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Abelian groups

Let M and N be two abelian groups. If we are given a
homomorphism f : M → N, we can then consider its kernel

kerf := {s ∈ M / f (s) = 0} ⊂ M

and image
imf := {f (s) : s ∈ M} ⊂ N.

This is because abelian groups satisfy AB1 (pre-abelian category).
A celebrated theorem of Emmy Noether states that f induces an
isomorphism

f : M/ker(f ) ' im(f ).

This is because abelian groups satisfy AB2 (abelian category).
Actually, they even satisfy up to AB6 (and dually AB4*).
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Topological abelian groups

Let X be a topological space. Then, any subset Y of X inherits a
topology (the induced topology). Also, if we are given an
equivalence relation R on X , then X/R inherits a topology (the
quotient topology).

A topological abelian group is a topological space M endowed with
a commutative group law which is continuous as well as the inverse
mapping. A morphism of topological abelian groups is a
continuous homomorphism f : M → N. Both kerf and imf inherit
the structure of a topological abelian group. In other words,
topological abelian groups satisfy AB1 (pre-abelian). However, the
morphism

f : M/ker(f ) ' im(f )

is not a homeomorphism in general. In other words, topological
abelian groups do not satisfy AB2 (not abelian).
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Condensed abelian groups

This is however the case for compact Hausdorff abelian groups.
Unfortunately, an infinite discrete abelian group like Z or a
non-trivial Banach space like R are not compact.

The trick consists in considering the category of all compact
Hausdorff spaces. They form what is called a pretopos (a very
stable category). Then, a condensed abelian group is a sheafM
on this pretopos (for the subcanonical topology).

In down to earth terms, a condensed abelian group is the data of
an abelian groupM(S) for any compact Hausdorff space S and a
compatible family of homomorphismsM(S)→M(S ′) for any
continuous map S ′ → S.

It is subject to the following conditions:
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1. M(∅) = 0,

2. If S ∩ S ′ = ∅, thenM(S ∪ S ′) =M(S)⊕M(S ′),
3. If R is a closed equivalence relation on S, then

M(S/R) ' ker(M(S)→M(R)).

As an example, if M is topological abelian group, then setting
M(S) := C(S, M) defines a condensed abelian group. Actually it is
equivalent to give M orM as long as M is compactly (Hausdorff)
generated. This is the case for example if M locally compact
Hausdorff or if it is a metric space (and in particular if M is a
normed vector space).

Condensed abelian groups satisfy AB2 (abelian). Actually, they
even satisfty up to AB6 and AB4* exactly like usual abelian groups
do (Clausen/Scholze).
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Program

1. Some category theory (quick review),
2. Some topology related to compact Hausdorff spaces,
3. The notions of sheaf and topos,
4. Condensed sets,
5. Abelian categories (quick review),
6. Condensed abelian groups,
7. Homological algebra (hopefully),
8. Cohomology of condensed abelian groups (hopefully).

The students should be comfortable with the basics of category
theory from the first semester course of Matthieu.

– Thank you –
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