Université de Rennes 1 2023-2024

An introduction to condensed mathematics
Homework (due March 11th)

Write down a complete solution for each of the following exercises (you can use any
previous result from the course).
1. Exercise 1.23 Show that if C is a small category, then the functor
C°®* — Hom(C,Set), X ~— h™*

is fully faithful. Deduce that C°? (resp. C) is equivalent to the full subcategory made
of representable functors on C (resp. CP).

Solution: If XY € C, then Yoneda’s lemma implies that the map
Hom(hY,h*) ~ h*(Y) = Hom(X,Y), a+— ay(Idy)

is bijective. It is therefore sufficient to notice that, for f : X — Y, we have
bl (Idy) = Idy o f = f. If we denote by R the full subcategory of representable
functors, then the induced functor C°® — R is fully faithful and essentially
surjective. It is therefore an equivalence. The resp. assertion is obtained by
duality.

2. Exercise 1.59 Assume F -4 G with unit « and counit 5. Show that F is
faithful (resp. fully faithful) if and only if ax is always a monomorphism (resp. an
isomorphism). Analogue for G ?

Solution: Let us consider composite map
Hom(Y, X) — Hom(F(Y), F(X)) ~ Hom(Y, G(F(X)))

where the first one is f — F(f) and the second one is the adjunction ®y, p(x).
We have

Py rx)(F(f)) = ay o G(F(f)) = [ oax = hax(f).

Thus we see that G is faithful (resp. fully faithful) if and only A, injective (resp.
bijective) for all X and all Y. This means that ax is a monomorphism (resp. an
isomorphism) for all X.

Now, we have G°? 4 F°P and the unit for this adjunction is 5°°. Moreover, £%
is a monomorphism (resp. an isomorphism) if and only if Sy is an epimorphism
(resp. an isomorphism). Therefore, G is faithful (resp. fully faithful) if and only
if G°P is faithful (resp. fully faithful) if and only if Sx/ is an epimorphism (resp.
an isomorphism) for all X".




3. Exercise 2.7 Let R be an equivalence relation on a compact topological space S.
Show that S/R is compact. Assume now that S is also Hausdorff. Show that S/R
is compact Hausdorff if and only if R C S x S is closed if and only if S — S/R is a
closed map.

Solution: The first assertion follows from the fact that the image of a compact
topological space by a continuous map is always compact. We also know that an
equivalence relation is closed if and only if the quotient is Hausdorff. Also, if S
is compact Hausdorff and 7 : S — S/R is closed, then this is a closed continuous
surjective map and S is normal. Then, we know that S/R is normal and therefore
Hausdorff. Finally, if S is compact and S/ R is Hausdorff, then 7 is closed because
any closed subset of S is compact and any compact subset of S/R is closed.

4. Exercise 2.28 Assume X is compactly generated and Y is locally compact
Hausdorff. Show that X x Y is compactly generated. Show that, if Z is any
topological space, then

C(X xY,Z)~C(X,C(Y,2)) ~C(Y,C(X, Z)).

Solution: The last assertion is a formal consequence of the first one on which we
shall focus. We assume that F' C X xY is k-closed and we show that it is actually
closed. It is sufficient to prove that, given any (x,y) ¢ F', then there exists some
neighborhoods U and V' of z and y respectively such that (U x V)N F = (.
First of all, (z,y) ¢ (X X y) N F which is k-closed, and therefore closed, since
X xy ~ X is compactly generated. But X X y is even locally compact Hausdorff
and it follows that there exists a compact neighborhood S of z in X such that
(Sxy)NF = (. After replacing X with S, we may therefore assume that X itself
is compact Hausdorff and that (X x y) N F =0. We set U = X and V := p(F)*
where p : X XY — Y denotes the second projection. It only remains to show
that p(F') is closed. Since Y is compactly generated, is is sufficient to show that,
given any continuous map f : K — Y with K compact Hausdorff, f=!(p(F)))
is closed. After replacing Y with K, we may therefore assume that Y itself is
compact Hausdorff and then p(F') is necessarily closed as the image of a closed
subset by a continuous map between compact Hausdorff spaces.

5. Exercise 3.19 Show that if C is a site and F,G € C, then
im(F — G) =ker (G =2 GUzG)

in C (and dual). Show that any morphism in C is strict.
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Solution: Note first that, if 7 C G, then the canonical map F — ker (G = G Uz G)
is an isomorphism. Since sheafification is exact, it is sufficient to consider a cate-
gory of presheaves C. Now, limits and colimits are computed argument-wise and
we are therefore reduced to the analog statement in the category of sets.

Now, let us write K := ker (G = G Uz G). By definition of the fibered coproduct,
both composite maps

Frte=gurg

are the same. By definition of the kernel, f factors as 7 — K — G. Assume now
that f factors as F — J < G. Since J C G, we have J = ker (G = G G). By

functoriality of fibered coproduct and kernel, there exists a commutative diagram

TC—>Q:>>Q|—|JTQ

|

J—G—=GU,sG

which shows that X C 7.

The dual case follows exactly the same pattern (but it is not obtained by duality
because the dual of C is not a category of sheaves).

Now, the commutativity of the diagram
FxgF=2F—=-0G=2GUrG,
implies the existence of a natural map
coker(F xg F =2 F) — ker (G =G UxG).

As above, it formally follows from the analog assertion in the category of sets
that this is an isomorphism.

6. Exercise 3.36 Show that, in a topos,
Hom(X x Y, Z) ~ Hom(X, Hom(Y, Z)).

Solution: It is sufficient to notice that, given any object T, we have a natural
isomorphism

Hom (7', Hom(X x Y, Z)) ~ Hom(T x X x Y, 7))

~ Hom(T x X, Hom(Y, Z)))
~ Hom(7T, Hom (X, Hom(Y, Z))).
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7. Exercise 3.41

1. Show that a subobject of a quasi-separated object is quasi-separated.
2. Show that a coproduct of quasi-separated objects is quasi-separated.

3. Show that a filtered colimit under monomorphisms of quasi-separated objects is
quasi-separated.

Solution:

1. Assume X is quasi-separated and X’ C X. We give ourselves Y — X and
Z — X with Y and Z quasi-compacts. Then, ¥ xXx» Z =Y Xx Z is also
quasi-compact.

2. Assume that X = [[;c; X;. If Y — X is any morphism, then we have
Y =1Ilie; Vi with YV; = Y xx X;. In other words, the family (Y; < Y);er
is a covering. Therefore, if Y is quasi-compact, we can then replace I with
a finite subset J and we have Y = [[,c;Y;. Moreover, a summand of a
quasi-compact is always quasi-compact - as we shall show below - so that
each Y; is quasi-compact. Of course, if Z — X is another morphism with
Z quasi-compact, we can also write Z = [[;c; Z; and we may assume that
this is the same finite J. It is then formal to check that

Y ><XZ2 HY; X Xx; Z,L
ieJ
If we assume that all X; are quasi-separated, then (Y; Xx, Z; = Y Xx Z)icy
is a finite covering by quasi-compact objects and it follows that Y x x Z is
also quasi-compact.

It remains to show that a summand of a quasi-compact is itself quasi-
compact. But if we are given a covering (X; — X);e; and we know that
X UY is quasi-compact, we can then consider the covering made of the X;’s
and Y of X LUY. It has a finite refinement and we are done.

3. f X = ligiel X is any colimit, then the corresponding morphism [[;c; X; —
X is an epimorphism (as usual, this follows formally from the analogous
assertion in Set). In other words, the family (X; — X);e; is a covering. In
particular, when X is quasi-compact, there exists a finite subset J of I such
that [[,c; X; - X is an epimorphism and therefore X = hﬂ X;. In the
case of a filtered colimit, if £ is any cocone for J in I, then We will have
X = Xj.

Not assuming X quasi-compact anymore, let Y — X be a morphism with
Y quasi-compact. Then, Y = hg Y; with Y; =Y xx X;. If the colimit is
filtered, then there exists k£ such that Y =Y,. In other words, there exists a
factorization Y — X} — X of the original morphism. If Z — Y is another
morphism with Z quasi-compact, then there exists also a factorization
Z — X — X and we may assume that this is the same k since [ is filtered.
Finally, if we assume that X}, C X, then we have Y xx Z =Y x x, Z which
is quasi-compact if we assume that X} is quasi-separated.

Page 4



