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Abstract

We present the article q-difference equations and p-adic local monodromy written by
Lucia Di Vizio and Yves André. We only expose the first part of the article which
aims to introduce a p-adic theory of q-difference equations of rank 1. This report was
achieved under the supervision of Bernard Le Stum whom I thank for his kindness and
his advice.
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Pierre Houedry

1. Introduction

The study of q-differences and q-analogues started with the work of Euler, in the 18th century,
on combinatorial problems in number theory. The q-analogues then appear in the work of Heine,
Jacobi, Poincaré, Picard, Ramanujan and Birkhoff to name only famous mathematicians that
have been interested in this concept. However, this topic has been forgotten until 30 years ago. For
various reasons, q-analogues now appear in various emerging research topics such as arithmetic
geometry (in the work of Scholze for example), quantum groups, combinatorics and even physics.
Let us try in this introduction to give a naive idea of how q-analogues arise in mathematics. Let
n ∈ N we define

[n]q =
qn − 1

q − 1
= 1 + q + ...+ qn−1.

Thinking of q as variable it is easily seen that [n]q → n when taking the limit as q → 1. We can
also define the q-factorial

[n]!q =

n∏
i=1

[i]q.

and the q-binomial coefficient (
n

k

)
q

=
[n]!q

[k]!q[n− k]!q
.

When q is a power of a prime we have that
(
n
k

)
q

is the number of k-dimensional subvectorspaces
of Fnq . Thus it seems that q-analogues have good arithmetic properties but they can also be useful
for analytical problems. Let f be a “good” function such that we can define

dq(f)(x) =
f(qx)− f(x)

(q − 1)x
.

We have dq → d
dx as q → 1. Moreover, it satisfies a twisted Leibniz formula

dq(fg)(x) = f(qx)dq(g)(x) + dq(f)(x)g(x).

Many mathematical objects have a q-analogue such that we recover the usual object by taking
the limit as q → 1. On the other side, we are interested in p-adic differential equations. The study
of p-adic differential equations was motivated by the study of de Rham cohomology over certain
varieties and the study of zeta functions of varieties over finite fields. This research topic started
with mathematicians such as Tate, Dwork and Robba. This is still an active field of research
nowadays. In this report, we study an article that brings together the q-analogues and the p-adic
differential equations. We give below a description of the set-up in which we work.

1.1. Let K be a field of characteristic zero complete with respect to a non archimedean absolute
value | |, with residue field k of characteristic p > 0. Note that it implies that | ||Q is the p-adic
absolute value by the Ostrowski theorem ([Rob00, Section 1.2.1]). We assume that the absolute
value is normalized by |p| = p−1. For any interval I ⊂ R>0 we consider the K-algebra AK(I) of
analytic function in K, on the annulus CK(I) =

{
x ∈ K : |x| ∈ I},

AK(I) =
{∑
n∈Z

anx
n : an ∈ K, lim

n→±∞
|an|ρn = 0 ∀ρ ∈ I

}
.

We denote by MK(I) it’s field of fractions and by BK(I) the subring of bounded elements of
AK(I). From now on, we denote by q an element of K such that |q − 1| < 1 and that q is not a
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root of unity. We choose such a q because we don’t want to have [n]q = 0 for a given integer n.
It also implies that |q| = 1 and that q is “small”. We have a K-algebra isomorphism

σq : A(I)→ A(I)

f(x) 7→ f(qx)

We will mainly be interested by q-difference equation of rank 1 with coefficient in M(I):

y(qx) = a(x)y(x), a(x) ∈M(I).

We shall write the above expression as

dq(y)(x) = g(x)y(x), with g(x) =
a(x)− 1

(q − 1)x
.

From this form, it arise a sequence of equations

dnq (y)(x) = gn(x)y(x),

if g(x) is analytic at 0, then one can check that
∑
n>0

gn(0)
[n]!q

xn is a formal solution of y(ax) =

a(x)y(x). It automatically brings the problem of convergence of a formal solution. For any u ∈
M(I)∗, we say that

y(qx) = u(qx)−1a(x)u(x)y(x)

is M(I)-equivalent to

y(qx) = a(x)y(x).

The algebraic closure of Qp being not complete, we often have to consider its completion Cp.
However, it is not sufficient to obtain a p-adic q-analog of the Hahn-Banach theorem. Thus we
need to enlarge Qp not just by completion. This give rise to the following construction. For more
details we refer the reader to [Rob00, Chapter 3].

1.2. We will consider an extension of normed fields Ω/K satisfying the following properties:

(i) the field Ω is complete and algebraically closed;

(ii) we have |Ω| = R>0;

(iii) the residue field of Ω is transcendental extension of k;

(iv) for any ρ ∈ R>0 the field Ω contains an element tρ such that tρ is transcendant over K and
|tρ| = ρ.

The following definition is a tool to measure the radius of convergence of a formal solution
in a disc of radius ρ around every point of norm equal to ρ. We can restrict to only look at the
radius at the generic point tρ because it is invariant at every point of norm ρ.

Definition 1.3. For any ρ ∈ I, we call generic radius of convergence of y(qx) = a(x)y(x) at tρ
the number

Rρ(σq − a(x)) = inf

(
ρ, lim inf

n→+∞

∣∣∣∣gn(tρ)

[n]!q

∣∣∣∣−1/n
)
.

Here are some elementary properties satisfied between solution of a q-difference equation and
its radius of convergence.

Proposition 1.4. ([DV04])
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(i) (Twisted Taylor expansion Let dqy(x) = g(x)y(x) be a q-difference equation with
coefficient g(x) ∈ M(I) and let ξ ∈ C(I). Suppose that g(x) does not have any pole in
qNξ. Then dqy(x) = g(x)y(x) has an analytic solution in a neighborhood of ξ if an only if

R = lim inf
n→∞

∣∣∣∣gn(ξ)

[n]!q

∣∣∣∣−1/n

> |(q − 1)ξ|.

In that case the unique analytic solution of y(qx) = a(x)y(x) in the open disc D(ξ,R−)
verifying y(ξ) = 1 coincides with∑

n>0

gn(ξ)

[n]!q
(x, ξ)n,q where (x, ξ)n,q =

n−1∏
i=0

(x− qiξ).

(ii) Let b(x) = u(qx)−1a(x)u(x) with u(x) ∈M(I). Then Rρ(σq − a(x)) = Rρ(σq − b(x)).

(iii) (q-analog of the Dwork-Robba effective bound) If Rρ > |q − 1|ρ, then∣∣∣∣gn(tρ)

[n]!q

∣∣∣∣ 6 1

Rnρ
, for any n > 1.

(iv) (Transfert to an ordinary disk) Let g(x) be analytic over D(ξ, ρ−), with ξ ∈ K and
|ξ| 6 ρ, and let Rρ > |q − 1|ρ. Then dqy(x) = g(x)y(x) has an analytic solution over the
disc D(ξ,R−ρ ).

(v) (Transfer to a regular singular disk) Let a(x) ∈ A(]0, 1[) and u(x) be a formal power
series with coefficients in K such that u(qx)−1a(x)u(x) ∈ K. If Rρ = ρ, the series converges
for |x| < ρ.

Corollary 1.5. Let a(x) ∈ A([0, 1[) (resp. A([0, 1[) ∩M([0, 1])). Then y(qx) = a(x)y(x) has a
solution y(x) analytic and bounded over C([0, 1[) if and only if lim

ρ→1
Rρ = 1 (resp. R1 = 1).

1.6. As we are studying q-difference equations it seems to be important to define a q-analogue
of the exponential

eq(x) =
∑
n>0

xn

[n]!q
.

We can check that its still verify the usual property of the exponential dqeq = eq. Unfortunately,
the multiplicative identity of the exponential does not hold in the q-analog setting. After defining
the exponential, it make sense to define a q-analog of the logarithm. We know that log(1 + x)
converges for |x| < 1. For x ∈ K, if |eq(x) − 1| < 1 we consider the analytic function Lq(x) =
log(eq(x)) which by identification (cf. [HL46], [Que04]) has the following expansion

Lq(x) =
∑
n>1

(−1)n−1(q − 1)n−1

[n]qn
xn.

Proposition 1.7. (i) The series Lq(x) converges for |x| < |q − 1|−1.

(ii) If |x| < |p|
1

p−1

|q−1| sup
(
|p|

1
p−1 , |q − 1|

)
, then |Lq(x)| < |x|.

1.8. In what follows, we assume that K contains the p-th roots of unity. Applying the Krasner
lemma ([Rob00]), it then also contains p−1 distinct non zero roots of the equation Xp+pX = 0.

We will pick one of them and denote it by π. We have |π| = |p|
1

p−1 .
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The following proposition expresses the importance of the q-exponential to construct solutions
to q-difference equations.

Lemma 1.9. Let y(qx) = a(x)y(x) be a q-difference equation such that a(x) is an analytic
function at 0, with a(0) = 1. Then write a(x) as an infinite product

∏
i>1(1+µix

i). If there exist
ε > 0 such that

sup
i>1

|µi|
|qi − 1|

(1 + ε)i < |π|

then the infinite product ∏
i>1

eqi

(
µi

qi − 1
xi
)

converges to an overconvergent solution of y(qx) = a(x)y(x) i.e. it has a radius of convergence
greater than 1.

Corollary 1.10. Let y(qx) = a(x)y(x) be a q-difference equation such that a(x) =
∏

>1(1 +
µix

i) is an overcongergent analytic function at 0. Then there exists a positive integer M and a
positive real number ε such that y(qx) = a(x)y(x) is M([0, 1 + ε[)-equivalent to

y(qx) =

M∏
i=1

(1 + µix
i)y(x).

2. Solvability

2.1. We introduce the following ring

E† = ∪ε<1B(]1− ε, 1[)

endowed with the sup-norm |
∑
anx

n|E† = sup |an|. If the valuation of K is discrete, this is a
Henselian field with residue field k((X)). We will be interested by q-difference equations of the
form y(qx) = a(x)y(x) with a(x) ∈ E†. The interest of E† is that it represents the problems that
occur at the boundary which are the kind of problem we are interested in cohomology. Moreover,
it’s residue field being k((X)) we can think of it as a field that lifts the problems that appear in
characteristic p.

The next definition yields information on the behaviour of the radius of convergence of a
q-difference equation as we get closer to the boundary.

Definition 2.2. The equation y(qx) = a(x)y(x), with a(x) ∈ E†, is said to be solvable if

lim
ρ→1

Rρ(σq − a(x)) = 1.

The point of the next lemma is that it makes it easier to determine the solvability of a
q-difference equation. The sup-norm on E† being easier to manipulate.

Lemma 2.3. lim
ρ→1

Rρ = inf

(
1, lim inf

n→∞

∣∣∣gn(x)
[n]!q

∣∣∣−1/n

E†

)
.

2.4. Solvability is invariant under E† equivalence. Indeed if y(x) is a solution of y(qx) = a(x)y(x)

then z(x) = y(x)
u(x) is a solution of z(x) = a(x)u(x)u(qx)−1z(x) where u(x) ∈ E†. Hence, z(x) will

have a radius of convergence equals to the radius of convergence of y(x) as u(x) has a radius
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of convergence equals to 1. It thus makes sense to look at rank 1 q-difference equations under
E†-equivalence.

The following proposition is a q-analog of a result by Dwork and Robba. It gives a characterization
of solvability. It is mainly used in the article to prove the proposition 2.8. It also allows us to
describe the form of solvable q-difference equations with constant coefficient.

Proposition 2.5. The following assertions are equivalent:

(i) The q-difference equation y(qx) = a(x)y(x), a(x) ∈ E†, is solvable.

(ii) There exists a sequence Rn(x) ∈ E†Ω, such that

lim
n→∞

∣∣∣∣Rn(qx)

Rn(x)
− a(x)

∣∣∣∣
E†Ω

= 0.

(iii) There exists a sequence Rn(x) ∈ E†Ω, such that

lim
n→∞

∣∣∣∣dq(Rn)(x)

Rn(x)
− g(x)

∣∣∣∣
E†Ω

= 0, where g(x) =
a(x)− 1

(q − 1)x
.

Corollary 2.6. The q-difference equation y(qx) = ay(x) with constant coefficient a ∈ K, is
solvable if and only if a ∈ qZp .

The following corollary deals with the rank 1 q-difference equation whose coefficient is analytic
in C(]0, 1[) and has a pole in 0.

Corollary 2.7. Consider a solvable q-difference equation y(qx) = a(x)y(x), with xNa(x) ∈ BK
for some positive integer N . Let a∞(x) ∈ K(x) be a rational function such that all the finite

zeros and poles of a∞(x) are in C([0, 1[), and that a(x)
a∞(x) is an invertible analytic function in BK

having value 1 at 0. Then the q-difference equations y(qx) = a∞(x)y(x) and y(qx) = a(x)
a∞(x)y(x)

are both solvable.

Proposition 2.8. Any solvable q-difference equation y(qx) = a(x)y(x) with a(x) ∈ E†, is E†-
equivalent to a solvable q-difference equation of the form

y(qx) = ql0
M∏
i=1

(1 +
µi
xi

)y(x),

where l0 ∈ Zp, M is a positive integer, µi ∈ K and |µi| 6 |q − 1| for i = 1, ...,M.

This proposition may be summarized by saying that we can reduce the study of rank 1
q-difference equations with coefficient in E† to rank 1 q-difference equations with polynomial
coefficient in 1

x .

3. Frobenius structure

Let us observe the following situation. If we take a power series
∑
n>0

anx
n such that its radius of

convergence is equal to R < 1. Then,
∑
n>0

anx
np has a radius of convergence equal to R1/p > R.

Thus, if we compose such a power series with the Frobenius it allows us to obtain a power series
with an enlarged radius of convergence. Because of this kind of heuristic it make sense to study
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how does the Frobenius interact with q-difference equations. In what follows we will look in more
details which q-difference equations are E†-equivalent to a a deformation of themself under a
Frobenius action.

3.1. In the following we will consider a Frobenius automorphism τ of K that lifts the Frobenius
of the residue field k. Assume there exists a positive integer s such that q is τ s-invariant. We
consider the endomorphism φ of E† defined by

φ

(∑
n∈Z

anx
n

)
=
∑
n∈Z

τ s(an)xp
sn.

Definition 3.2. We say that a q-difference equation y(qx) = a(x)y(x), with a(x) ∈ E†, has a
(strong) Frobenius structure if there exists u(x) ∈ (E†)∗ such that

u(qx)

u(x)
a(x) = φ(a(x))φ(a(qx))...φ(a(qp

s−1x))

for a suitable choice of s.

Lemma 3.3. If q-difference equation y(qx) = a(x)y(x), with a(x) ∈ E†, has a Frobenius structure
then it is solvable.

3.4. For any a(x) ∈ E† there exist an unique multiplicative decomposition

a(x) =
λ

xN
l(x)m(x),

where λ ∈ K, λ 6= 0; N ∈ Z; l(x) is an invertible function in 1 + xB; m(x) is an invertible
function in 1 + 1

x (∪ε>0A(]1− ε,∞[)). This can be found in [Chr11].

The next statements are constructed to prove the theorem 3.5. The theorem aims to give the
structure of q-difference equations admitting a Frobenius structure.

Theorem 3.5. A q-difference equation of rank 1 with coefficient in E†, i.e.

y(qx) =
λ

xN
l(x)m(x)y(x),

has a Frobenius structure if and only if there exists a positive integer s such that λp
s−1 ∈ qZ and

it is solvable.

From the previous lemma we know that if a q-difference equation has a Frobenius structure
then it is solvable. The proposition 2.8 gives us the form of a solvable q-difference equation.
Hence, it is enough to prove:

Proposition 3.6. A q-difference equation

y(qx) = ql0
M∏
i=1

(
1 + (q − 1)

µi
xi

)
y(x), (1)

with m0 ∈ Zp and µ1, ..., µM ∈ K, has a Frobenius structure if and only if there exists an integer
s > 0 such that l0 ∈ Z

ps−1 and it is solvable.

Lemma 3.7. A q-diffeerence equation y(qx) = ql0y(x), with l0 ∈ Zp has a Frobenius structure if
and only if l0 ∈ Z

ps−1 .
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We can reduce the case of the previous proposition to the following result where we omit the
term ql0 . Indeed, suppose that (1) has a Frobenius structure. It implies that it is solvable. Since,
l0 ∈ Zp the lemma 2.6 ensures that y(qx) = ql0y(x) is solvable. This implies that

y(qx) =
M∏
i=1

(
1 + (q − 1)

µi
xi

)
y(x),

is solvable. Reciprocally, if l0 ∈ Z
ps−1 and (1) is solvable than by the previous lemma y(qx) =

ql0y(x) has a Frobenius structure and y(qx) =
M∏
i=1

(
1 + (q − 1)µi

xi

)
y(x) is solvable.

Proposition 3.8. A q-difference equation of the form

y(qx) =

M∏
i=1

(
1 + (q − 1)

µi
xi

)
y(x),

with µ1, ..., µM ∈ K, has a Frobenius structure if and only if it is solvable.

This lemma is a q-analog of a particular case of [Mot77, Proposition 1] it is used to prove
proposition 3.8.

Lemma 3.9. Let u(qx) = v(x)u(x) be a q-difference equation such that v(x) is an analytic
element over C([0, 1[), without zeros and poles in C([0, 1[) and u(x) is a non zero analytic element
over C([0, 1[). Then u(x) is an element over C([0, 1]).

This corollary describes where are located the solution of q-difference equations (with coefficient
in E†) with Frobenius structure.

Corollary 3.10. Let y(qx) = a(x)y(x) a q-difference equation with Frobenius structure. Then
there exists a non negative integer h and a solution y(x) of y(qx) = a(x)y(x) in a finite extension

of E† such that y(x)p
h ∈ E†.

In definition 3.2 we gave a defintion of the Frobenius structure for q-difference equation of
rank 1. In the higher rank we are going to consider a definition of the Frobenius structure better
suited for the situation. It appear that in rank 1 both of these definitions are equivalent.

Definition 3.11. We say that y(qx) = a(x)y(x) has confluent weak Frobenius structure if there
exists a sequence of qp

sn
-difference equations y(qp

sn
x) = an(x)y(x) with a0(x) = a(x), such that

(i) for any n > 1 the equations

y(qp
sn
x) = an−1(x)y(x) and y(qp

s(n−1)
x) = an(x)φy(x)

are E†-equivalent via un(x) ∈ (E†)∗;
(ii) the sequences an(x)−1

(qpsn−1)x
and un(x) converge in E†.

This definition is also useful because it permits to link the Frobenius structure of q-difference
equations to a Frobenius structure of classical differential equations.

3.12. In the notation of the previous definition, let an(x)−1
(qpsn−1)x

→ g(x) and un(x) → u(x). Then

we have the following equality

g(x) +
u′(x)

u(x)
= psxp

s−1g(x)φ.
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We say that dy
dx(x) = g(x)y(x) has a strong Frobenius structure in this case.

Proposition 3.13. For a q-difference equation y(qx) = a(x)y(x), with a(x) ∈ (E†)∗, it is
equivalent to have a strong Frobenius structure or a confluent weak Frobenius structure.

The next theorem is an analogue of the classical differential case ([Cre87]). It describes the
form of the solution of a rank 1 q-difference equation with coefficient in E†. In particular, they
are located in a finite unramified extension of E†. Considering unramified extensions mean that
we are only considering a lift of an extension of the residue field. Thus, we keep track of the
arithmetical problems.

Proposition 3.14. Let y(qx) = a(x)y(x), with a(x) ∈ E†, be a solvable q-difference equation
(resp. a q-difference equation with a Frobenius structure). Then y(qx) = a(x)y(x) has a solution
of the form xαu(x) (resp. v(x)), where α ∈ Zp and u(x) (resp. v(x)) is an element of a finite
unramified extension of E†.

Proof. We know from the proposition 2.8 that y(qx) = a(x)y(x) is E†-equivalent to an equation
of the form

y(qx) = qα
M∏
i=1

(
1 +

µi
xi

)
y(x), (2)

where α ∈ Zp, M is a positive integer, µi ∈ K and |µi| 6 |q− 1| for i = 1, ...,M. Moreover, using
the same proposition we have that

y(qx) =

M∏
i=1

(
1 +

µi
xi

)
y(x) (3)

is solvable. It thus admits a solution u(x) and we clearly have xαu(x) that is solution of (2).
Applying proposition 3.8 we obtain that (3) has a Frobenius structure. To conclude the proof,

one can check that u(x) lies in E†[X]/(X − u(x)p
h
) which is an unramified extension of E†.

The E†-equivalence classes of equations of the form y′(x) = g(x)y(x) with a Frobenius

structure form a group, which we denote by d − eq
(φ)

E† . Similarly, the E†-equivalence classes
of equations of the form y(qx) = a(x)y(x) with a Frobenius structure form a group, which we

denote by σq − eq(φ)

E† . We have the following:

Theorem 3.15. Let us assume that k is algebraically closed. There are canonical group isomorphisms

σq − eq(φ)

E† → XK(Gk((x)))→ d− eq(φ)

E†

the composite being given by confluence.

Thus, it is equivalent to look at q-difference equations of rank 1 with a Frobenius structure
and differential equations of rank 1 with a Frobenius structure. The first part of the article of
Yves André and Lucia di Vizio gives a good description of what happen in rank 1. The second
part focus on the higher rank case. One may wonder what happen if we look at the case in several
variables.
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