
SIAM/ASA J. UNCERTAINTY QUANTIFICATION c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 7, No. 1, pp. 1--30 and American Statistical Association
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Abstract. Adaptive multilevel splitting (AMS) is a generic Monte Carlo method for Markov processes that
simulates rare events and estimates associated probabilities. Despite its practical efficiency, there
are almost no theoretical results on the convergence of this algorithm. The purpose of this paper
is to prove both consistency and asymptotic normality results in a general setting. This is done by
associating to the original Markov process a level-indexed process, also called a stochastic wave, and
by showing that AMS can then be seen as a Fleming--Viot type particle system. This being done, we
can finally apply general results on Fleming--Viot particle systems that we have recently obtained.
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1. Introduction. In this article, we prove asymptotic results for the adaptive multilevel
splitting (AMS) algorithm used to estimate rare events or to simulate conditionally on rare
events. This method belongs to the family of importance splitting algorithms, a set of tech-
niques that date back to Kahn and Harris [17] and Rosenbluth and Rosenbluth [23] to analyze
particle transmission energies and molecular polymer conformations. The adaptive version of
this method was proposed in [8]. Here we consider the last particle version of this algorithm,
introduced in [14] and presented in [9] in the context of molecular dynamics. Recently, this
algorithm was successfully applied to real-world chemical computations in [25] as well as to
Monte Carlo particle transport problems [19].

To the best of our knowledge, there are almost no theoretical results on the convergence of
this algorithm, with the notable exception of the idealized case [1, 3, 4]. Note, however, that
estimators of unnormalized averages are known to be unbiased in wide generality (see [2]).
Under regularity assumptions discussed below, we give an L2-estimate as well as a central
limit theorem (CLT). In both cases, we consider the real algorithm and do not consider the
idealized case. We also discuss the asymptotic variance given by the CLT.

The general framework is as follows. Given a stopped Markov process (Ys)s\geq 0 in a space
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E and a function \xi : E \rightarrow \BbbR such that \xi (Y0) = 0 almost surely, the goal is to compute the
probability that sups \xi (Ys) > 1 (the rare event), and compute the distribution of Y given
that sups \xi (Ys) > 1. In this context, AMS is constructed as an interacting particle system
consisting of N particles/trajectories (Y n)n=1...N simulated according to the distribution of
the underlying process Y . Define the score of a particle/trajectory as sups \xi (Ys). At each
iteration, the particle with minimal score, say \tau , is killed. Another particle, uniformly and
randomly chosen, is then cloned so that the number of particles/trajectories remains constant
and equal to N . Its trajectory is also resampled from the first entrance time of the level set
\{ \xi > \tau \} . Finally, the algorithm is stopped as soon as all particles have reached the level set
\{ \xi > 1\} . The probability is estimated by (1  - 1/N)J , where J denotes the total number of
iterations, and the final empirical distribution of particles is an estimator of the law of Y
conditioned by the event \{ sups \xi (Ys) > 1\} .

The main result of this paper is a CLT on the latter estimators in the large population
limit, that is, when N goes to infinity. This CLT heavily relies on a CLT for Fleming--Viot
particle systems that we have recently obtained [6]. The key point here is that the AMS
algorithm can be recast as a Fleming--Viot particle system by introducing a level-indexed
process, also called a stochastic wave in [11], associated to the pair (Y, \xi ). The latter is
obtained through a discontinuous time change, where the levels induced by \xi play the role
of a new time parameter, and the associated particle state is given by the first entrance in
successive level sets. Details can be found in section 3.

The CLT is obtained for diffusions under three main assumptions (referred to as Assump-
tions 1, 2, and 3) on the pair (Y, \xi ). These assumptions include the case where Y is a diffusion
in \BbbR d satisfying a stochastic differential equation (SDE) of the form

(1.1) dYs = b(Ys) ds+ \sigma (Ys) dWs,

with smooth coefficients (b, \sigma ), and \xi is a smooth function with compact level sets satisfying
everywhere some nondegeneracy condition of the form (\nabla \xi )T\sigma \not = 0.

In particular, as explained in [25], this algorithm is applied in computational chemistry to
simulate so-called ``reactive trajectories,"" including those for real-world chemical applications.
To fix ideas, consider an overdamped system solution to the SDE

dYs =  - \nabla V (Ys) ds+
\sqrt{} 
2\beta  - 1 dWs,

where V is the interaction energy of the system and \beta  - 1 is the temperature. Then, let
A \subset \{ \xi < 0\} denote a set of initial configurations, typically a ``metastable"" state defined by
a sufficiently thin energy level set around a local minimum of V . In this chemical context,
\xi is called a ``reaction coordinate"" and parametrizes a chemical reaction starting from an
initial configuration modeled by A up to a final configuration modeled by the level set \{ \xi > 1\} 
(see Figure 1). The associated ``reactive trajectory"" is then defined by an initial Y0 close to
but distinct from A and by the conditional distribution \scrL \{ (Ys)s\geq 0| S1 < SA\} of trajectories
reaching the final configuration set \{ \xi > 1\} (at a time denoted S1) before reaching the initial
configuration set A (at a time denoted SA). The associated event \{ S1 < SA\} represents
the rare event of interest. In particular, the associated mean time \BbbE [S1| S1 < SA] and the
probability \BbbP (S1 < SA) are crucial for the estimation of the underlying chemical kinetics. It
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Figure 1. The metastable state A and the reaction coordinate \xi (y1, y2) = y1.

turns out that AMS is particularly efficient at providing estimators of such quantities, and as
stated above, the aim of this paper is to prove a large population CLT for the latter. The
interested reader can find details and simulations in [25].

As mentioned above, our core idea consists of reformulating the AMS algorithm as a
Fleming--Viot particle system and then applying the CLT for Fleming--Viot particle systems
of [6]. This is in fact a quite generic method that may be applied to other types of underlying
processes Y , for instance, to diffusions with degenerate condition (\nabla \xi )T\sigma = 0, or to piecewise
deterministic Markov processes. However, in these cases, defining the associated level-indexed
process and checking the assumptions of the CLT for the Fleming--Viot particle system requires
extensive, specific analysis that is left for future work.

The paper is organized as follows. In section 2, we introduce the AMS algorithm and state
the main result of the article, namely Theorem 2.7. As mentioned above, the assumptions
for the latter are illustrated in the diffusive case. In section 3, we reformulate the AMS
algorithm as a Fleming--Viot particle system built from a so-called level-indexed process.
Finally, applying [6], this allows us to establish the desired result. Most of the proofs and
technical results are gathered in the appendices.

2. Setting, algorithm, and main result.

2.1. Setting. Let E denote a Polish state space. If \xi : E \rightarrow \BbbR is a measurable function
and I is a subset of \BbbR , we denote

\{ \xi \in I\} = \xi  - 1(I) = \{ y \in E, \xi (y) \in I\} .

Additionally, if \mu is a Borel probability measure on E, Y is an E-valued random variable
with law \mu , and \varphi : E \rightarrow \BbbR is a test function, we write

\BbbV \mu (\varphi ) := \BbbV (\varphi (Y )) = \BbbE [\varphi (Y )2] - \BbbE [\varphi (Y )]2 = \mu (\varphi 2) - \mu (\varphi )2.

Let (Ys)s\geq 0 denote a time homogeneous Markov process with continuous trajectories in
E that may be defined from any initial condition y0 \in E. We also assume that the mapping
\xi : E \rightarrow \BbbR , called a level function, is continuous. In what follows, we suppose for simplicity
that the law \eta 0 := \scrL (Y0) is supported by the level set \{ \xi = 0\} , meaning that

(2.1) \eta 0(\xi = 0) = 1.
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For each t \geq 0, we denote the first entrance time in levels strictly greater than t by

St := inf \{ s \geq 0, \xi (Ys) > t\} \in [0,+\infty ].

Note that by continuity of \xi and Y , for all t \geq 0 with St < +\infty , we have

(2.2) \xi (YSt) = t.

Let A denote a Borel set in E. By convention, in what follows, the process (Ys)s\geq 0 is
stopped at the random time S1 \wedge SA, where

SA := inf \{ s \geq 0, Ys \in A\} \in [0,+\infty ].

Assuming that
p1 := \BbbP (S1 < SA) > 0,

the goal of the algorithm is to estimate p1 as well as the conditional distribution \scrL (YS1 | S1 <
SA).

Specific algorithms have been developed in order to efficiently simulate such events, espe-
cially when they are rare. The upcoming section recalls the last particle version of the AMS
algorithm as introduced in [9]. The main goal of this paper is to prove the consistency and
the asymptotic normality of this algorithm.

For simplicity, we will assume that almost surely,

(2.3) S1 \wedge SA < +\infty ,

which implies that the particle trajectories defined in the AMS algorithm are all defined
on finite time intervals. While removing or modifying condition (2.1) and, especially, condi-
tion (2.2) requires substantial changes in the definition of the level-indexed process in section 3,
the condition (2.3) is merely technical and can be simply removed up to dealing with infinite
length trajectories (see Appendix E).

2.2. Adaptive multilevel splitting. From here on, the integer N denotes the number of
trajectories, also called particles. This sample size will stay unchanged all along the algorithm.
Additionally, random variables denoted with the superscripts n, j, for instance, Zn,j , means
that it concerns the trajectory with index n at iteration j \geq 0. AMS is given by Algorithm
2.1. Figure 2 illustrates the first two steps of Algorithm 2.1 in the case where N = 3.

Assumption 2 below will ensure that almost surely, in the last step of Algorithm 2.1,

\forall h > 0, sup
s\in [\sigma j ,\sigma j+h]

\xi (Y
Nj ,j
s ) > \xi (Y

Nj ,j
\sigma j ).

In particular, this implies that the sequence (\tau j)j\geq 0 is strictly increasing. Moreover, Assump-
tion 3 below will imply that this algorithm stops after a finite number of iterations almost
surely (see Proposition 2.5).

For any t \in [0, 1], let us denote by Jt the number of branchings of this algorithm between
level 0 and level t, that is,

Jt := sup \{ j, \tau j \leq t\} ,

which by definition satisfies
\tau Jt \leq t < \tau 1+Jt .



ON THE ASYMPTOTIC NORMALITY OF AMS 5

Y n,1
0

{ξ = 0} {ξ = 1}

{ξ = τ2}

A

{ξ = 0} {ξ = 1}

{ξ = τ1}

Y n,0
0

A

Figure 2. The first two steps of AMS with N = 3 trajectories.

Algorithm 2.1. Adaptive multilevel splitting.

We start with a sample of the initial condition of the process Y , which means that

(2.4) Y 1,0
0 , . . . , Y N,0

0
\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \eta 0.

From each initial condition Y n,0
0 , we simulate a trajectory (Y n,0

s )s\geq 0. We recall that the
latter is stopped when hitting A or level set \{ \xi > 1\} . Set \tau 0 = 0 and then iterate on j \geq 1:

(i) For 1 \leq n \leq N , compute the score of each particle, meaning the supremum of the
level \xi along each particle's trajectory:

sup
0\leq s\leq Sn,j - 1

A \wedge Sn,j - 1
1

\xi (Y n,j - 1
s ).

Find the particle with the smallest score:

(2.5)

\left\{   Nj := argminn=1,...,N sup
0\leq s\leq Sn,j - 1

A \wedge Sn,j - 1
1

\xi (Y n,j - 1
s ),

\tau j := sup
0\leq s\leq S

Nj,j - 1

A \wedge S
Nj,j - 1

1

\xi (Y
Nj ,j - 1
s ).

Under Assumptions 1 and 2 below, a unique particle satisfies (2.5) (see Proposi-
tion 2.5).

(ii) Stop the algorithm if \tau j = 1.

(iii) For n \not = Nj , set (Y
n,j
s )s\geq 0 = (Y n,j - 1

s )s\geq 0.
(iv) Pick an index Mj uniformly at random in \{ 1, . . . , N\} \setminus \{ Nj\} . Replace the trajectory

with index Nj by a resampled version of the trajectory with indexMj , starting from
the hitting time of level \tau j , that is

\bullet set \sigma j := inf\{ s \geq 0, \xi (Y
Mj ,j
s ) > \tau j\} < +\infty ;

\bullet for s < \sigma j , set Y
Nj ,j
s = Y

Mj ,j
s ;

\bullet for s \geq \sigma j , simulate a new piece of trajectory (Y
Nj ,j
s )s\geq \sigma j according to the

law of the underlying process (Ys)s\geq 0 with initial condition Y
Mj ,j
\sigma j .
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{ξ = τJt}

{ξ = 0} {ξ = 1}

A

{ξ = τ1+Jt}

{ξ = t}

Xn
t

Figure 3. The entrance points Xn
t of the level set \{ \xi = t\} .

Accordingly, the value of j at the end of the algorithm is J1, and the final particle system
is given by the N trajectories (Y n,J1

s )s\geq 0, 1 \leq n \leq N . By construction, and by Proposition 2.5
below, all of these trajectories reach the level set \{ \xi = 1\} and are stopped at this specific time.

Similarly, for a given level t \in [0, 1], the particle trajectories after Jt iterations are given
by (Y n,Jt

s )s\geq 0, and the associated entrance times are

Sn
t := inf\{ s \geq 0, \xi (Y n,Jt

s ) > t\} ,

with entrance states Y n,Jt
Sn
t

. To lighten the notation and to prepare the definition of the level-

indexed process in section 3, we denote the latter states (see Figure 3) by

Xn
t := Y n,Jt

Sn
t
.

Thus, by (2.2) one has \xi (Xn
t ) = t. Then, for any test function \varphi , we estimate the law of YSt

given that YSt < YSA
by the empirical distribution

\eta Nt (\varphi ) :=
1

N

N\sum 
n=1

\varphi (Y n,Jt
Sn
t

) =
1

N

N\sum 
n=1

\varphi (Xn
t ).

In the same vein, since exactly one trajectory is resampled at each step of the algorithm, our
estimator for pt = \BbbP (YSt < YSA

) is

pNt :=

\biggl( 
1 - 1

N

\biggr) Jt

.

It was already established in [2] (see also [6] and the discussion in section 3 of the present
article) that pNt \times \eta Nt (\varphi ) is in fact an unbiased estimator:

\BbbE 
\bigl[ 
pNt \times \eta Nt (\varphi )

\bigr] 
= \BbbE [\varphi (YSt)1St<SA

] .

The unbiasedness of the probability estimate is important if we want to use parallel com-
puting. Although the algorithm is intrinsically sequential, it is possible to run several realiza-
tions in parallel and then take the mean of the estimates. More complete discussions can be
found in [26] about various parallel versions of AMS, and in [2] about unbiased generalizations.
All of these versions are not included in the result of the present paper, which is restricted
to the last particle variant. Obtaining a CLT for them may be possible but yet requires to
extend accordingly the CLT for Fleming--Viot particle systems of [6].
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2.3. Assumptions. In this section, we gather some sufficient conditions to ensure the well-
posedness of the previous algorithm and to obtain the main results of section 2.4. We illustrate
these assumptions in the case of a strong solution of an SDE with smooth coefficients.

Let us begin with some topological and regularity conditions.

Assumption 1 (Feller regularity). E is a locally compact state space, \xi is continuous,
\eta 0(\xi = 0) = 1, A \subset \{ \xi < 0\} , and (Ys)s\geq 0 is a Feller diffusion process, i.e., a Feller process
with continuous trajectories.

Remark 2.2. We recall that Feller processes are strong Markov with respect to their
natural filtration denoted

\bigl( 
\scrF Y
s = \sigma (Ys\prime , 0 \leq s\prime \leq s)

\bigr) 
s\geq 0

, the latter being necessarily right-

continuous (see, for example, [12, Thm. 2.7, p. 169]).

For the next assumption, we recall the notation St := inf\{ s \geq 0, \xi (Ys) > t\} as well as
SB := inf\{ s \geq 0, Ys \in B\} for any set B \subset E. Besides, \r A and \=A denote respectively the
interior and the closure of the set A.

Assumption 2 (almost sure strict entrance). For any t \in [0, 1] and y \in E such that \xi (y) = t,

(2.6) \BbbP y (St = 0) = 1.

In the same way, for all y \in \{ \xi = 0\} ,

(2.7) \BbbP y

\bigl( 
S \=A = S\r A

\bigr) 
= 1.

By the strong Markov property, (2.6) ensures that St, defined as the first entrance time
in levels strictly greater than t, is in fact equal to the hitting time of level t, that is,

St = inf \{ s \geq 0, \xi (Ys) = t\} .

Additionally, since the process Y has continuous trajectories, (2.7) obviously implies that
for all y \in \{ 0 \leq \xi \leq 1\} ,

(2.8) \BbbP y

\bigl( 
S \=A = S\r A

\bigr) 
= 1.

Moreover, we will show in Lemma D.1 that (2.7) and the strong Markov property imply
that the jump times of the c\`adl\`ag process t \mapsto \rightarrow YSt have atomless distributions. This property
is indeed required in [6] in order to get the CLT for Fleming--Viot particle systems.

Let us now define the integral operator

(2.9) q(\varphi )(y) := \BbbE y [\varphi (YS1)1S1<SA
] , y \in \{ 0 \leq \xi \leq 1\} .

Denoting by Cb(\{ \xi = 1\} ) the set of continuous and bounded functions on the level set \{ \xi = 1\} ,
we will prove in Lemma D.3 that under Assumptions 1 and 2, if \varphi \in Cb(\{ \xi = 1\} ), then q(\varphi )
is bounded and continuous on \{ 0 \leq \xi \leq 1\} . The proof is based on a general result given in
Appendix A, namely Lemma A.4. The integral operator q will prove crucial in the remainder
of the paper as it will appear in the asymptotic variance of the CLT.

Our next assumption ensures a uniform control on the probabilities of success, namely
\BbbP y (S1 < SA), with respect to the initial condition.
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Assumption 3 (uniform positive probability of reaching the last level). We assume that
almost surely,

SA \wedge S1 < +\infty ,

and that

inf
y\in \{ \xi =0\} 

\BbbP y (S1 < SA) > 0.

First, note that under Assumption 1, by the strong Markov property, one has

inf
y\in \{ 0\leq \xi \leq 1\} 

\BbbP y (S1 < SA) = inf
y\in \{ \xi =0\} 

\BbbP y (S1 < SA) .

As mentioned previously, the condition SA \wedge S1 < +\infty is a technical simplification of
minor significance that may in fact be removed; see Appendix E.

In Appendix F, a stronger but easier-to-check variant of the infimum condition in
Assumption 3 is presented.

Let us illustrate the previous conditions in a more specific framework. It turns out that
Assumptions 1, 2, and 3 are satisfied for elliptic diffusions in a bounded domain. More
precisely, let Ys \in \BbbR d be a solution to the SDE

(2.10) dYs = b(Ys) ds+ \sigma (Ys) dWs,

where b and \sigma are functions from \BbbR d to, respectively, \BbbR d and \BbbR d\times n, with n \geq 1. We denote
as usual a = \sigma \sigma T . Then we have the following result, whose proof is detailed in Appendix B.

Lemma 2.3. Let Y be the solution to (2.10). Assume that
(a) \sigma , b are in C2(\BbbR d) with bounded derivatives of order i = 0, 1, 2 on \{  - 1 \leq \xi \leq 1\} ;
(b) \xi is in C2(\BbbR d) with bounded derivatives of order i = 1, 2 on \{  - 1 \leq \xi \leq 1\} , and also

that

A = \=A = \{ \xi \leq  - 1\} ;

(c) there exists \delta > 0 such that (\nabla \xi )Ta\nabla \xi \geq \delta on \{  - 1 \leq \xi \leq 1\} .
Then Assumptions 1, 2, and 3 hold true.

Remark 2.4. Condition (c) ensures that the martingale part of the process t \mapsto \rightarrow \xi (Yt) has
a strictly positive quadratic variation. It may happen that (Ys)s\geq 0 is Feller and \xi is smooth,
but (2.6) does not hold without the addition of condition (c). Consider, for example, the case
where (Ys)s\geq 0 is the solution to an ordinary differential equation (ODE). As a consequence,
Assumption 2 has to be modified without condition (c); for instance, one may need to resort
to an ad hoc restriction of the state space for which (2.6) is still satisfied.

2.4. Main result. For any test function \varphi and any t \in [0, 1], let us define the unnormalized
measure \gamma t by

\gamma t(\varphi ) := \BbbE [\varphi (YSt)1St<SA
] ,

so that \gamma 0 = \eta 0. Accordingly, the probability that the process (Ys)s\geq 0 reaches level t is
pt := \gamma t(1) = \BbbP (St < SA), and the law of YSt given that St < SA is denoted \eta t and satisfies
\eta t(\varphi ) := \gamma t(\varphi )/\gamma t(1).
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The purpose of AMS Algorithm 2.1 is to approximate the previous quantities. Namely,
for any t \in [0, 1], let us recall that the probability pt is estimated by

pNt :=

\biggl( 
1 - 1

N

\biggr) Jt

,

where Jt denotes the number of iterations necessary to reach level t. The measures \eta t and \gamma t
are respectively estimated by

\eta Nt (\varphi ) :=
1

N

N\sum 
n=1

\varphi (Y n,Jt
Sn
t

) =
1

N

N\sum 
n=1

\varphi (Xn
t ) and \gamma Nt (\varphi ) := pNt \eta 

N
t (\varphi ).

Our first statement is a well-posedness result. As will be explained in section 3.3, it is
connected to the first point of Theorem 3.7 and to Lemma 3.8.

Proposition 2.5. Under Assumptions 1 and 2, AMS Algorithm 2.1 is well-posed in the
sense that there is only one particle with minimal score in (2.5). Additionally, under Assump-
tion 3, AMS Algorithm 2.1 is nonexplosive in the sense that the algorithm stops after a finite
number of iterations almost surely.

Our second statement is a consistency result in the L2 sense and coincides with the second
point of Theorem 3.7.

Proposition 2.6. Under Assumptions 1, 2, and 3, for any \varphi \in Cb(\{ \xi = 1\} ), one has

\BbbE 
\Bigl[ \bigl( 
\gamma N1 (\varphi ) - \gamma 1(\varphi )

\bigr) 2\Bigr] \leq 6 \| \varphi \| 2\infty 
N

.

Let us now come to the central limit result, which corresponds to the last point of The-
orem 3.7. The asymptotic variance is described through the integral operator (2.9), namely
q(\varphi )(y) := \BbbE y [\varphi (YS1)1S1<SA

] defined for any y \in \{ 0 \leq \xi \leq 1\} .
Theorem 2.7. Under Assumptions 1, 2, and 3, for any \varphi \in Cb(\{ \xi = 1\} ), one has

\surd 
N
\bigl( 
\gamma N1 (\varphi ) - \gamma 1(\varphi )

\bigr) \scrD  -  -  -  - \rightarrow 
N\rightarrow \infty 

\scrN (0, \sigma 21(\varphi )),

where

\sigma 21(\varphi ) = p21\BbbV \eta 1(\varphi ) - p21 log(p1) \eta 1(\varphi )
2  - 2

\int 1

0
\BbbV \eta t(q(\varphi ))ptdpt.

Then it is easy to see that Slutsky's lemma and the decomposition

(2.11) \eta NT (\varphi ) - \eta T (\varphi ) =
1

\gamma NT (1)

\bigl( 
\gamma NT (\varphi  - \eta T (\varphi )) - \gamma T (\varphi  - \eta T (\varphi ))

\bigr) 
lead to the upcoming result.

Corollary 2.8. Under Assumptions 1, 2, and 3, for any \varphi \in Cb(\{ \xi = 1\} ), one has

\surd 
N
\bigl( 
\eta N1 (\varphi ) - \eta 1 (\varphi )

\bigr) \scrD  -  -  -  - \rightarrow 
N\rightarrow \infty 

\scrN (0, \sigma 21(\varphi  - \eta 1(\varphi ))/p
2
1).
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Additionally, \surd 
N
\bigl( 
pN1  - p1

\bigr) \scrD  -  -  -  - \rightarrow 
N\rightarrow \infty 

\scrN (0, \sigma 2),

where

\sigma 2 = \sigma 21(1) =  - p21 log(p1) - 2

\int 1

0
\BbbV \eta t(q(1))ptdpt.

First, we can remark that all the terms in the expressions for the asymptotic variances
are nonnegative. Indeed, log p1 < 0, and t \mapsto \rightarrow pt is nonincreasing, making dpt nonpositive.

Another important remark is that all of these asymptotic variances can be viewed as the
limit of the asymptotic variances for the algorithm with a finite number of levels 0 < t1 < \cdot \cdot \cdot <
tK = 1 as in [5, 10], when the number K of levels tends to infinity. Details and explanations
are provided in [7, section 2.4].

In the rest of this section, we discuss some consequences of the previous results. We begin
with the number of steps of the algorithm. Essentially, this number grows logarithmically
with the rarity of the event and linearly with the number of particles. Remember that one
step requires simulation of only one new trajectory, computation of its score, and comparison
with the (N  - 1) scores already evaluated. Hence we can conclude that the total complexity
of the algorithm scales like \scrO P ( - N logN log p1). A similar remark was already given in [14]
but was restricted to the so-called idealized setting.

Corollary 2.9. Under Assumptions 1, 2, and 3, the number of steps of the AMS algorithm
satisfies

J1 =  - N log(p1) +\scrO P (
\surd 
N).

Proof. Indeed, Proposition 2.6 with \varphi = 1 gives pN1 = \gamma N1 (1) and p1 = \gamma 1(1) so that

pN1 = p1 +\scrO P (1/
\surd 
N)

and
log(pN1 ) = log(p1) +\scrO P (1/

\surd 
N).

Additionally,
log(pN1 ) = J1 log(1 - 1/N) = J1( - 1/N + o(1/N)).

Therefore, by using both expressions we get

J1 =  - (log(p1) +\scrO P (1/
\surd 
N))(1/N + o(1/N)) - 1 =  - N log(p1) +\scrO P (

\surd 
N).

Now we can focus our attention on the asymptotic variance of the probability estimate,
that is,

(2.12) \sigma 2 = \sigma 1(1)
2 =  - p21 log(p1) - 2

\int 1

0
\BbbV \eta t(q(1))ptdpt.

By choosing the level function \xi  \star (y) = q(1)(y) = \BbbP y(S1 < SA), it turns out that \eta t is supported
on the level set t of \xi  \star . Additionally, for every y on this level set, we have q(1)(y) = \BbbP y(S1 <
SA) = t so that

\BbbV \eta t(q(1)) = \BbbV \eta t(\xi 
 \star ) = 0.
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Hence the integral term vanishes, and \sigma 2 reduces to

\sigma 2 =  - p21 log(p1).

Function y \mapsto \rightarrow \xi  \star (y) is called the committor function in molecular dynamics, where its promi-
nent role is well known (see, e.g., [15, 20]). In fact, the knowledge of the committor function
typically requires solving a PDE, which in turn is much more involved than the problem
of estimating rare event probabilities. However, it is important to note that the committor
function gives the best possible asymptotic variance.

This phenomenon also arises when considering the idealized case, where we assume that
at each branching, we can generate a new trajectory reaching at least the current level,
and independent of the other particles' trajectories (see [3, 14]). Note also that in the one-
dimensional case, if \xi is strictly increasing, then the level sets are reduced to one point, \eta t is
a Dirac measure, and the variance is minimal.

In contrast, we can also exhibit the worst value for \sigma 2. For that, consider the variance term
in the integrand of (2.12), that is, \BbbV \eta t(q(1)). It corresponds to the variance of the random
variable Z = q(1)(X), with X drawn according to \eta t. Hence Z is between 0 and 1, and
its mean value is p1/pt. Under those constraints, the largest variance is that of a Bernoulli
variable with parameter p1/pt and is given by p1/pt(1 - p1/pt). In this situation, we have

 - 2

\int 1

0
\BbbV \eta t(q(1))ptdpt =  - 2

\int 1

0

p1
pt

\biggl( 
1 - p1

pt

\biggr) 
pt dpt = 2p21 log(p1) - 2p21 + 2p1,

which yields
\sigma 2 \leq 2p1(1 - p1) + p21 log(p1) \leq 2p1(1 - p1).

Notice that this upper bound is exactly twice the variance of a naive Monte Carlo method,
which simply consists of simulatingN i.i.d. (independent and identically distributed) replicates
of the original process Y and counting the proportion of trajectories that reach the level set
\{ \xi = 1\} before A. If we take into account the computational cost, we see that naive Monte
Carlo costs N trajectories, whereas the cost of AMS is of order  - N log p1 so that the worst
case is worse than naive Monte Carlo by a factor of  - 2 log p1.

Consequently, we see that if we make a very bad choice for \xi , things can get pretty bad---
even worse than naive Monte Carlo. Nonetheless, this has to be compared to importance
sampling, where one is not even guaranteed to have a finite variance (see, for example, [13]).
We summarize the previous results in the following corollary.

Corollary 2.10. Under Assumptions 1, 2, and 3, the asymptotic variance for the probability
estimator satisfies

 - p21 log(p1) \leq \sigma 2 \leq 2p1(1 - p1).

Let us conclude this section with some comments on the asymptotic variance for \eta N1 (\varphi ),
namely \sigma 21(\varphi  - \eta 1(\varphi ))/p

2
1. First, notice that for all t \in [0, 1],

\gamma t(q(\varphi )) = \BbbE [q(\varphi (YSt))1St<SA
] = \BbbE [\BbbE [\varphi (YS1)1S1<SA

| YSt ]1St<SA
],

which yields
\gamma t(q(\varphi )) = \BbbE [\varphi (YS1)1S1<SA

] = \gamma 1(\varphi ).
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As a consequence, by linearity of both q and \eta t, one has

\eta t(q(\varphi  - \eta 1(\varphi ))) = \eta t(q(\varphi )) - \eta t(q(1))\eta 1(\varphi ) = (\gamma t(q(\varphi )) - \gamma 1(\varphi ))/pt = 0.

Hence, denoting rt = pt/p1, we are led to the alternative expression

\sigma 21(\varphi  - \eta 1(\varphi ))/p
2
1 = \BbbV \eta 1(\varphi ) - 2

\int 1

0
\eta t((q(\varphi  - \eta 1(\varphi )))

2) rt drt.

It is readily seen that | q(\varphi  - \eta 1(\varphi ))| \leq \| \varphi  - \eta 1(\varphi )\| \infty q(1) so that

 - 2

\int 1

0
\eta t((q(\varphi  - \eta 1(\varphi )))

2) rt drt \leq  - 2\| \varphi  - \eta 1(\varphi )\| 2\infty 
\int 1

0
\eta t((q(1))

2) rt drt.

Taking into account that \eta t(q(1)) = 1/rt, we get

 - 2

\int 1

0
\eta t((q(1))

2) rt drt =  - 2

\int 1

0
\BbbV \eta t(q(1)) rt drt  - 2 log(p1).

So we have the bound

(2.13) \BbbV \eta 1(\varphi ) \leq \sigma 21(\varphi  - \eta 1(\varphi ))/p
2
1 \leq \BbbV \eta 1(\varphi ) + \| \varphi  - \eta 1(\varphi )\| 2\infty 

\biggl( 
\sigma 2

p21
 - log p1

\biggr) 
,

with \sigma 2 as in Corollary 2.8. The lower bound is the variance we would get with an i.i.d. sample
from \eta 1. As noticed in Corollary 2.10, at best the second term in the right-hand side of (2.13)
reduces to  - 2\| \varphi  - \eta 1(\varphi )\| 2\infty log(p1).

Remark 2.11. In AMS Algorithm 2.1, we assume that the initial condition (2.4) consists
of N i.i.d. random variables Y n,0

0 , 1 \leq n \leq N , with common law \eta 0. In fact, this assumption
can be relaxed to any exchangeable initial condition satisfying a bound of the form

\BbbE 
\Bigl[ \bigl( 
\eta N0 (q(\varphi )) - \eta 0(q(\varphi ))

\bigr) 2\Bigr] \leq c \| \varphi \| 2\infty 
N

,

for some constant c > 0, as well as satisfying the following CLT:

\surd 
N
\bigl( 
\eta N0 (q(\varphi )) - \eta 0(q(\varphi ))

\bigr) \scrD  -  -  -  - \rightarrow 
N\rightarrow \infty 

\scrN (0,\BbbV \eta 0(q(\varphi ))).

In that case, all the results of this section still hold true (see Remark 2.8 in [6]).

2.5. Extension to path observables and entrance times. This section deals with an
extension of the CLT to richer observables. For this purpose, we can consider the following
Polish space.

Definition 2.12. Let C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E) denote the space of continuous paths, with possibly a
given terminal time s. We will use the notation

y[0,s] :=

\biggl\{ 
(ys\prime )0\leq s\prime \leq s if s < +\infty ,
(ys\prime )s\prime \geq 0 if s = +\infty .



ON THE ASYMPTOTIC NORMALITY OF AMS 13

We say that a sequence yn[0,sn] in C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E) converges towards y[0,s] if limn s
n = s \in \BbbR + and

limn(y
n
s\prime \wedge sn)s\prime \geq 0 = (ys\prime \wedge s)s\prime \geq 0 in C(\BbbR +, E) endowed with uniform convergence on compacts.

This defines a Polish topology on C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E) that we will always use in what follows unless
otherwise specified.

Let us illustrate how we understand the convergence on compacts in the previous definition.
Consider, for example, that for all n, sn < s < +\infty . Then yn[0,sn] converges to y[0,s] if and only

if sn \rightarrow s, and both sup0\leq s\prime <sn dE(y
n
s\prime , ys\prime ) and supsn\leq s\prime <sn dE(y

n
sn , ys\prime ) converge to 0 when

n\rightarrow +\infty . The reader can easily infer the other cases from that example.
The main message is that, mutatis mutandis, the central limit result of Theorem 2.7 is

still valid in this new context. More precisely, we have the extended following CLT (see
Appendix G for the proof).

Theorem 2.13. Let \psi : C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p} (\BbbR +, E) \rightarrow \BbbR denote a given continuous and bounded func-

tional. Set \scrX n
t := Y n,Jt

[0,Sn
t ]

and

\eta Nt :=
1

N

N\sum 
n=1

\delta \scrX n
t
.

Additionally, consider

\gamma t(\psi ) := \BbbE 
\bigl[ 
\psi (Y[0,St])1St<SA

\bigr] 
and

q(\psi )(y[0,s]) := \BbbE 
\bigl[ 
\psi (Y[0,S1])1S1<SA

| Y[0,s] = y[0,s]
\bigr] 
.

Denote, as before, \eta t := \gamma t/\gamma t(1) and \gamma Nt := pNt \eta 
N
t . If Assumptions 1, 2, and 3 are satisfied,

then Proposition 2.6, Theorem 2.7, and Corollary 2.8 hold true when replacing \varphi with \psi .

Remark 2.14. In the special case of entrance times, i.e., observables of the form \psi (YS1 , S1),
the CLT is in fact a direct consequence of Theorem 2.7. Indeed, consider the time homogeneous
Markov Feller process \widetilde Yh := (Yh, s0 + h), h \geq 0,

defined for each initial condition \widetilde Y0 = (y0, s0) \in \{ 0 \leq \xi \leq 1\} \times [0, 1]. By construction, it can
be easily checked that if Y satisfies Assumptions 1, 2, and 3, then it is also true for \widetilde Y so that
this case is included in Theorem 2.7.

3. Level-indexed processes and Fleming--Viot particle systems. In this section, we in-
troduce a c\`adl\`ag process X based on the couple (Y, \xi ) and called the level-indexed process. In
a different framework, it was introduced by Dynkin and Vanderbei in [11] and called a stochas-
tic wave. They mainly studied it in the case where Y is a diffusion---but apparently without
any specific application in mind. In our framework, thanks to a slight modification of this
object, we can interpret AMS Algorithm 2.1 as a Fleming--Viot particle system. The results
of [6] on Fleming--Viot particle systems can then be applied in order to prove Proposition 2.6
and Theorem 2.7.

3.1. Level-indexed processes. Let us denote by \partial a cemetery point. Recall that SA :=
inf\{ s \geq 0, Ys \in A\} and St := inf\{ s \geq 0, \xi (Ys) > t\} .



14 F. C\'EROU, B. DELYON, A. GUYADER, AND M. ROUSSET

Xt

{ξ = 0} {ξ = 1}

A

{ξ = 0} {ξ = 1}

Ys

A

Figure 4. The level-indexed process Xt associated to the pair (Y, \xi ).

Definition 3.1 (level-indexed process). Let the first condition of Assumption 2 be satisfied,
namely that for each t \in [0, 1] and for each y \in \{ \xi = t\} , we have \BbbP y(St = 0) = 1. The
level-indexed process, or stochastic wave, (Xh)h\geq 0 with state space F \cup \{ \partial \} , where

F := \{ 0 \leq \xi \leq 1\} ,

and associated with the pair (Y, \xi ) and initial condition Y0 = x, is defined by its initial condition
X0 = x, and for any h \geq 0,

Xh :=

\Biggl\{ 
YS(\xi (x)+h)\wedge 1

if S(\xi (x)+h)\wedge 1 < SA,

\partial if S(\xi (x)+h)\wedge 1 \geq SA.

Remark 3.2.
\bullet The first condition of Assumption 2 is necessary to ensure the consistency of the
definition of the level-indexed process. For instance, it is necessary to ensure that
X0 = YS\xi (x)

= x given the initial condition X0 = Y0 = x.
\bullet If Y has continuous trajectories, \xi is continuous, and S1 \wedge SA < +\infty as is the case
here, then Xh is c\`adl\`ag and \xi (Xh) = (\xi (x) + h)\wedge 1 for all h \geq 0. See also Appendix E
for the case where S1 \wedge SA = +\infty with nonzero probability.

\bullet If the initial level is \xi (x) = 0 and if t \in [0, 1] is such that Xt \not = \partial , then \xi (Xt) = t (see
Figure 4). In particular, if X1 \not = \partial , then Xt = YSt for all t \in [0, 1].

\bullet If Y is Feller, as is the case here, then Y is strong Markov with respect to its right-
continuous natural filtration \scrF Y . By construction of the level-indexed process, it
implies that X is---at least---a time homogeneous Markov process with respect to the
filtration (\scrF Y

S(\xi (X0)+h)\wedge 1
)h\geq 0, and thus a fortiori with respect to its smaller natural

filtration.
\bullet If F = \{ 0 \leq \xi \leq 1\} is compact, then continuity Lemma A.4 implies that the level-
indexed process X is itself Feller.

In the case where Y is not stopped at SA, the level-indexed process has been introduced
in [11] and called a stochastic wave. If, for example, Ys = (Y 1

s , Y
2
s ) is a two-dimensional

Brownian motion with Y0 = 0 and \xi (y1, y2) = y1, then X1
t = t and X2

t = Y 2
St
, where

St = inf
\bigl\{ 
s \geq 0, Y 1

s = t
\bigr\} 

is a symmetric Cauchy process with a dense set of discontinuity
points. As pointed out in [11], this representation of the symmetric Cauchy process is due
to [24]. This is illustrated in Figure 5.
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Figure 5. 2D Brownian trajectory Ys = (Y 1
s , Y

2
s ) and associated stochastic wave (X1

t , X
2
t ) = (t, Y 2

St
) when

\xi (y1, y2) = y1.

Remark 3.3 (soft versus hard killing times). It turns out that under Assumption 2, the
killing time of the level-indexed process is typically ``soft"" in the sense that it is a totally
inaccessible stopping time, i.e., a stopping time that cannot be predicted (see [16] for a precise
definition, as well as the discussion in [6]). This is, for instance, a consequence of the Feller
property when X is Feller. Note that this is a stronger property than having an atomless
distribution. Interestingly, the CLT in [6] also holds true for ``hard"" killing times so that it
may be used to treat cases beyond Assumption 2.

The Markov semigroup of the level-indexed process, defined by

Qh\varphi (x) := \BbbE [\varphi (Xh)| X0 = x],

can be easily related to the integral operator q(\varphi )(y) = \BbbE y [\varphi (YS1)1S1<SA
] as follows.

Lemma 3.4. For any x \in F and any \varphi : F \rightarrow \BbbR extended to F \cup \{ \partial \} with the convention
\varphi (\partial ) = 0, one has

Q1 - \xi (x)\varphi (x) = q(\varphi )(x).

3.2. AMS as a Fleming--Viot particle system. AMS Algorithm 2.1 can be recast in
the form of a Fleming--Viot algorithm as studied in [6]. For this purpose, let us consider a
time homogeneous c\`adl\`ag Markov process (Xh)h\geq 0 in F \cup \{ \partial \} , constructible from any initial
condition in F . We assume that \partial is an absorbing state, meaning that Xh\prime \in \partial whenever
Xh \in \partial and h\prime \geq h. Let us first recall what we mean by a Fleming--Viot particle system.

Definition 3.5 (Fleming--Viot particle system). An exchangeable particle system denoted by
(X1

t , . . . , X
N
t )t\geq 0 in FN is called the Fleming--Viot particle system associated with (Xh)h\geq 0 if

the following hold:
\bullet Initialization: the particles are initially i.i.d. with distribution \eta 0,

X1
0 , . . . , X

N
0

\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \eta 0.
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\bullet Evolution and killing: between branching times, each particle evolves independently
according to the law of the underlying Markov process X until one of them hits \partial .

\bullet Branching (or rebirth): the killed particle is taken from \partial and is instantaneously given
the state of one of the (N  - 1) other particles---the choice being uniformly random.

\bullet The system continues until time 1.

Note that in order to be well defined, a Fleming--Viot particle system should almost surely
satisfy the following two properties: (i) particles die at different times, and (ii) there is a finite
number of branchings in the time interval [0, 1]. Some conditions ensuring (i) and (ii) are
given and discussed below.

The next result makes explicit the connection among the AMS algorithm, Fleming--Viot
particle systems, and the level-index process.

Lemma 3.6. Let Assumptions 1 and 2 hold true for the pair (Y, \xi ). Recall that the particles
have initial level 0, i.e., \eta 0 (\xi = 0) = 1. Consider AMS Algorithm 2.1. For each n = 1, . . . , N
and each t \in [0, 1], set as before

Sn
t := inf

\bigl\{ 
s \geq 0, \xi (Y n,Jt

s ) > t
\bigr\} 
= inf

\bigl\{ 
s \geq 0, \xi (Y n,Jt

s ) = t
\bigr\} 
,

and set as well
Xn

t := Y n,Jt
Sn
t
.

Then (X1
t , . . . , X

N
t )t\geq 0 is the Fleming--Viot particle system in F = \{ 0 \leq \xi \leq 1\} associated

with the level-indexed process X of the pair (Y, \xi ) in the sense of Definitions 3.1 and 3.5.

Proof. For t \in [0, 1], j \geq 0, and n = 1, . . . , N , let us first define

Sn,j
t := inf\{ s \geq 0, \xi (Y n,j

s ) \in A \cup \{ \xi = t\} \} 

and

Xn,j
t :=

\Biggl\{ 
Y n,j

Sn,j
t

if \xi (Y n,j

Sn,j
t

) = t,

\partial otherwise.

By Assumption 2 and Remark 3.2, the initial condition satisfies

(X1,0
0 , . . . , XN,0

0 ) = (Y 1,0
0 , . . . , Y N,0

0 ) \in \{ \xi = 0\} N ,

so that
\xi (X1,0

0 ) = \cdot \cdot \cdot = \xi (XN,0
0 ) = 0.

Note also that for all t \in [0, 1], if Xn,j
t \not = \partial , then

\xi (Xn,j
t ) = \xi (Y n,j

Sn,j
t

) = t,

so that Xn,j is indeed the level-indexed process associated with Y n,j in the sense of Defini-
tion 3.1.

Set \tau 0 = 0. By construction of AMS Algorithm 2.1, the processes (X1,j
t , . . . , XN,j

t )0\leq t\leq 1

can thus be iteratively constructed for j \geq 1 as follows:
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1. We can reformulate Nj and \tau j defined in AMS Algorithm 2.1 as

(3.1)

\left\{   Nj := argminn=1,...,N sup
0\leq s\leq Sn,j - 1

A \wedge Sn,j - 1
1

\xi (Y n,j - 1
s ),

\tau j := sup
0\leq s\leq S

Nj,j - 1

A \wedge S
Nj,j - 1

1

\xi (Y
Nj ,j - 1
s ).

2. Stop if \tau j = 1; i.e., all trajectories are still alive at time 1.
3. SetXn,j := Xn,j - 1 for n \not = Nj . Pick a numberMj uniformly at random in \{ 1, . . . , N\} \setminus 

\{ Nj\} .
4. Replace the trajectory on [0, \tau j ] of the particle with index Nj by the trajectory of the

particle with index Mj ; that is, set (X
Nj ,j
t )0\leq t\leq \tau j := (X

Mj ,j
t )0\leq t\leq \tau j . Let particle Nj

evolve independently starting from state X
Nj ,j
\tau j at time \tau j until time 1 or until it is

killed.
If we now set

Xn
t := Xn,Jt

t = Xn,j - 1
t for \tau j - 1 \leq t < \tau j

for n = 1, . . . , N and j \geq 1, we thus obtain by definition the Fleming--Viot particle system
associated with the level-indexed Markov process X of Definition 3.5.

3.3. \bfitL \bftwo -estimate and CLT for Fleming--Viot particle systems. Building on [6], we
can now present two sufficient assumptions to obtain the desired L2-estimate and CLT for
Fleming--Viot particle systems based on the level-indexed processes.

The first assumption is the following.

Assumption (\~A). This assumption has two parts.
(i) For any initial condition x \in F = \{ 0 \leq \xi \leq 1\} , the jump ``times"" of the level-indexed

process (Xh)h\geq 0 have an atomless distribution:

\BbbP (Xh - \not = Xh | X0 = x) = 0 \forall x \in F, \forall h \geq 0.

(ii) If \varphi \in Cb(\{ \xi = 1\} ), then the mapping x \mapsto \rightarrow q(\varphi )(x) = Q1 - \xi (x)\varphi (x) is continuous on F .

The second key assumption is simply the following.

Assumption (B). The Fleming--Viot particle system is well defined in the sense that \BbbP (J1 <
+\infty ) = 1, where J1 denotes the number of branchings until final time 1.

Under these assumptions, [6] implies the following (see Appendix C for details on how to
rigorously import the content of [6]).

Theorem 3.7. Under Assumptions (\~A) and (B), one has the following:
\bullet The Fleming--Viot particle system is well-posed in the sense that only one particle is
killed at each branching time.

\bullet L2-estimate: for any \varphi \in Cb(\{ \xi = 1\} ),

\BbbE 
\Bigl[ \bigl( 
\gamma N1 (\varphi ) - \gamma 1(\varphi )

\bigr) 2\Bigr] \leq 6 \| \varphi \| 2\infty 
N

.

\bullet Central limit theorem: for any \varphi \in Cb(\{ \xi = 1\} ),
\surd 
N
\bigl( 
\gamma N1 (\varphi ) - \gamma 1(\varphi )

\bigr) \scrD  -  -  -  - \rightarrow 
N\rightarrow \infty 

\scrN (0, \sigma 21(\varphi )),
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where

\sigma 21(\varphi ) = p2T\BbbV \eta 1(\varphi ) - p21 log(p1) \eta 1(\varphi )
2  - 2

\int 1

0
\BbbV \eta t(Q

1 - t(\varphi ))ptdpt.

Proposition 2.6, Theorem 2.7, and Corollary 2.8 are then consequences of the following
lemma.

Lemma 3.8. Assumptions 1 and 2 imply Assumption (\~A). With the addition of Assump-
tion 3, they also imply Assumption (B).

The proof of Lemma 3.8 is given in Appendix D. For now, let us just give some intuition
behind this result. First, assume for simplicity that \xi (X0) = 0 and that a jump of the level-
indexed process occurs, i.e., Xt - \not = Xt for a given t \in [0, 1]. Then, since by left continuity
Xt - = YSt - 

, this jump means that s \mapsto \rightarrow \xi (Ys) has a local maximum with value t. However,
under Assumption 2, this is prohibited since the Y -hitting times of levels > t and \geq t are
equal almost surely.

Second, the continuity of x \mapsto \rightarrow q(\varphi )(x) = \BbbE x [\varphi (YS1)1S1<SA
] is a consequence of the fact

that Y is Feller (Assumption 1) and that for Feller processes, hitting times of the interior or
the closure of, respectively, A and \{ \xi \geq 1\} are the same.

Finally, the fact that the algorithm has almost surely a finite number of branchings (non-
explosion) comes directly from the uniform lower bound of Assumption 3 through a comparison
with a geometric random sequence.

Appendix A. Preliminaries on Feller processes. In this appendix, we recall some standard
properties of continuous Feller processes. Most proofs are detailed in [6] in the case of c\`adl\`ag
processes.

Definition A.1. Let E be a locally compact Polish space. Let C0(E) denote the space of
continuous functions that vanish at infinity. A continuous process (Ys)s\geq 0 in E is Feller
if each of its probability transition maps C0(E) into itself: for all \varphi \in C0(E) and s \geq 0,
(y \mapsto \rightarrow \BbbE y[\varphi (Ys)]) \in C0(E).

Feller processes have the following useful standard properties: (i) The associated natural
filtration \scrF Y

s := \sigma (Ys\prime , 0 \leq s\prime \leq s) is right-continuous, and (ii) Y is strong Markov with
respect to \scrF Y .

We will need the following slightly less standard pathwise continuity of Feller processes.

Lemma A.2. Let C(\BbbR +, E) denote the space of continuous trajectories endowed with uni-
form convergence on compacts. Let (Y y

s )s\geq 0 \in C(\BbbR +, E) denote a given Feller process with
initial condition Y0 = y. Then the mapping y \mapsto \rightarrow \scrL ((Y y

s )s\geq 0) from E to probabilities on
C(\BbbR +, E), endowed with convergence in distribution, is continuous.

Proof. In [6, Lem. 4.3], the convergence is shown in the Skorokhod space instead of
C(\BbbR +, E) using Theorem 17.25 of [18]. The Skorokhod topology and the topology of uniform
convergence on compacts on C(\BbbR +, E) are known to be the same on continuous trajectories;
see Lemma 10.1 in Chapter 3 of [12] (see also Problem 7 in Chapter VI of [21]).

Hence we have the result.

We then recall some lower and upper semicontinuity of hitting times with respect to the
locally uniform topology.
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Lemma A.3. Let B \subset E be a Borel set. For each y \in C(\BbbR +, E), define s\r B(y) := inf\{ s \geq 
0, ys \in \r B\} as well as s \=B(y) := inf\{ s \geq 0, ys \in \=B\} . Then s\r B is upper semicontinuous in
C(\BbbR +, E) and s \=B is lower semicontinuous in C(\BbbR +, E): for any sequence (yn)n\geq 1 converging
to y \in C(\BbbR +, E),

lim sup
n

s\r B (yn) \leq s\r B (y) ,

s \=B (y) \leq lim inf
n

s \=B (yn) .

Proof. See Lemma 4.4 in [6].

We can then conclude with the general property used to prove the continuity of the integral
operator q defined in (2.9) (see Lemma D.3). We denote as before S \=B := inf\{ s \geq 0, Ys \in \=B\} 
as well as S\r B := inf\{ s \geq 0, Ys \in \r B\} .

Lemma A.4. Let B \subset E be a Borel set, let Y be a continuous Feller process, and let
limn y

n = y be a converging sequence of initial conditions. If

(A.1) \BbbP y

\bigl( 
S \=B = S\r B

\bigr) 
= 1,

then the distribution of SB under \BbbP yn converges when n\rightarrow +\infty towards its distribution under
\BbbP y. If, moreover, \BbbP y(SB < +\infty ) > 0, then the joint distribution of (SB, YSB

) in \BbbR + \times 
E under \BbbP yn ( | SB < +\infty ) converges when n \rightarrow +\infty towards the joint distribution under
\BbbP y ( | SB < +\infty ).

Proof. Using Lemma A.2 and a Skorokhod embedding argument, a sequence (Y n
s )s\geq 0 of

Feller processes with initial conditions (yn)n\geq 0 can be constructed on a single probability
space so that limn Y

n = Y in C(\BbbR +, E) almost surely, where Y denotes the Feller process
with initial condition y. Then Lemma A.3 with (A.1) implies that limn S

n
B = SB, and hence

the first result. The second result follows by continuity of Y .

In order to obtain a pathwise version of the main CLT of the present paper, we will need a
pathwise version of the latter continuity result. For this purpose, let us recall that the Polish
space C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E) of continuous paths with a possibly given end time (see Definition 2.12) is
equipped with a topology defined by the convergence of end times and of processes stopped
at the end time uniformly on any finite time intervals.

The following technical lemma about the continuity of the extension of paths will prove
useful.

Lemma A.5. The extension map

T : C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E)\times C(E,\BbbR +)  - \rightarrow C(E,\BbbR +),

y = ((ys\prime )0\leq s\prime \leq s, (\~yh)h\geq 0) \mapsto  - \rightarrow Ty =

\biggl\{ 
ys\prime , s\prime \leq s,
\~ys\prime  - s, s\prime \geq s

defined for paths satisfying ys = \~y0 is continuous.

Proof. Let d stand for the distance on E. Denote by (yn[0,sn]) a sequence of paths in

C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E) converging to y\infty [0,s\infty ] (for the topology given in Definition 2.12), and let (\~yn)
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be a sequence of paths in C(E,\BbbR +) converging to \~y\infty (uniformly on compact sets). We
assume that ynsn = \~yn0 for all n, and assume as well that y\infty s\infty = \~y\infty 0 . We have to prove the
convergence of the extended function sequence (Tyn) to Ty\infty . Note that for any s, one can
control d(Ty\infty s , T y

n
s ) by considering all cases as follows:

\bullet If s \leq s\infty \wedge sn,
d(Ty\infty s , Ty

n
s ) \leq d(y\infty s\wedge s\infty , y

n
s\wedge sn).

\bullet If s \geq s\infty \vee sn,

d(Ty\infty s , T y
n
s ) \leq d(\~y\infty s - s\infty , \~y

n
s - sn) \leq d(\~y\infty s - s\infty , \~y

\infty 
s - sn) + d(\~yns - sn , \~y

\infty 
s - sn).

\bullet If sn \leq s \leq s\infty ,

d(Ty\infty s , T y
n
s ) = d(y\infty s , \~y

n
s - sn)

\leq d(y\infty s , \~y
\infty 
s - sn) + d(\~yns - sn , \~y

\infty 
s - sn)

\leq d(y\infty s , y
\infty 
s\infty ) + d(\~y\infty 0 , \~y

\infty 
s - sn) + d(\~yns - sn , \~y

\infty 
s - sn).

\bullet If s\infty \leq s \leq sn,

d(Ty\infty s , Ty
n
s ) = d(\~y\infty s - s\infty , y

n
s ) \leq d(y\infty s\wedge s\infty , y

n
s\wedge sn) + d(\~y\infty s - s\infty , \~y

\infty 
0 ).

Let s0 \geq 0 be given. The convergence assumptions, together with the uniform continuity
of Ty\infty on compacts, imply that, when n goes to infinity, all the right-hand sides converge
uniformly to 0 with respect to s \in [0, s0]. Hence we have the result.

We can then safely prove the following pathwise continuity of stopped Feller processes.

Lemma A.6. Let limn y
n
[0,sn] = y[0,s] denote a converging sequence of initial path conditions

in C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E). Let B \subset E denote a Borel set, and let Y denote a continuous Feller process.
Assume that

\BbbP ys

\bigl( 
S \=B = S\r B

\bigr) 
= 1.

Then the distribution of (Y0\leq s\leq SB
) in C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, E) under \BbbP ( | Y[0,sn] = yn[0,sn]) converges

when n\rightarrow +\infty towards its distribution under \BbbP ( | Y[0,s] = y[0,s]).

Remark A.7. Recall that, by Definition 2.12, if SB = +\infty , then (Y0\leq s\leq SB
) is actually

(Y0\leq s<+\infty ).

Proof. It is an extension of the proof of Lemma A.4 using Lemma A.5. Indeed, the latter
and a Skorokhod embedding argument allow us to construct a sequence Y n converging almost
surely to Y in C(E,\BbbR +) such that (i) Y n

s\prime = yns\prime for s\prime \leq sn and Ys\prime = ys\prime for s\prime \leq s, and
(ii) all processes are distributed according to Y with initial conditions prescribed by (i). Then
Lemma A.3 with (A.1) implies that limn S

n
B = SB almost surely, and hence the result.

Appendix B. Proof of Assumptions 1, 2, and 3 for diffusions in \BbbR \bfitd . We can now
establish Lemma 2.3 by checking successively that Assumptions 1, 2, and 3 hold true under
the conditions (a), (b), and (c) stated in Lemma 2.3.

Step 1. Assumption 1 holds true.
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Indeed, condition (a) implies that the diffusion is a strong solution of the SDE (2.10) and
is Feller; see, for example, [12, Thm. 2.4, p. 373].

Step 2. Assumption 2 holds true.

By definition of the stopping times St, condition (2.6) of Assumption 2 will follow from

\BbbP y

\Bigl( 
lim
s\downarrow 0

s - 
1
2 (\xi (Ys) - \xi (y)) = +\infty 

\Bigr) 
= 1(B.1)

for any y \in \{ 0 \leq \xi \leq 1\} . On the other hand, recalling that A := \{ \xi \leq  - 1\} , condition (2.7) of
Assumption 2 follows similarly from the strong Markov property for Feller processes and from
the fact that, for any y \in \{ \xi =  - 1\} ,

\BbbP y

\Bigl( 
lim
s\downarrow 0

s - 
1
2 (\xi (Ys) - \xi (y)) =  - \infty 

\Bigr) 
= 1.(B.2)

We claim that both (B.1) and (B.2) hold true for any y \in \{  - 1 \leq \xi \leq 1\} , which will conclude
the proof of Step 2.

Since \xi is C2, It\^o's formula gives

d\xi (Ys) =
\Bigl( 
\nabla \xi (Ys)T b(Ys) + 1

2Tr(\nabla 
2\xi (Ys)a(Ys))

\Bigr) 
ds+\nabla \xi (Ys)T\sigma (Ys) dWs

so that if we denote by Us ds the finite variation part of this decomposition and set

\Sigma s =
\sqrt{} \bigl( 

(\nabla \xi )Ta\nabla \xi 
\bigr) 
(Ys) \geq 

\surd 
\delta > 0,

then for the one-dimensional Brownian motion d\widetilde Ws = \Sigma  - 1
s \nabla \xi (Ys)T\sigma (Ys) dWs, we obtain

d\xi (Ys) = Us ds+\Sigma s d\widetilde Ws.(B.3)

Since s \mapsto \rightarrow Us is continuous, it remains to prove that

\BbbP y

\Bigl( 
lim
s\downarrow 0

s - 
1
2

\int s

0
\Sigma r d\widetilde Wr =  - \infty 

\Bigr) 
= \BbbP y

\Bigl( 
lim
s\downarrow 0

s - 
1
2

\int s

0
\Sigma r d\widetilde Wr = +\infty 

\Bigr) 
= 1.(B.4)

For this, note that the process

s \mapsto \rightarrow B\int s
0 \Sigma 2

r \mathrm{d}r
:=

\int s

0
\Sigma r d\widetilde Wr(B.5)

is a time-changed Brownian motion B (see Chapter V, section 1 of [22]). The law of the
iterated logarithm for the Brownian motion (see Chapter II, section 1 of [22]) now implies
(B.4) since almost surely we have

lim
s\rightarrow 0

s - 
1
2

\int s

0
\Sigma r d\widetilde Wr = lim

s\rightarrow 0

\Bigl( 1
s

\int s

0
\Sigma 2
r dr

\Bigr) 1
2
\Bigl( \int s

0
\Sigma 2
r dr

\Bigr)  - 1
2
B\int s

0 \Sigma 2
r \mathrm{d}r

= \Sigma 0 lim
s\rightarrow 0

\Bigl( \int s

0
\Sigma 2
r dr

\Bigr)  - 1
2
B\int s

0 \Sigma 2
r \mathrm{d}r

= +\infty .

The same reasoning applies for the other limit in (B.4).
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Step 3. Assumption 3 holds true.

Consider the differential equation (B.3) above and recall that condition (a) on the coeffi-
cients implies that Us is bounded, while the positive lower bound in condition (c) implies that
\Sigma s > 0 is bounded from above and from below.

We then consider the continuous process s \mapsto \rightarrow Zs defined by Z0 = \xi (Y0) and

dZs :=  - \lambda 0\Sigma 2
s ds+\Sigma s d\widetilde Ws,

where \lambda 0 is such that
Us\Sigma 

 - 2
s \leq \lambda 0

almost surely and for all s \geq 0. By construction, (i) the process s \mapsto \rightarrow Zs  - \xi (Ys) is decreasing
and thus negative; and (ii) s \mapsto \rightarrow Zs is the time-changed Brownian motion (B.5) but drifted
with constant drift  - \lambda 0, that is, \widetilde Zl=

\int s
0 \Sigma 2

r
:= Zs

satisfies d \widetilde Zl =  - \lambda 0dl + dBl. We will denote by SZ
\pm 1 the first hitting time of \pm 1 by Z and

denote by L
\~Z
\pm 1 the first hitting time of \pm 1 of \~Z so that\int SZ

\pm 1

0
\Sigma 2
r dr = L

\~Z
\pm 1.

Consider also the stopping time \sigma defined by\int \sigma 

0
\Sigma 2
r dr = 1.

Notice that \sigma \leq 1/\delta almost surely. Now, let us first prove that

p0 := sup
y\in \{  - 1\leq \xi \leq 1\} 

\BbbP y (S1 = S - 1 = +\infty ) = 0.

Conditioning and applying the strong Markov property yields

\BbbP y (S1 = S - 1 = +\infty ) = \BbbE y

\bigl[ 
\BbbE y[1S1=S - 1=+\infty | \scrF Y

\sigma ]1S1\wedge S - 1>\sigma 

\bigr] 
= \BbbE y

\bigl[ 
\BbbE [1S1=S - 1=+\infty | Y\sigma ]1S1\wedge S - 1>\sigma 

\bigr] 
\leq p0\BbbP y (S1 \wedge S - 1 > \sigma ) \leq p0\BbbP y (S1 > \sigma ) .

Since \xi (Ys) \geq Zs, we have S1 \leq SZ
1 so that

\BbbP y(S1 > \sigma ) \leq \BbbP y(S
Z
1 > \sigma ) = \BbbP 

\Biggl( \int SZ
1

0
\Sigma 2
rdr >

\int \sigma 

0
\Sigma 2
rdr

\Biggr) 
= \BbbP y(L

\~Z
1 > 1).

Since \~Z starting from 0 is stochastically smaller than \~Z starting from \xi (y) \geq 0, it yields

\BbbP y(L
\~Z
1 > 1) \leq \BbbP (L \~Z

1 > 1| \~Z = 0) < 1 so that

p0 \leq p0 \times \BbbP (L \~Z
1 > 1| \~Z = 0),

which shows that p0 = 0.
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Finally, let us prove that

p1 := inf
y\in \{ \xi =0\} 

\BbbP y (S1 < S - 1) > 0.

Obviously, since Zs \leq \xi (Ys) and \xi (y) = 0,

\BbbP y(S1 < S - 1) \geq \BbbP y(S
Z
1 < SZ

 - 1) = \BbbP (L \~Z
1 < L

\~Z
 - 1| \~Z = 0) > 0,

with the last term being independent of the choice of y \in \{ \xi = 0\} .

Appendix C. Remarks on the main result of [6]. Let us now explain the connection
between Assumptions (\~A) and (B) and the set of assumptions in [6]. Theorem 3.7 of the present
paper corresponds exactly to Propositions 3.3 and 3.13 in [6], where they are established
under Assumption (B), also called Assumption (B) in [6], as well as a weaker variant of
Assumption (\~A), called Assumption (A\prime ) and recalled below.

Definition C.1. First, let us fix a measurable bounded function \varphi : F \rightarrow \BbbR , and denote for
each 1 \leq n \leq N and any t \in [0, 1],

\BbbL n
t := Q1 - t(\varphi )(Xn

t ) = q(\varphi )(Xn
t ),

where \varphi is omitted in order to lighten the notation. For any n \in \{ 1, . . . , N\} and any k \geq 0, we
denote by \tau n,k the kth branching time of particle n, with the convention \tau n,0 = 0. Moreover,
for any j \geq 0, we denote by \tau j the jth branching time of the whole system of particles, with
the convention \tau 0 = 0.

Remark C.2. The identity in the definition of \BbbL n
t comes from Lemma 3.4.

A key assumption imposed on the Fleming--Viot particle system in [6] is the following.

Assumption (A\prime ). We assume that the particle system is such that for the bounded test
function \varphi , t \mapsto \rightarrow \BbbL n

t is c\`adl\`ag for each 1 \leq n \leq N , and that
(i) only one particle is killed at each branching time: if n \not = m, then \tau n,k \not = \tau m,j almost

surely for any j, k \geq 1. In other words, the particle system is well defined;
(ii) the processes \BbbL n

t and \BbbL m
t do not jump at the same time: if n \not = m, then

\BbbP (\exists t \geq 0, \Delta \BbbL m
t \not = 0 \& \Delta \BbbL n

t \not = 0) = 0;

(iii) the process \BbbL n
t never jumps at a branching time of another particle: if n \not = m, then

\BbbP (\exists j \geq 0, \Delta \BbbL n
\tau m,j

\not = 0) = 0.

In order to obtain precisely Theorem 3.7, it remains to show that Assumption (\~A) implies
Assumption (A\prime ), that is,

( \~A) \Rightarrow (A\prime ).

In fact, this can be proven using exactly the same arguments as those used to prove
Lemma 3.1 in [6]. In the latter, it is shown that a slightly stronger but very similar assumption
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(denoted Assumption (A) and not specific to the AMS context) implies Assumption (A\prime ), that
is,

(A) \Rightarrow (A\prime ).

However, the proof of ( \~A) \Rightarrow (A\prime ) is very similar to that of (A) \Rightarrow (A\prime ), so we will not go into
more detail on this point. In summary, following the arguments of the proof of Lemma 3.1 in
[6], we can check the chain of implications

(A) \Rightarrow ( \~A) \Rightarrow (A\prime ).

Appendix D. Assumptions 1, 2, 3 imply (\~A) and (B).

Lemma D.1. Under Assumptions 1 and 2, for any y \in F = \{ 0 \leq \xi \leq 1\} and any t \in ]0, 1]
satisfying \xi (y) \leq t, one has \BbbP y(St = St - ) = 1, meaning that the jump times of t \mapsto \rightarrow St have
an atomless distribution.

Proof. Let us recall that

St := inf\{ s \geq 0, \xi (Ys) > t\} = inf\{ s \geq 0, \xi (Ys) = t\} 

is a stopping time with respect to the natural filtration of Y for all t \in [0, 1], and that
by continuity of (Y, \xi ), the process t \mapsto \rightarrow St is c\`adl\`ag. By construction, for t > 0, St - is
the supremum of the increasing sequence of stopping times (St - 1/k)k\geq 1, and thus is itself a
stopping time.

Y is Feller by Assumption 1, so in particular it is strong Markov: for the stopping time
St - , this gives

\BbbP y(St = St - ) = \BbbP y (St = St - = +\infty ) + \BbbE y

\Bigl[ 
1St - <+\infty \BbbP YS

t - 
(St = St - )

\Bigr] 
.

But (2.6) in Assumption 2 directly implies that \BbbP YS
t - 

(St = St - = 0) = 1 almost surely so

that \BbbP y(St = St - ) = 1.

Lemma D.2. Assumptions 1 and 2 imply Assumption (\~A)(i). In other words, for any
h \geq 0 and any initial condition X0 = x \in F , one has Xh = Xh - almost surely.

Proof. Consider the level th := 1 \wedge (\xi (x) + h). Then Xh = YSth
, where Y0 = x, with

the convention Y+\infty = \partial . Since h \mapsto \rightarrow th and s \mapsto \rightarrow Ys are almost surely continuous, the
result is then a consequence of the fact that Sth = St - h

, which is precisely the result of

Lemma D.1.

Lemma D.3. Assumptions 1 and 2 imply Assumption (\~A)(ii), that is, if \varphi : \{ \xi = 1\} \rightarrow \BbbR 
is continuous and bounded, then the integral operator

y \mapsto \rightarrow q(\varphi )(y) := \BbbE y [\varphi (YS1)1S1<SA
]

is continuous on the set \{ 0 \leq \xi \leq 1\} .
Proof. Consider Lemma A.4. Letting B := A \cup \{ \xi > 1\} , we may write

q(\varphi )(y) = \BbbE y

\Bigl[ 
\varphi (YSB

)1\xi (YSB
)\geq 11SB<\infty 

\Bigr] 
.

The result is now a direct consequence of Lemma A.4, because Assumption 2 guarantees that
S\{ \xi \geq 1\} = S\{ \xi >1\} and S \=A = S\r A. Since

\=B \subset \=A \cup \{ \xi \geq 1\} , we deduce that S \=B = S\r B.
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Lemma D.4. Assumption 3 implies Assumption (B), meaning that the number of branch-
ings on the time interval [0, 1] is almost surely finite.

Proof. Define

\varepsilon := inf
y: 0\leq \xi (y)\leq 1

\BbbP y (S1 < SA) > 0.

Denote by \scrJ n the total number of branchings of particle n during the algorithm and, as
before, denote by J1 =

\sum N
n=1 \scrJ n the total number of branchings. Clearly, we have that

\BbbP (\scrJ n \geq j) \leq (1 - \varepsilon )j , so

\BbbE [\scrJ n] =
\infty \sum 
j=1

\BbbP (\scrJ n \geq j) \leq 1/\varepsilon .

We conclude that \BbbE [J1] \leq N/\varepsilon < +\infty , as desired.

Appendix E. Removing the condition \bfitS \bfitA \wedge \bfitS \bfone < +\infty . The following property enables
us to deal with transient cases where the condition SA \wedge S1 < +\infty is not satisfied almost
surely, which means that the event St = SA = +\infty may happen with positive probability.

Lemma E.1. Under Assumptions 1, 2, and 3, then almost surely, either S1 < +\infty or
\xi (Ys) < 0 for s large enough, that is, sup \{ s \geq 0, \xi (Ys) \geq 0\} < +\infty .

Proof. Let y = Y0 \in \{ 0 \leq \xi \leq 1\} be any initial condition. By Assumption 3, we have

2\varepsilon := inf
y\in \{ \xi =0\} 

\BbbP y (S1 < SA) = inf
y\in \{ 0\leq \xi \leq 1\} 

\BbbP y (S1 < SA) > 0.

In particular, this implies that

sup
y\in \{ 0\leq \xi \leq 1\} 

\BbbP y(S1 = +\infty ) \leq 1 - 2\varepsilon .

For each y, a simple dominated convergence argument shows that we can construct a measur-
able function s : \{ 0 \leq \xi \leq 1\} \rightarrow \BbbN + such that

sup
y\in \{ 0\leq \xi \leq 1\} 

\BbbP y (S1 < s(y)) \leq 1 - \varepsilon .

Consider the increasing double sequence of stopping times

\sigma 10 := 0 < \sigma 11 \leq \sigma 20 < \sigma 21 \leq . . .

defined for each n \geq 1 by \Biggl\{ 
\sigma n0 = inf

\bigl\{ 
s \geq \sigma n - 1

1 , Ys \in \{ \xi \geq 0\} 
\bigr\} 
,

\sigma n1 = \sigma n0 + s(Y\sigma n
0
).

By construction, we have the implication

sup \{ s \geq 0, \xi (Ys) \geq 0\} = +\infty \Rightarrow sup
n
\sigma n0 < +\infty ,
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so it remains to prove that

\BbbP (\{ S1 = +\infty \} \cap \{ sup
n
\sigma n0 < +\infty \} ) = 0.

The strong Markov property and the definition of s(y) imply that

\BbbP (\{ S1 \geq \sigma n+1
0 \} \cap \{ \sigma n+1

0 < +\infty \} | Y\sigma n
0
, S1 \geq \sigma n0 , \sigma 

n
0 < +\infty )

\leq \BbbP (S1 \geq \sigma n1 | Y\sigma n
0
, S1 \geq \sigma n0 , \sigma 

n
0 < +\infty ) \leq 1 - \varepsilon .

Iterating the conditioning yields

\BbbP (\{ S1 \geq \sigma n+1
0 \} \cap \{ \sigma n+1

0 < +\infty \} ) \leq (1 - \varepsilon )n+1

so that by \sigma -additivity,

\BbbP (\{ S1 \geq lim
n
\sigma n0 \} \cap \{ sup

n
\sigma n0 < +\infty \} ) = 0.

The result follows since limn \sigma 
n
0 = +\infty .

Appendix F. A variant of Assumption 3. The following variant of Assumption 3 may be
useful in practice.

Assumption 3\prime . There exists t0 \leq 0 such that A \subset \{ \xi < t0\} , the level set \{ \xi = t0\} is
compact, and

\forall y \in \{ \xi = t0\} , \BbbP y(S1 < S \=A) > 0.(F.1)

Indeed, one has the following implication of assumptions.

Lemma F.1. If Assumptions 1, 2, and 3\prime are satisfied, then so is Assumption 3.

Proof. First, suppose that Assumptions 1 and 2 are satisfied. We claim that the mapping

y \mapsto \rightarrow \BbbP y(S1 < S \=A)

is lower semicontinuous on \{ 0 \leq \xi \leq t0\} , in the sense that if yn \rightarrow y, then

\BbbP y(S1 < S \=A) \leq lim inf
n

\BbbP yn(S1 < S \=A).

Note that Lemma D.3 already implies that this mapping is continuous on \{ 0 \leq \xi \leq 1\} .
The proof of the claim is similar to that of Lemma A.4. Indeed, using Lemma A.2 and a

Skorokhod embedding argument, a sequence (Y n
s )s\geq 0 of Feller processes with initial conditions

(yn)n\geq 0 can be constructed on a single probability space so that limn Y
n = Y in C(\BbbR +, E)

almost surely, where Y denotes the Feller process with initial condition y. Then Lemma A.3
with (A.1) implies that limn S

n
1 = S1 as well as lim infn S

n
\=A
\geq S \=A. But obviously,

\{ S1 < S \=A\} \subset 
\Bigl\{ 
S1 < lim inf

n
Sn

\=A

\Bigr\} 
\subset 
\bigcup 
N

\bigcap 
n\geq N

\bigl\{ 
Sn
1 < Sn

\=A

\bigr\} 
so that \BbbP (S1 < S \=A) \leq lim infn \BbbP 

\bigl( 
Sn
1 < Sn

\=A

\bigr) 
, and hence the claim.
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Next, suppose that Assumptions 1, 2, and 3\prime hold true. For any initial condition y \in 
\{ 0 \leq \xi \leq 1\} , denote \sigma 0 := inf\{ s \geq 0, \xi (Ys) = t0\} . By the strong Markov property for Feller
processes, we may write

\BbbP y(S1 < S \=A) = \BbbE y

\bigl[ 
1\sigma 0<S1\BbbP Y\sigma 0

(S1 < S \=A)
\bigr] 
+ \BbbP y (S1 < S \=A, S1 \leq \sigma 0)

\geq \BbbP y(\sigma 0 < S1) inf
z\in \{ \xi =t0\} 

\BbbP z(S1 < S \=A) + (1 - \BbbP y(\sigma 0 < S1))

\geq inf
z\in \{ \xi =t0\} 

\BbbP z(S1 < S \=A).

Because a lower semicontinuous function on a compact reaches its infimum, and using As-
sumption 3\prime , we get that the latter infimum is > 0, and hence Assumption 3.

Appendix G. Proof of Theorem 2.13. Theorem 2.13 is a pathwise extension of Theo-
rem 2.7 and is stated under the same set of assumptions, namely Assumptions 1, 2, and 3.
The proof follows along the same lines as the latter. The main difference consists of the defi-
nition of the level-indexed process and its state space, which is augmented in order to include
pathwise information.

Once the appropriate definition of the level-indexed objects is set up, the interpretation
of the AMS algorithm as a Fleming--Viot particle system is strictly identical to the specific
case described in section 3. From there, it is then sufficient to check Assumptions (\~A) and (B)
once again, thanks to Assumptions 1, 2, and 3, but in a more general pathwise context.

First, we define the extended level-indexed process as well as its state space. To do so,
Definition 3.1 is generalized as follows. The extended state space F \cup \{ \partial \} is now defined by

F :=
\bigl\{ 
y[0,s] \in C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, \{ 0 \leq \xi \leq 1\} )
such that s < +\infty , \xi (y0) = 0, and \forall s\prime \in [0, s) , \xi (ys\prime ) < \xi (ys)

\bigr\} 
,(G.1)

which is the set of trajectories where the maximum value of \xi is reached only at the endpoint.
This specific choice of the state space F is adapted to the following construction of the level-
indexed process. With an initial condition \scrX 0 := y[0,s] \in F being given, we define the level-
indexed process as

\scrX h :=

\Biggl\{ 
Y[0,S(\xi (ys)+h)\wedge 1] ifS(\xi (ys)+h)\wedge 1 < SA,

\partial ifS(\xi (ys)+h)\wedge 1 \geq SA.

In the above, we have taken as initial condition Y[0,s] = y[0,s] in order to define the underlying
Feller process Y . Note that in the simpler, usual case, where the initial condition is \scrX 0 = y0 \in 
\{ \xi = 0\} , we have

\scrX t =

\Biggl\{ 
Y[0,St] ifSt < SA,

\partial ifSt \geq SA.

As before, this rather complicated definition of \scrX is required in order to interpret it as a time
homogeneous Markov process.

Lemma G.1. The set F defined by (G.1) is a Borel subset of the Polish space
C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p} (\BbbR +, \{ 0 \leq \xi \leq 1\} ). (\scrX h)h\geq 0 is a c\`adl\`ag process taking values in F \cup \partial , which is time
homogeneous Markov with respect to its natural filtration.
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Proof. First, F can be constructed using the countable intersection of open subsets of the
form \bigl\{ 

y[0,s] \in C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p} (\BbbR +, \{ 0 \leq \xi \leq 1\} ) , \xi (ys\prime ) < \xi (ys) \forall s\prime \leq 0 \vee (s - 1/q)
\bigr\} 
,

where q \in \BbbN  \star . As a consequence, F is a Borel subset.
Second, as in section 3, the time homogeneous Markov property is a direct consequence

of the strong Markov property of Y .

We now wish to check Assumptions (\~A) and (B) in order to prove pathwise CLT Theo-
rem 2.13.

Lemma G.2. Under Assumptions 1, 2, and 3, Assumptions (\~A) and (B) hold true for the
pathwise level-indexed process \scrX .

Proof. The fact that Assumption (B) follows from Assumption 3 has already been estab-
lished in Lemma D.4.

Assumption (\~A)(i) in the pathwise case is similar to the proof of Lemma D.2, which follows
from Lemma D.1, namely the fact that St - = St almost surely. Let us give some details. Let
\scrX 0 = y[0,s0] be a given initial condition with initial level t0 = \xi (ys0). The topology of the
space C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, \{ 0 \leq \xi \leq 1\} ) implies that the mapping s \mapsto \rightarrow y[0,s] \in F which spans the same
trajectory with different end times is continuous at s = s1 if s \mapsto \rightarrow ys is. As a consequence, as
in Lemma D.2, since Y is a continuous trajectory, and t \mapsto \rightarrow St is a c\`adl\`ag increasing process,
\scrX is also c\`adl\`ag and has a jump at h only if S(t0+h)\wedge 1 has one. The proof then follows from
Lemma D.1.

The only new technical point is to check Assumption (\~A)(ii), that is, the continuity of

y[0,s] \mapsto \rightarrow \BbbE 
\bigl[ 
\psi (Y[0,S1])1S1<SA

| Y[0,s] = y[0,s]
\bigr] 
,

where y[0,s] \in F , and \psi is continuous and bounded on C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p} (\BbbR +, \{ 0 \leq \xi \leq 1\} ). This is a
pathwise version of Lemma D.3 and, in fact, is a consequence of the pathwise continuity
property stated in Lemma A.6 which follows from Assumption 2. Indeed, the latter states that
if limn y

n
[0,sn] = y[0,s] is a converging sequence of initial conditions in F , and \~\psi is a continuous

functional on C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p}(\BbbR +, \{ 0 \leq \xi \leq 1\} ), then \BbbE [ \~\psi (Y[0,S1\wedge SA])| Y[0,s] = yn[0,sn]] is converging to the

corresponding limit. It remains to note that Assumption (\~A)(ii) is precisely this continuity
property for the functional\Biggl\{ 

\~\psi (y[0,s]) = \psi (y[0,s]) if \xi (ys) = 1,
\~\psi (y[0,s]) = 0 if ys \in \=A,

which is indeed continuous under the C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{p} topology.
Note that we have assumed that S1 \wedge SA < +\infty according to Assumption 3. Otherwise,

\~\psi must be extended by 0, with the continuity of the extension following from Lemma E.1.
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