + (+\infty) = (+\infty) + (+\infty) = +\infty$), for all x, y in R:

- 1. $v(0_R) = +∞$ and $v(1_R) = 0_{\Gamma}$.
- 2. v(xy) = v(x) + v(y).
- 3. $v(x+y) \ge \min(v(x), v(y))$.

<u>Ultrametric absolute value</u>: If *R* is an integral domain and Γ is the totally ordered group of real number with +, then $|.|_{\nu}$, defined by for all *x* in *R*, $|x|_{\nu} = \exp(-\nu(x))$, is an ultrametric absolute value.

II.A. Valuation

<u>Valuation ring</u>: The valuation ring of a valued field *K* is the ring $\{x \text{ in } K \mid v(x) \ge 0\}$.

Rank of a valuation : The rank of a valuation is the Krull dimension of its valuation ring.

A valuation ring is a local ring. So, if K is a valued field, the residue field of K is the residue field of its valuation ring.

II.B. Perfectoid field

<u>Perfectoid field :</u> A perfectoid field *K* is a complete topological field whose topology is induced by a nondiscrete valuation of rank 1, such that the Frobenius endomorphism is surjective on $K^{\circ}/(p)$ where K° denotes the valuation ring of *K* where *p* is the characteristic of the residue field of *K*.

II.B. Perfectoid field

A field of characteristic p>0 is a perfectoid field iff it is complete and perfect.

If L is a finite extension of a perfectoid field K, then L is perfectoid.

If *L* is an algebraic extension of a perfectoid field *K*, then \hat{L} is perfectoid.

II.C. Tilt of a perfectoid field

<u>Tilt</u>: Let *K* be a perfectoid field, the tilt of *K*, denoted K^{\flat} , is the following inverse limit (projective limit) :

$$K^{\flat} := \lim_{\stackrel{\leftarrow}{x \mapsto x^{p}}} K = \left\{ (\dots, x_{2}, x_{1}, x_{0}), x_{i} \in k, x_{i+1}^{p} = x_{i} \right\}$$

$$(\dots, x_{2}, x_{1}, x_{0})(\dots, y_{2}, y_{1}, y_{0}) = (\dots, x_{2}y_{2}, x_{1}y_{1}, x_{0}y_{0})$$

$$(\dots, x_{2}, x_{1}, x_{0}) + (\dots, y_{2}, y_{1}, y_{0}) = (\dots, z_{2}, z_{1}, z_{0})$$

$$z_{i} = \lim_{n \to +\infty} (x_{i+n} + y_{i+n})^{p^{n}}$$

K

II.C. Tilt of a perfectoid field

$$\widehat{\mathbb{Q}_p(p^{\frac{1}{p^{\infty}}})}$$
 is a perfectoid field and its tilt is $\mathbb{F}_p((t^{\frac{1}{p^{\infty}}}))$.

$$\mathbb{C}_p := \widehat{\mathbb{Q}_p}$$
 is a perfectoid field and its tilt is $\mathbb{C}_p^{\flat} = \widehat{\mathbb{F}_p((t))}$.

II.C. Tilt of a perfectoid field

The tilt of a perfectoid field which has residue field of characteristic p>0 is also a perfectoid field and its characteristic is p.

If *K* is a perfectoid field of characteristic p>0, then it is its own tilt.

A perfectoid field K is algebraically closed iff K^{\flat} is algebraically closed.

Theorem (Fontaine and Wintenberger):

$$\operatorname{Gal}(K^{sep}/K) \simeq \operatorname{Gal}(K^{\flat^{sep}}/K^{\flat})$$

<u>*I*-adic topology</u> : Let *R* be a commutative ring and *I* an ideal of *R*. The *I*-adic topology on the ring *R* is the unique topology such that I^n , with *n* in \mathbb{N} , form a neighborhood basis of 0.

An *I*-adic ring is a ring with a *I*-adic topology.

<u>Huber ring</u>: A Huber ring A is a topological commutative ring which has an open subring which is an *I*-adic ring R where I is a finitely generated ideal. The open subring is called the definition ring of A and I is called the definition ideal of A.

For example, \mathbb{Q}_p is a Huber ring, \mathbb{Z}_p is its definition ring and (p) its definition ideal.

A power-bounded element ϖ of a topological ring *R* is an element such that for all neighborhood *U* of 0, there exists an other neighborhood *V* such that for all *n* in \mathbb{N} , $\varpi^n V \subset U$.

We denote R° the subring of all power-bounded elements of R.

A topologically nilpotent element ϖ of a topological ring is an element such that ϖ^n tends to 0 when *n* tends to $+\infty$.

A pseudo-uniformizer ϖ of a topological ring is a topologically nilpotent element which is invertible.

Tate ring : A Tate ring is a Huber ring including a pseudo-uniformizer.

For example, \mathbb{Q}_p is a Tate ring and p is one of its pseudo-uniformizer.

<u>Huber pair</u>: Let *R* be a commutative ring and *I* an ideal of *R*. A Huber pair (R, R^+) is a tuple where is a Huber ring and R^+ is a integrally closed open subring of R° .

<u>Tate pair</u>: A Tate pair (R, R^+) is a Huber pair where R is a Tate ring.

Two valuations are said to be equivalent if they have the same valuation ring.

<u>Adic spectrum</u>: The adic spectrum $\text{Spa}(A, A^+)$ of a Huber pair (A, A^+) is the set of equivalence classes of valuation continuous on A and positive on A^+ .

A rational subset of an adic spectrum X of a Huber pair (A, A^+) is a subset :

$$R\left(\frac{f_1,...,f_n}{g}\right) := \{v \in X | \forall i \in \llbracket 1;n \rrbracket, v(f_i) \ge v(g) \ne +\infty\} = \{v \in X | \forall i \in \llbracket 1;n \rrbracket, |f_i|_v \le |g|_v \ne 0\}$$

with $f_1,...,f_n$ in A generating an open ideal and g in A .

We put on an adic spectrum a topology such that the rational subsets form an open basis.

We define $\mathscr{O}_X = \mathscr{O}_{\text{Spa}(A,A^+)}$ as a presheaf of ring on an adic space X such that for all U rational subset $\mathscr{O}_X(U) = A[\underbrace{\widehat{f_1}}_{g}, ..., \underbrace{f_n}_{g}]$ and $\mathscr{O}_X(U) = \lim_{\substack{\leftarrow \\ V \subset U, \ V \in \mathscr{B}}} \mathscr{F}_0(V)$ otherwise with \mathscr{F}_0 the

 \mathscr{B} -sheaf with \mathscr{B} the open basis of rational subsets.

This isn't always a sheaf.

<u>Adic space</u>: An affinoid adic space is a topologically locally ringed space such that all stalks are valuation ring, which is isomorphic to an adic spectrum $\text{Spa}(A, A^+)$. An adic space is a topologically locally ringed space such that all stalks are valuation ring, admitting an open cover of affinoid adic spaces. If (A, A^+) is a Tate pair, the affinoid adic space is called analytic affinoid adic space.

<u>Perfectoid algebra</u>: Let K be a perfectoid field. A perfectoid K-algebra A is a Banach K-algebra such that A° is open and bounded and the Frobenius endomorphism is surjective on $A^{\circ}/(p)$.

Theorem (Tilting equivalence):

There is equivalence of categories, called the tilting equivalence, between the category of perfectoid *K*-algebras and the category of perfectoid K^{\flat} -algebras.

Perfectoid affinoid algebra : Let K be a field. An affinoid K-algebra (A, A^+) is a Tate pair such that A is a K-algebra. Let K be a perfectoid field. A perfectoid affinoid K-algebra (A, A^+) is an affinoid K-algebra which is a perfectoid K-algebra.

<u>Perfectoid space</u>: An affinoid perfectoid space over a perfectoid field K is an analytic affinoid adic space which is isomorphic to $\text{Spa}(A, A^+)$ where (A, A^+) is a perfectoid affinoid K-algebra. A perfectoid space over a perfectoid field K is an analytic adic space locally isomorphic to an affinoid perfectoid space.

<u>Theorem :</u>

There is equivalence of categories between the category of perfectoid space over K and the category of perfectoid space over K^{\flat} .

Theorem (Almost purity theorem):

Let *K* be a perfectoid field.

If $X \to Y$ is a finite étale morphism of adic spaces over K and Y is perfectoid, then X also is perfectoid.

A morphism $X \to Y$ of perfectoid spaces over K is finite étale if and only if the tilt $X^{\flat} \to Y^{\flat}$ is finite étale over K^{\flat} .

