Université de Rennes

A set \mathcal{F} of subsets of a set X is called a *(proper)* filter if

- 1. $\emptyset \notin \mathcal{F}$,
- 2. $\forall A, B \in \mathcal{F}, \quad A \cap B \in \mathcal{F},$
- 3. $\forall A \subset B \subset X$, $A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$.
- 1. Show that any filter is contained in a maximal filter.
- 2. Show that
 - 1. if \mathcal{F} is a filter and $A \subset X$, then

$$A \in \mathcal{F} \Rightarrow (\forall B \in \mathcal{F}, A \cap B \neq \emptyset),$$

2. if \mathcal{F} is maximal, then conversely

$$(\forall B \in \mathcal{F}, A \cap B \neq \emptyset) \Rightarrow A \in \mathcal{F}.$$

- 3. Show that, for a filter \mathcal{F} , the following are equivalent
 - 1. \mathcal{F} is maximal,
 - 2. $\forall A, B \in X, A \cup B \in \mathcal{F} \Rightarrow A \in \mathcal{F} \text{ or } B \in \mathcal{F},$
 - 3. $\forall A \subset X$, $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$.

We endow the set F(X) of all maximal filters of X with the topology generated by all $U_A := \{ \mathcal{F} \in F(X), A \in \mathcal{F} \}$ with $A \subset X$.

- 4. Show that if $(A_i)_{i=1}^n$ is a *finite* family of subsets of X, then $U_{\bigcap_i^n A_i} = \bigcap_i^n U_{A_i}$ and $U_{\bigcup_i^n A_i} = \bigcup_i^n U_{A_i}$.
- 5. Show that F(X) is a compact Hausdorff space.
- 6. Show that
 - 1. if $f: X \to Y$ is any map and \mathcal{F} is a filter on X, then

$$f_*\mathcal{F} := \{ B \subset Y, f^{-1}(B) \in \mathcal{F} \}$$

is also a filter on Y,

- 2. if \mathcal{F} is maximal, then $f_*\mathcal{F}$ also is maximal,
- 3. the map $f_*: F(X) \to F(Y)$ is continuous.
- 7. Show that

- 1. $X \mapsto F(X)$ and $f \mapsto f_*$ define a functor (from sets to topological spaces),
- 2. if $x \in X$, then $\mathcal{F}_x := \{A \subset X, x \in A\}$ is a maximal filter and the map

$$i_X: X \to F(X), \quad x \mapsto \mathcal{F}_x$$

is natural (when X has the discrete topology),

3. given any map $f: X \to Y$, there exists a unique continuous map φ making commutative the diagram

$$\begin{array}{c} F(X) \xrightarrow{\varphi} F(Y) \\ \downarrow^{i_X} & \downarrow^{i_Y} \\ X \xrightarrow{f} Y. \end{array}$$

Let X be topological space, \mathcal{F} a filter on X and $x \in X$. We say that \mathcal{F} converges to x or x is a *limit* of \mathcal{F} (notation: $\mathcal{F} \to x$) if \mathcal{F} contains all the neighborhoods of x.

- 8. For a subset Y of a topological space X and $x \in X$, show that the following are equivalent:
 - 1. there exists a maximal filter \mathcal{F} converging to x with $Y \in \mathcal{F}$,
 - 2. there exists a filter \mathcal{F} converging to x with $Y \in \mathcal{F}$,
 - 3. $x \in \overline{Y}$ (closure of Y in X).
- 9. For a subset V of a topological space X, show that the following are equivalent:
 - 1. V is open in X,
 - 2. if a maximal filter \mathcal{F} converges to a point of V, then $V \in \mathcal{F}$.
- 10. For a topological space X, show that the following are equivalent:
 - 1. X is Hausdorff,
 - 2. any convergent filter on X has a unique limit.
- 11. For a topological space X, show that the following are equivalent:
 - 1. X is compact,
 - 2. any maximal filter on X has a limit.
- 12. Show that if X is a compact Hausdorff topological space, then the map $\ell_X : F(X) \to X$ that sends a maximal filter \mathcal{F} to its limit $x = \ell_X(\mathcal{F})$ is a continuous section of the canonical map $i_X : X \to F(X)$.
- 13. Show that if X is a discrete topological space, then F(X) is (homeomorphic to) the Stone-Čech compactification of X.