NOM:

Prénom:

Licence 1 — Mathématiques Université Rennes 1

Algèbre et géométrie 1 2021-2022

Contrôle continu 3 Durée : 25 minutes

Les calculatrices et téléphones sont interdits. Toute affirmation doit être démontrée. On pourra rédiger directement sur la feuille.

Exercice 1 5 points

Soient $P\begin{pmatrix} -5 \\ -1 \end{pmatrix}$ et $Q\begin{pmatrix} 4 \\ 2 \end{pmatrix}$. On note $\Delta = (PQ)$ la droite passant par P et Q.

- 1. Déterminez un vecteur directeur de Δ .
- 2. Donnez une équation cartésienne de Δ .
- 1) Um vecteur directeur de Δ est $\overrightarrow{RQ} \begin{pmatrix} 4-(-5) \\ 2-(-1) \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$

2) Une equation contesienne de Δ est

3x-9y+c=0 auec cume comstante néelle à détennminer.

Comme Δ passe par $Q(\frac{4}{2})$, on obtient $c = 9 \cdot 2 - 3 \cdot 4 = 6$.

Une equation de \triangle est donc : 3x-9y+6=0

Exercice 2 6 points

Soient P, Q et R trois points dans le plan.

- 1. Soit H le point défini par $\overrightarrow{PH} = \frac{3}{5}\overrightarrow{PQ}$. Exprimez H comme barycentre de P et Q.
- 2. Soit M le milieu de $\{H, R\}$. Exprimez M comme barycentre de P, Q et R.

$$5PH = 3(PH + HQ)$$
 $(QH = -HQ)$

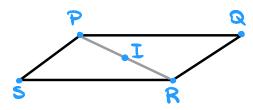
$$M = box((H,1),(R,1))$$

$$= bar((H,5),(R,5))$$

$$= bar((H,2+3),(R,5))$$

$$=box((P,2),(Q,3),(R,5))$$

Soit (P,Q,R,S) un parallélogramme. Démontrez que ses diagonales s'intersectent en leur milieu.



Soit I le milieu de {P,R}. Il suffit de montner que I est aussi le milieu de 20,53.

Par définition de milieu, on a

$$\overrightarrow{IP} + \overrightarrow{IR} = 0$$
 (Chasles)
 $(\overrightarrow{IS} + \overrightarrow{SP}) + (\overrightarrow{IQ} + \overrightarrow{QR}) = 0$

Or, $\overrightarrow{SP} = \overrightarrow{RQ} = -\overrightarrow{QR}$ can (P,Q,R,S) est un panalle lognomme. On obtient IS-QR+IQ+QR=0

Exercice 4

Ø

Soient $A\begin{pmatrix} -5 \\ 4 \end{pmatrix}$ et $B\begin{pmatrix} 1 \\ -4 \end{pmatrix}$. On note S l'ensemble des points M du plan tels que $\overrightarrow{AM} \cdot \overrightarrow{BM} = -16$. Déterminez une équation de S.

Soit $H(\frac{x}{y})$ we point du plan.

on calcule
$$\overrightarrow{AH}: \begin{pmatrix} x-(-5) \\ y-4 \end{pmatrix} = \begin{pmatrix} x+5 \\ y-4 \end{pmatrix}$$

$$\overrightarrow{BM}: \begin{pmatrix} x-1 \\ y-(-1) \end{pmatrix} = \begin{pmatrix} x-1 \\ y+4 \end{pmatrix}$$

Le point M appanhent à S si et seulement si

$$-16 = \overrightarrow{AM} \cdot \overrightarrow{BM}$$

$$= {x+5 \choose y-4} \cdot {x-1 \choose y+4}$$

=
$$(x+5)(x-1) + (y-4)(y+4)$$

= $x^2 + 4x - 5 + y^2 - 16$.

Une equation de S est donc dommée par $x^2+4x-5+y^2=0$.