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An introduction to condensed mathematics
Homework (due March 11th)

Write down a complete solution for each of the following exercises (you can use any
previous result from the course).

1. Exercise 1.23 Show that if C is a small category, then the functor

Cop → Hom(C, Set), X 7→ hX

is fully faithful. Deduce that Cop (resp. C) is equivalent to the full subcategory made
of representable functors on C (resp. Cop).

Solution: If X, Y ∈ C, then Yoneda’s lemma implies that the map

Hom(hY , hX) ≃ hX(Y ) = Hom(X, Y ), α 7→ αY (IdY )

is bijective. It is therefore sufficient to notice that, for f : X → Y , we have
hf

Y (IdY ) = IdY ◦ f = f . If we denote by R the full subcategory of representable
functors, then the induced functor Cop → R is fully faithful and essentially
surjective. It is therefore an equivalence. The resp. assertion is obtained by
duality.

2. Exercise 1.59 Assume F ⊣ G with unit α and counit β. Show that F is
faithful (resp. fully faithful) if and only if αX is always a monomorphism (resp. an
isomorphism). Analogue for G ?

Solution: Let us consider composite map

Hom(Y, X) → Hom(F (Y ), F (X)) ≃ Hom(Y, G(F (X)))

where the first one is f 7→ F (f) and the second one is the adjunction ΦY,F (X).
We have

ΦY,F (X)(F (f)) = αY ◦ G(F (f)) = f ◦ αX = hαX
(f).

Thus we see that G is faithful (resp. fully faithful) if and only hαX
injective (resp.

bijective) for all X and all Y . This means that αX is a monomorphism (resp. an
isomorphism) for all X.
Now, we have Gop ⊣ F op and the unit for this adjunction is βop. Moreover, βop

X′

is a monomorphism (resp. an isomorphism) if and only if βX′ is an epimorphism
(resp. an isomorphism). Therefore, G is faithful (resp. fully faithful) if and only
if Gop is faithful (resp. fully faithful) if and only if βX′ is an epimorphism (resp.
an isomorphism) for all X ′.



3. Exercise 2.7 Let R be an equivalence relation on a compact topological space S.
Show that S/R is compact. Assume now that S is also Hausdorff. Show that S/R
is compact Hausdorff if and only if R ⊂ S × S is closed if and only if S ↠ S/R is a
closed map.

Solution: The first assertion follows from the fact that the image of a compact
topological space by a continuous map is always compact. We also know that an
equivalence relation is closed if and only if the quotient is Hausdorff. Also, if S
is compact Hausdorff and π : S ↠ S/R is closed, then this is a closed continuous
surjective map and S is normal. Then, we know that S/R is normal and therefore
Hausdorff. Finally, if S is compact and S/R is Hausdorff, then π is closed because
any closed subset of S is compact and any compact subset of S/R is closed.

4. Exercise 2.28 Assume X is compactly generated and Y is locally compact
Hausdorff. Show that X × Y is compactly generated. Show that, if Z is any
topological space, then

C(X × Y, Z) ≃ C(X, C(Y, Z)) ≃ C(Y, C(X, Z)).

Solution: The last assertion is a formal consequence of the first one on which we
shall focus. We assume that F ⊂ X ×Y is k-closed and we show that it is actually
closed. It is sufficient to prove that, given any (x, y) /∈ F , then there exists some
neighborhoods U and V of x and y respectively such that (U × V ) ∩ F = ∅.
First of all, (x, y) /∈ (X × y) ∩ F which is k-closed, and therefore closed, since
X × y ≃ X is compactly generated. But X × y is even locally compact Hausdorff
and it follows that there exists a compact neighborhood S of x in X such that
(S ×y)∩F = ∅. After replacing X with S, we may therefore assume that X itself
is compact Hausdorff and that (X × y) ∩ F = ∅. We set U = X and V := p(F )c

where p : X × Y → Y denotes the second projection. It only remains to show
that p(F ) is closed. Since Y is compactly generated, is is sufficient to show that,
given any continuous map f : K → Y with K compact Hausdorff, f−1(p(F )))
is closed. After replacing Y with K, we may therefore assume that Y itself is
compact Hausdorff and then p(F ) is necessarily closed as the image of a closed
subset by a continuous map between compact Hausdorff spaces.

5. Exercise 3.19 Show that if C is a site and F , G ∈ C̃, then

im(F → G) = ker (G ⇒ G ⊔F G)

in C̃ (and dual). Show that any morphism in C̃ is strict.
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Solution: Note first that, if F ⊂ G, then the canonical map F → ker (G ⇒ G ⊔F G)
is an isomorphism. Since sheafification is exact, it is sufficient to consider a cate-
gory of presheaves Ĉ. Now, limits and colimits are computed argument-wise and
we are therefore reduced to the analog statement in the category of sets.
Now, let us write K := ker (G ⇒ G ⊔F G). By definition of the fibered coproduct,
both composite maps

F f→ G ⇒ G ⊔F G

are the same. By definition of the kernel, f factors as F → K ↪→ G. Assume now
that f factors as F → J ↪→ G. Since J ⊂ G, we have J = ker (G ⇒ G ⊔J G). By
functoriality of fibered coproduct and kernel, there exists a commutative diagram

K � � //� _

��

G // // G ⊔F G

��
J � � // G // // G ⊔J G

which shows that K ⊂ J .
The dual case follows exactly the same pattern (but it is not obtained by duality
because the dual of C̃ is not a category of sheaves).
Now, the commutativity of the diagram

F ×G F ⇒ F → G ⇒ G ⊔F G,

implies the existence of a natural map

coker(F ×G F ⇒ F) → ker (G ⇒ G ⊔F G) .

As above, it formally follows from the analog assertion in the category of sets
that this is an isomorphism.

6. Exercise 3.36 Show that, in a topos,

Hom(X × Y, Z) ≃ Hom(X, Hom(Y, Z)).

Solution: It is sufficient to notice that, given any object T , we have a natural
isomorphism

Hom(T, Hom(X × Y, Z)) ≃ Hom(T × X × Y, Z))
≃ Hom(T × X, Hom(Y, Z)))
≃ Hom(T, Hom(X, Hom(Y, Z))).
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7. Exercise 3.41

1. Show that a subobject of a quasi-separated object is quasi-separated.
2. Show that a coproduct of quasi-separated objects is quasi-separated.
3. Show that a filtered colimit under monomorphisms of quasi-separated objects is

quasi-separated.

Solution:

1. Assume X is quasi-separated and X ′ ⊂ X. We give ourselves Y → X and
Z → X with Y and Z quasi-compacts. Then, Y ×X′ Z = Y ×X Z is also
quasi-compact.

2. Assume that X = ∐
i∈I Xi. If Y → X is any morphism, then we have

Y = ∐
i∈I Yi with Yi = Y ×X Xi. In other words, the family (Yi ↪→ Y )i∈I

is a covering. Therefore, if Y is quasi-compact, we can then replace I with
a finite subset J and we have Y = ∐

i∈J Yi. Moreover, a summand of a
quasi-compact is always quasi-compact - as we shall show below - so that
each Yi is quasi-compact. Of course, if Z → X is another morphism with
Z quasi-compact, we can also write Z = ∐

i∈J Zi and we may assume that
this is the same finite J . It is then formal to check that

Y ×X Z ≃
∐
i∈J

Yi ×Xi
Zi.

If we assume that all Xi are quasi-separated, then (Yi ×Xi
Zi → Y ×X Z)i∈J

is a finite covering by quasi-compact objects and it follows that Y ×X Z is
also quasi-compact.
It remains to show that a summand of a quasi-compact is itself quasi-
compact. But if we are given a covering (Xi → X)i∈I and we know that
X ⊔Y is quasi-compact, we can then consider the covering made of the Xi’s
and Y of X ⊔ Y . It has a finite refinement and we are done.

3. If X = lim−→i∈I
Xi is any colimit, then the corresponding morphism ∐

i∈I Xi ↠
X is an epimorphism (as usual, this follows formally from the analogous
assertion in Set). In other words, the family (Xi → X)i∈I is a covering. In
particular, when X is quasi-compact, there exists a finite subset J of I such
that ∐

i∈J Xi ↠ X is an epimorphism and therefore X = lim−→i∈J
Xi. In the

case of a filtered colimit, if k is any cocone for J in I, then we will have
X = Xk.
Not assuming X quasi-compact anymore, let Y → X be a morphism with
Y quasi-compact. Then, Y = lim−→i∈I

Yi with Yi = Y ×X Xi. If the colimit is
filtered, then there exists k such that Y = Yk. In other words, there exists a
factorization Y → Xk → X of the original morphism. If Z → Y is another
morphism with Z quasi-compact, then there exists also a factorization
Z → Xk → X and we may assume that this is the same k since I is filtered.
Finally, if we assume that Xk ⊂ X, then we have Y ×X Z = Y ×Xk

Z which
is quasi-compact if we assume that Xk is quasi-separated.
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