An introduction to condensed mathematics
 Homework (due March 11th)

Write down a complete solution for each of the following exercises (you can use any previous result from the course).

1. Exercise 1.23 Show that if \mathcal{C} is a small category, then the functor

$$
\mathcal{C}^{\mathrm{op}} \rightarrow \operatorname{Hom}(\mathcal{C}, \text { Set }), \quad X \mapsto h^{X}
$$

is fully faithful. Deduce that $\mathcal{C}^{\text {op }}$ (resp. \mathcal{C}) is equivalent to the full subcategory made of representable functors on \mathcal{C} (resp. $\mathcal{C}^{\text {op }}$).

Solution: If $X, Y \in \mathcal{C}$, then Yoneda's lemma implies that the map

$$
\operatorname{Hom}\left(h^{Y}, h^{X}\right) \simeq h^{X}(Y)=\operatorname{Hom}(X, Y), \quad \alpha \mapsto \alpha_{Y}\left(\operatorname{Id}_{Y}\right)
$$

is bijective. It is therefore sufficient to notice that, for $f: X \rightarrow Y$, we have $h_{Y}^{f}\left(\mathrm{Id}_{Y}\right)=\operatorname{Id}_{Y} \circ f=f$. If we denote by \mathcal{R} the full subcategory of representable functors, then the induced functor $\mathcal{C}^{\circ \mathrm{p}} \rightarrow \mathcal{R}$ is fully faithful and essentially surjective. It is therefore an equivalence. The resp. assertion is obtained by duality.
2. Exercise 1.59 Assume $F \dashv G$ with unit α and counit β. Show that F is faithful (resp. fully faithful) if and only if α_{X} is always a monomorphism (resp. an isomorphism). Analogue for G ?

Solution: Let us consider composite map

$$
\operatorname{Hom}(Y, X) \rightarrow \operatorname{Hom}(F(Y), F(X)) \simeq \operatorname{Hom}(Y, G(F(X)))
$$

where the first one is $f \mapsto F(f)$ and the second one is the adjunction $\Phi_{Y, F(X)}$. We have

$$
\Phi_{Y, F(X)}(F(f))=\alpha_{Y} \circ G(F(f))=f \circ \alpha_{X}=h_{\alpha_{X}}(f) .
$$

Thus we see that G is faithful (resp. fully faithful) if and only $h_{\alpha_{X}}$ injective (resp. bijective) for all X and all Y. This means that α_{X} is a monomorphism (resp. an isomorphism) for all X.
Now, we have $G^{\mathrm{op}} \dashv F^{\mathrm{op}}$ and the unit for this adjunction is β^{op}. Moreover, $\beta_{X^{\prime}}^{\mathrm{op}}$ is a monomorphism (resp. an isomorphism) if and only if $\beta_{X^{\prime}}$ is an epimorphism (resp. an isomorphism). Therefore, G is faithful (resp. fully faithful) if and only if $G^{\text {op }}$ is faithful (resp. fully faithful) if and only if $\beta_{X^{\prime}}$ is an epimorphism (resp. an isomorphism) for all X^{\prime}.
3. Exercise 2.7 Let R be an equivalence relation on a compact topological space S. Show that S / R is compact. Assume now that S is also Hausdorff. Show that S / R is compact Hausdorff if and only if $R \subset S \times S$ is closed if and only if $S \rightarrow S / R$ is a closed map.

Solution: The first assertion follows from the fact that the image of a compact topological space by a continuous map is always compact. We also know that an equivalence relation is closed if and only if the quotient is Hausdorff. Also, if S is compact Hausdorff and $\pi: S \rightarrow S / R$ is closed, then this is a closed continuous surjective map and S is normal. Then, we know that S / R is normal and therefore Hausdorff. Finally, if S is compact and S / R is Hausdorff, then π is closed because any closed subset of S is compact and any compact subset of S / R is closed.
4. Exercise 2.28 Assume X is compactly generated and Y is locally compact Hausdorff. Show that $X \times Y$ is compactly generated. Show that, if Z is any topological space, then

$$
\mathcal{C}(X \times Y, Z) \simeq \mathcal{C}(X, \mathcal{C}(Y, Z)) \simeq \mathcal{C}(Y, \mathcal{C}(X, Z))
$$

Solution: The last assertion is a formal consequence of the first one on which we shall focus. We assume that $F \subset X \times Y$ is k-closed and we show that it is actually closed. It is sufficient to prove that, given any $(x, y) \notin F$, then there exists some neighborhoods U and V of x and y respectively such that $(U \times V) \cap F=\emptyset$. First of all, $(x, y) \notin(X \times y) \cap F$ which is k-closed, and therefore closed, since $X \times y \simeq X$ is compactly generated. But $X \times y$ is even locally compact Hausdorff and it follows that there exists a compact neighborhood S of x in X such that $(S \times y) \cap F=\emptyset$. After replacing X with S, we may therefore assume that X itself is compact Hausdorff and that $(X \times y) \cap F=\emptyset$. We set $U=X$ and $V:=p(F)^{c}$ where $p: X \times Y \rightarrow Y$ denotes the second projection. It only remains to show that $p(F)$ is closed. Since Y is compactly generated, is is sufficient to show that, given any continuous map $f: K \rightarrow Y$ with K compact Hausdorff, $\left.f^{-1}(p(F))\right)$ is closed. After replacing Y with K, we may therefore assume that Y itself is compact Hausdorff and then $p(F)$ is necessarily closed as the image of a closed subset by a continuous map between compact Hausdorff spaces.
5. Exercise 3.19 Show that if \mathcal{C} is a site and $\mathcal{F}, \mathcal{G} \in \widetilde{\mathcal{C}}$, then

$$
\operatorname{im}(\mathcal{F} \rightarrow \mathcal{G})=\operatorname{ker}\left(\mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{F}} \mathcal{G}\right)
$$

in $\widetilde{\mathcal{C}}$ (and dual). Show that any morphism in $\widetilde{\mathcal{C}}$ is strict.

Solution: Note first that, if $\mathcal{F} \subset \mathcal{G}$, then the canonical map $\mathcal{F} \rightarrow \operatorname{ker}\left(\mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{F}} \mathcal{G}\right)$ is an isomorphism. Since sheafification is exact, it is sufficient to consider a category of presheaves $\widehat{\mathcal{C}}$. Now, limits and colimits are computed argument-wise and we are therefore reduced to the analog statement in the category of sets.
Now, let us write $\mathcal{K}:=\operatorname{ker}\left(\mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{F}} \mathcal{G}\right)$. By definition of the fibered coproduct, both composite maps

$$
\mathcal{F} \xrightarrow{f} \mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{F}} \mathcal{G}
$$

are the same. By definition of the kernel, f factors as $\mathcal{F} \rightarrow \mathcal{K} \hookrightarrow \mathcal{G}$. Assume now that f factors as $\mathcal{F} \rightarrow \mathcal{J} \hookrightarrow \mathcal{G}$. Since $\mathcal{J} \subset \mathcal{G}$, we have $\mathcal{J}=\operatorname{ker}\left(\mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{J}} \mathcal{G}\right)$. By functoriality of fibered coproduct and kernel, there exists a commutative diagram

which shows that $\mathcal{K} \subset \mathcal{J}$.
The dual case follows exactly the same pattern (but it is not obtained by duality because the dual of $\widetilde{\mathcal{C}}$ is not a category of sheaves).
Now, the commutativity of the diagram

$$
\mathcal{F} \times_{\mathcal{G}} \mathcal{F} \rightrightarrows \mathcal{F} \rightarrow \mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{F}} \mathcal{G}
$$

implies the existence of a natural map

$$
\operatorname{coker}\left(\mathcal{F} \times_{\mathcal{G}} \mathcal{F} \rightrightarrows \mathcal{F}\right) \rightarrow \operatorname{ker}\left(\mathcal{G} \rightrightarrows \mathcal{G} \sqcup_{\mathcal{F}} \mathcal{G}\right)
$$

As above, it formally follows from the analog assertion in the category of sets that this is an isomorphism.
6. Exercise 3.36 Show that, in a topos,

$$
\mathcal{H o m}(X \times Y, Z) \simeq \mathcal{H o m}(X, \mathcal{H o m}(Y, Z))
$$

Solution: It is sufficient to notice that, given any object T, we have a natural isomorphism

$$
\begin{aligned}
\operatorname{Hom}(T, \mathcal{H o m}(X \times Y, Z)) & \simeq \operatorname{Hom}(T \times X \times Y, Z)) \\
& \simeq \operatorname{Hom}(T \times X, \mathcal{H o m}(Y, Z))) \\
& \simeq \operatorname{Hom}(T, \mathcal{H} \operatorname{om}(X, \mathcal{H o m}(Y, Z))) .
\end{aligned}
$$

7. Exercise 3.41

1. Show that a subobject of a quasi-separated object is quasi-separated.
2. Show that a coproduct of quasi-separated objects is quasi-separated.
3. Show that a filtered colimit under monomorphisms of quasi-separated objects is quasi-separated.

Solution:

1. Assume X is quasi-separated and $X^{\prime} \subset X$. We give ourselves $Y \rightarrow X$ and $Z \rightarrow X$ with Y and Z quasi-compacts. Then, $Y \times_{X^{\prime}} Z=Y \times_{X} Z$ is also quasi-compact.
2. Assume that $X=\coprod_{i \in I} X_{i}$. If $Y \rightarrow X$ is any morphism, then we have $Y=\amalg_{i \in I} Y_{i}$ with $Y_{i}=Y \times_{X} X_{i}$. In other words, the family $\left(Y_{i} \hookrightarrow Y\right)_{i \in I}$ is a covering. Therefore, if Y is quasi-compact, we can then replace I with a finite subset J and we have $Y=\coprod_{i \in J} Y_{i}$. Moreover, a summand of a quasi-compact is always quasi-compact - as we shall show below - so that each Y_{i} is quasi-compact. Of course, if $Z \rightarrow X$ is another morphism with Z quasi-compact, we can also write $Z=\coprod_{i \in J} Z_{i}$ and we may assume that this is the same finite J. It is then formal to check that

$$
Y \times_{X} Z \simeq \coprod_{i \in J} Y_{i} \times_{X_{i}} Z_{i} .
$$

If we assume that all X_{i} are quasi-separated, then $\left(Y_{i} \times_{X_{i}} Z_{i} \rightarrow Y \times_{X} Z\right)_{i \in J}$ is a finite covering by quasi-compact objects and it follows that $Y \times_{X} Z$ is also quasi-compact.

It remains to show that a summand of a quasi-compact is itself quasicompact. But if we are given a covering $\left(X_{i} \rightarrow X\right)_{i \in I}$ and we know that $X \sqcup Y$ is quasi-compact, we can then consider the covering made of the X_{i} 's and Y of $X \sqcup Y$. It has a finite refinement and we are done.
3. If $X={\underset{\rightarrow i}{ }}_{\lim _{i \in I}} X_{i}$ is any colimit, then the corresponding morphism $\coprod_{i \in I} X_{i} \rightarrow$ X is an epimorphism (as usual, this follows formally from the analogous assertion in Set). In other words, the family $\left(X_{i} \rightarrow X\right)_{i \in I}$ is a covering. In particular, when X is quasi-compact, there exists a finite subset J of I such that $\amalg_{i \in J} X_{i} \rightarrow X$ is an epimorphism and therefore $X=\underline{\lim }_{i \in J} X_{i}$. In the case of a filtered colimit, if k is any cocone for J in I, then we will have $X=X_{k}$.
Not assuming X quasi-compact anymore, let $Y \rightarrow X$ be a morphism with Y quasi-compact. Then, $Y={\underset{\longrightarrow}{\lim }}_{i \in I} Y_{i}$ with $Y_{i}=Y \times_{X} X_{i}$. If the colimit is filtered, then there exists k such that $Y=Y_{k}$. In other words, there exists a factorization $Y \rightarrow X_{k} \rightarrow X$ of the original morphism. If $Z \rightarrow Y$ is another morphism with Z quasi-compact, then there exists also a factorization $Z \rightarrow X_{k} \rightarrow X$ and we may assume that this is the same k since I is filtered. Finally, if we assume that $X_{k} \subset X$, then we have $Y \times_{X} Z=Y \times_{X_{k}} Z$ which is quasi-compact if we assume that X_{k} is quasi-separated.

