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Abstract Parametric motion models are commonly used

in image sequence analysis for different tasks. A robust

estimation framework is usually required to reliably

compute the motion model over the estimation support

in presence of outliers, while the choice of the right

motion model is also important to properly perform

the task. However, dealing with model selection within

a robust estimation setting remains an open question.

We define two original propositions for robust motion

model selection. The first one is an extension of the

Takeuchi information criterion (TIC). The second one

is built from the Fisher statistic. We also derive an in-

terpretation of the latter as a robust Mallows’ CP cri-

terion. Both robust motion model selection criteria are

straightforward to compute. We have conducted a com-

parative objective evaluation on computer-generated im-
age sequences with ground truth, along with experi-

ments on real videos, for the parametric estimation of

the 2D dominant motion in an image due to the cam-

era motion. They demonstrate the interest and the effi-

ciency of the proposed robust model selection methods.
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1 Introduction

Resorting to 2D parametric models is a common prac-

tice in motion estimation, motion segmentation, im-

age registration, and more generally in dynamic scene

analysis. Video stabilization [24], video summarization

[9], image stitching [38], motion detection [43], motion

layer segmentation [8], optical flow computation [5,10,

45], tracking [37,46], action recognition and localization

[16], crowd motion analysis [28], to name a few, all may

rely on 2D polynomial motion estimation. A key issue

then arises: how to choose the right motion model when

adopting a robust estimation setting?

This problem is most often circumvented by set-

tling for empirical choice. The affine motion model is

for instance claimed as a good trade-off between ef-
ficiency and representativeness without any available

information on the dynamic scene. However, a princi-

pled method is more powerful and satisfying to properly

solve the motion model selection problem [11,13,41]

The most known statistical criteria for model se-

lection are without doubt Akaike information criterion

(AIC) [2], Bayesian information criterion (BIC) [36],

or Takeuchi information criterion (TIC) [7]. Broadly

speaking, it starts from the maximum likelihood, and

amounts to add to the model fit, a weighted penalty

term on the model complexity or dimension, e.g., given

by the number of the model parameters. The definition

of the weight depends on the statistical information cri-

terion. The likelihood term accounts for a Gaussian dis-

tribution of the residuals involved in the regression is-

sue. A comparative study of several of them is reported

in [42] for classification in pattern recognition. Let us

add the Mallows’ CP criterion [22] and the Minimum

Description Length criterion (MDL) [30] respectively

equivalent to AIC and BIC under certain hypotheses.
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2 Patrick Bouthemy et al.

Finally, let us mention the Akaike criterion with a cor-

rection for finite sample sizes (AICc) [7].

However, outliers are usually present whatever the

motion estimation support, the entire frame or a more

local one. It may be due to local independent motions,

occlusions, or any local violation of the assumptions as-

sociated with motion computation. Robust estimation

[14,15] is then required in many situations [5,25,27,

37] to cope with the presence of outliers. Indeed, least-

square estimation finds oneself biased in these cases. As

a consequence, the aforementioned information criteria

involving a quadratic (i.e., Gaussian) likelihood term

are no more exploitable as they stand. Model selection

must be revisited in the context of the robust estima-

tion setting.

So far, combining model selection and robust esti-

mation for parametric motion computation has rarely

been investigated [41]. In this paper, we propose two

different statistical criteria for robust motion model se-

lection. The first one is an extension of the Takeuchi

information criterion (TIC). The second one tackles

this problem from a different perspective based on the

Fisher statistic. An interpretation as a robust version

of the Mallows’ CP criterion [22] is also provided.

We need a use case to validate the proposed meth-

ods in real situations. We want to handle a single-model

fitting task, so that we can focus on the robust model

selection problem. We take the task of estimating the

global (or dominant) motion in the image due to the

camera motion for a shallow scene, which is of primary

interest for many applications, e.g., video stabilization

or action recognition. In that context, the dominant

motion in the image can be represented by a 2D para-
metric motion model. Indeed, this task is merely an

estimation problem in presence of outliers constituted

by the independently moving objects in the scene. It is

not interwoven with other involved issues as in motion

detection, motion segmentation or object tracking. On

the other hand, the multiple-model fitting issue inves-

tigated in [21,39,40] is a different problem. The goal is

to fit multiple instances of a given type of model over

(unknown) subsets of data. These works do not address

the selection of the motion model type.

We described a preliminary version of this work in

the short conference paper [6]. The present paper is a

significant extension of the latter. We have added sev-

eral contributions: a new criterion -the robust TIC-, im-

provements of the Fisher-based criterion, an augmented

related-work section, a revisited objective comparative

evaluation, more experiments on real videos.

The remainder of the paper is organized as follows.

Section 2 is devoted to related work and positioning of

our approach. In Section 3, we recall a classical robust

estimation method of 2D motion models, and formu-

late the model fit. Section 4 describes our first robust

motion model selection method called Robust Takeuchi

Information Criterion (RTIC). In Section 5, we present

our second original method for robust motion model se-

lection, called Fisher-based robust information criterion

(FRIC). Objective comparisons on computer-generated

examples with ground-truth are reported in Section 6,

along with experiments on real videos, to assess the

performance of our two criteria. Concluding remarks

are given in Section 7.

2 Related work and positioning

2.1 Review of related research

Statistical information criteria have been exploited in

computer vision for years [13], sometimes with spe-

cific formulations and characteristics. Geometric coun-

terparts of AIC and MDL, respectively termed GAIC

and GMDL, were proposed in [18] to take into account

a different formulation of model fitting along with the

dimension of the manifold involved in a 3D geometric

transformation. AIC and BIC were tested in [11] for

2D affine motion model classification, but they were

experimentally proven less efficient than a succession of

hypothesis tests deciding in turn on the non-zero pa-

rameters of the affine motion model. Indeed, AIC tends

to overestimate the complexity of the underlying model.

In [44], the most appropriate model among 2D polyno-

mial motion models for motion estimation from normal

flows, was selected with a penalization factor given by
the Vapnik’s measure; the resulting algorithm was fa-

vorably compared to AIC, BIC and generalized cross-

validation. In [35], a MDL-based criterion was designed

for model selection in 3D multi-body structure-and-

motion from images. A MDL principle is also adopted in

[23] for non rigid image registration. On the other hand,

the small-sample-size corrected version of Akaike infor-

mation criterion (AICc) was used in [4] for a pixel-wise

motion model selection with a view to crowd motion

analysis in video sequences.

Robust model selection on its own was explored in

the robust statistics literature along several directions

[1,19,26,29,31,34]. In [31], a robust extension of AIC

(RAIC), was defined, coming up with substituting a

general robust estimator ρ of the model parameters θ

for the maximum likelihood estimator. M-estimators

are incorporated in BIC and the asymptotic perfor-

mance is studied in [20]. A special case is the use of the

Huber robust function [15], leading to the RBIC crite-

rion. The Mallows’ CP criterion is revisited in [32] to
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Robust model selection in 2D parametric motion estimation 3

yield a robust version. The generalized information cri-

terion (GIC), described in [19], can be applied to evalu-

ate statistical models constructed by other procedures

than maximum likelihood, such as robust estimation or

maximum penalized likelihood.

In contrast, to the best of our knowledge, very few

similar investigations have been undertaken regarding

motion analysis in image sequences. In [3], the authors

designed a global energy function for both the robust

estimation of mixture models and the validation of a

MDL criterion. The overall goal is to get a layering rep-

resentation of the moving content of an image sequence.

The MDL encoding acts on the overall cost of the rep-

resentation comprising the number of layers, residuals

and motion parameters. However, the primary purpose

was parsimonious motion segmentation, and not mo-

tion model selection on its own. In [41], a robust exten-

sion of the Geometric Information Criterion (GIC) [17],

termed GRIC, is proposed in the vein of RAIC. It was

applied to the selection of the 3D geometric transforma-

tion attached to a rigid motion and estimated through

the matching of image interest points. Geometrical and

physical constraints are also explored in [12] for image

motion segmentation, with the so-called surface selec-

tion criterion (SSC) primarily designed by the authors

for range data segmentation. Better performance is re-

ported than with several information criteria, but the

use of SSC here is comparable to a regularization ap-

proach.

2.2 Our approach

Yet, in computer vision and in particular in dynamic

scene analysis, for instance when estimating the global

image motion, the concern is not only to select the best

model, but also to get the largest possible inlier set.

Selecting a simple global motion model that only fits

the apparent motion of a too limited part of the static

scene is not appropriate. The size of the inlier set must

be properly taken into account in the robust model se-

lection criterion.

The problem of robust motion model selection is

then three-fold: i) maximizing the motion model fit

to the data, ii) penalizing the motion model complex-

ity, iii) accounting for the largest possible set of inlier

points in the estimation support. Indeed, the two lat-

ter ones must be simultaneously satisfied, which might

be contradictory. By definition, this is an issue specific

to robust model selection. It apparently did not draw

interest in the robust statistics literature, while it is of

key importance in motion analysis. In this paper, we

introduce two robust motion model selection methods

in that perspective. In addition, the second method fol-

lows a novel approach based on Fisher statistic.

To make the robust motion model selection problem

concrete, we will deal with the dominant image motion

estimation issue. The dominant (or global) image mo-

tion is usually due to the camera motion, and then cor-

responds to the background motion, i.e., the apparent

motion of the static scene in the image sequence. Com-

puting the dominant motion has many important ap-

plications such as video stabilization, background sub-

traction in case of a free moving camera, action recogni-

tion, image stitching, and image registration in general.

Of course, the proposed framework could be applied to

other issues as well, for instance to select the right mo-

tion model in each image region for motion layer seg-

mentation.

3 Robust motion model estimation

First, we briefly recall the main principles of the robust

estimation of parametric motion models. The estima-

tion process relies on the brightness constancy assump-

tion, and is embedded in a coarse-to-fine scheme to han-

dle large displacements. We will present it in the frame

of the motion model computation over the whole image

domain Ω, but it can be straightforwardly adapted to

the computation of the motion model over a given area

in the image. Then, we will define the motion model fit

for the estimated motion model parameters. Finally, we

will describe the set of 2D parametric motion models

that will be considered, appertaining to the category of

polynomial models.

3.1 Computation of motion model parameters

We consider a set of 2D polynomial motion models.

They will be precisely defined in Section 3.3 and Table

1. Let θm denote the parameters of model m, that is,

the polynomial coefficients for the two components of

the velocity vector. Parameters of the full model will be

denoted by θM , if we have M models to test. wθm(p) is

the velocity vector supplied by the motion model m at

point p = (x, y) of the image domain Ω.

We exploit the usual brightness constancy assump-

tion [10] to estimate the parameters of the motion model.

It leads to the linear regression equation relating the

motion model parameters, through the velocity vector,

and the space-time derivatives of the image intensity I:

∇I(p).wθm(p) + It(p) = 0. (1)
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4 Patrick Bouthemy et al.

Motion model Dimension Mathematical expression
Translation (T) 2 wθ = (a1, a4)T

Pan-tilt (PT) 2 wθ(p) = (a1 + a1x2 + a4xy, a4 + a1xy + a4y2)T

Translation + Rotation (TR) 3 wθ(p) = (a1 + a3y, a4 − a3x)T

Translation + Scale (TS) 3 wθ(p) = (a1 + a2x, a4 + a2y)T

Translation + Rotation + Scale (TRS) 4 wθ(p) = (a1 + a2x + a3y, a4 − a3x + a2y)T

Full affine (FA) 6 wθ(p) = (a1 + a2x + a3y, a4 + a5x + a6y)T

Planar surface 8 wθ(p) = (a1 + a2x + a3y + a7x2 + a8xy,
rigid motion (PSRM) a4 + a5x + a6y + a7xy + a8y2)T

Full quadratic (FQ) 12 wθ(p) = (a1 + a2x + a3y + a7x2 + a8xy + a9y2,
a4 + a5x + a6y + a10x2 + a11xy + a12y2)T

Table 1 Set of 2D polynomial motion models

Let us denote rθm(p) the left member of (1). The ro-

bust estimation of the motion model parameters can be

defined by:

θ̂m = arg min
θm

∑
p∈Ω

ρ(rθm(p)), (2)

where ρ denotes any robust penalty function. To quote a

few examples of penalty function among M-estimators,

the Lorentzian function is used in [5], whereas the Ham-

pel estimator is preferred in [37], and the Tukey’s func-

tion is adopted in [27].

Equation (1) is in fact the linearization of the more

general constraint I(p + wθm(p)) − I(p, t) = 0. As a

consequence, it only holds for small displacements. A

usual way to overcome this problem, is to resort to a

coarse-to-fine scheme based on image multi-resolution

and incremental motion estimation [10]. The minimiza-

tion of (2) is achieved by an iterative algorithm, the It-

erated Reweighting Least Squares (IRLS) method [14].

The IRLS method iteratively updates weights at every

point p ∈ Ω. The weights express the influence of each

point p in the estimation of the motion model param-

eters. These weights can be further exploited to deter-

mine the inlier set associated with the estimated motion

model m.

3.2 Motion model fit

Once we compute an estimate θ̂m of the motion model

parameters, we get the residuals rθ̂m(p), for all p ∈ Ω,

measuring the discrepancy between the input data and

the estimated motion model. To evaluate how the esti-

mated motion model fits the input data over the associ-

ated inlier set, we consider the residual sum of squares

(RSS) obtained for the robustly estimated parameters

θ̂m of the motion model m, given by:

RSSm =
∑
p∈Im

r2
θ̂m

(p), (3)

where Im represents the set of inliers associated with

the estimated motion model m. The way the inlier set

is computed will be further explained in Section 5.1.

The residual is formally defined by:

rθ̂m(p) = I(p+ wθ̂m
(p), t+ 1)− I(p, t), (4)

knowing that the left member of (1) is a linearized ver-

sion of (4) as aforementioned.

We compute RSSm on the inlier set Im and not on

the overall domain Ω, to obtain the model fit evaluation

precisely on the subset of points whose motion conforms

to the estimated motion model.

Furthermore, we introduce the expression RSS+
m,

which represents the residual sum of squares computed

over the inlier set Im attached to model m, but for the

full model M :

RSS+
m =

∑
p∈Im

r2
θ̂M

(p). (5)

As recall in Section 3.1, the minimization in (2) is

solved by applying the Iteratively Reweighted Least

Squares algorithm within a coarse-to-fine framework.

At convergence, the final weights αm(p), p ∈ Ω, are

given by:

αm(p) =
ψ(rθ̂m(p))

rθ̂m(p)
, (6)

where the influence function ψ(.) is the derivative of

the robust function ρ(.), ψ(r) = dρ(r)
dr . In practice, we

adopt the robust estimation method defined in [27], and

we use the publicly available Motion2D1 software im-

plementing this method.

3.3 Set of parametric motion models

We are dealing with 2D polynomial motion models rang-

ing from translation (polynomial of degree 0) to quadratic

models (polynomials of degree 2), including different

affine models (polynomials of degree 1). They are form-

ing a set of models which is partly nested. The model

1 http://www.irisa.fr/vista/Motion2D/
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Robust model selection in 2D parametric motion estimation 5

complexity ranges from dimension 2 to dimension 12.

The full set of motion models is given in Table 1 with

their main features. The explicit equivalence, when avail-

able, between the 2D polynomial models and physical

motions assumes a perspective projection for the image

formation.

Let us mention that the constant part of the affine

motion model does not necessarily mean that the under-

lying physical motion has actually a translation com-

ponent. Indeed, the constant part is merely the veloc-

ity vector given by the motion model at the origin of

the image coordinate system. The in-plane rotation is

not necessarily centered at the origin. The same holds

for the focus of expansion in case of scaling motion,

knowing that the scaling motion in the image is due

to a translation of the camera along its axis of view.

The 8-parameter quadratic motion model corresponds

precisely to a rigid motion between a planar surface

and the camera. The 2-parameter quadratic model also

trully accounts for a pan-tilt camera motion. The most

complex model FQ is considered as the full model M .

4 Robust motion model selection with RTIC

An intuitive approach for defining a robust motion model

selection framework is to draw from classical statisti-

cal information criteria. However, instead of starting

from AIC or BIC, we consider the Takeuchi informa-

tion criterion (TIC) which is a more general derivation

of Akaike’s information criterion [7].

4.1 TIC criterion

TIC can be written as follows:

TIC(m) = 2K(θ̂m) + 2 tr(P (θm)Q(θm)−1), (7)

where K denotes the contrast function. Equivalently,

it could be referred to as the negated logarithm of the

likelihood, or the pseudo-likelihood function. ”tr” is the

trace of the matrix. The two mxm matrices P (θm) and

Q(θm) respectively involve first and second mixed par-

tial derivatives of the likelihood function w.r.t. model

parameters. In the regression case, the two matrices P

and Q are defined by:

P (θm) = E[
∂

∂θi
g(rθ(p))

∂

∂θj
g(rθ(p))

T ]|θ=θ̂m

Q(θm) = E[
∂2

∂θi∂θj
g(rθ(p))]|θ=θ̂m , (8)

where {θi, i = 1,m} and {θj , j = 1,m} denote com-

ponents of the parameter vector θm, function g(.) is

defined by K(θm) =
∑
p g(rθm(p)), rθm(p) acts as the

regression residual, and E denotes expectation.

4.2 Robust TIC

In the context of robust estimation, the g function is

now specified as a robust penalty function ρ(.), which

was introduced in eq.(2). We come up with the follow-

ing expression of the Takeuchi information criterion,

which we will call Robust Takeuchi Information Crite-

rion (RTIC) to make it short:

RTIC(m) = 2
∑
p∈Ω

ρ(rθ̂m(p)) + 2qm
E[ψ(rθ(p))

2]

E[ψ′(rθ(p))] |θ=θ̂m
,

(9)

where qm is the dimension (i.e., number of parameters)

of model m, ψ(.) is the influence function as defined in

subsection 3.2, and ψ′ its derivative.

We develop two versions of RTIC for the Talwar

and Huber penalty functions. The Talwar function is

defined by:

ρtal(r) =

{
r2/2 if |r| ≤ α
α2/2 if |r| > α

(10)

Knowing that the inlier set Im corresponds to points p

such that |rθm(p)| ≤ α, we estimate the expectation as:

E[ψ(rθ(p))
2] ' 1

|Ω|
∑
p∈Ω

ψ(rθ(p))
2 =

1

|Ω|
∑
p∈Im

r2θ(p),

and E[ψ′(rθ(p))] '
|Im|
|Ω|

, (11)

where |.| denotes the cardinality of the set. We get the

following expression of RTIC for the Talwar penalty

function:

RTICtal(m) = 2
∑
p∈Ω

ρ(rθ̂m(p))+
2qm
|Im|

∑
p∈Im

r2
θ̂m

(p). (12)

We make the same development for the Huber function

defined as follows:

ρhub(r) =

{
1
2r

2 if |r| ≤ α
α(|r| − 1

2α) if |r| > α,
(13)

and the RTIC expression turns out to write for the Hu-

ber function:

RTIChub(m) = 2
∑
p∈Ω

ρ(rθ̂m(p))+
2qm
|Im|

(
∑
p∈Im

r2
θ̂m

(p)

+
∑

p∈Ω\Im

α2). (14)

The selected model m̃ is the one minimizing RTICtal(m)

(respectively RTIChub(m)) among the tested models.

The parameters θ̂m are obtained from (2) with the Tal-

war (resp. Huber) ρ-penalty function. In contrast to

RAIC and RBIC, the size |Im| of the inlier set explic-

itly intervenes in the second term of the expression of

the two RTIC variants (12) and (14). Minimizing RTIC

implies to maximize the size of the inlier set.
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6 Patrick Bouthemy et al.

5 Robust motion model selection with FRIC

On the other hand, we have investigated a very dif-

ferent approach than those proposed so far for robust

model selection. As in [11], we adopt now a two-class

hypothesis test approach. This is first motivated by the

fact that we are dealing with a non nested set of para-

metric motion models. For instance, both the rotation

and the scaling models involve three parameters as de-

scribed in Section 3.3, but they account for quite dif-

ferent motions. Moreover, we aim to select the model

m which explains the motion of the maximum number

of points in the estimation support, that is, with the

largest possible inlier set. Let us stress that taking the

as less complex as possible motion model, while maxi-

mizing the size of the inlier set, may be contradictory

in most tasks of dynamic scene analysis. Then, it is

benficial to explicitly tackle this issue from the off.

5.1 Fisher statistic

First, we want to compare any model m of the set of

tested models to the full model M . To this end, we re-

sort to the Fisher statistic [33], which can be formulated

in our case as:

F(m) =
(RSSm − RSS+

m)/(qM − qm)

RSS+
m/(|Im| − qM )

, (15)

where again |.| designates the set cardinality, qm rep-

resents the number of parameters of model m. Both

RSSm and RSS+
m are evaluated on the inlier set Im

attached to the tested model m. To really deal with

Fisher statistic, both model parameters, θm and θM ,

must be estimated on the same set too. Therefore, we

re-estimate θm and θM over Im in a least-square set-

ting, before evaluating F(m). By the way, it also im-

proves the estimated parameters of model m, and con-

sequently, the model fit.

To make expression (15) an actual Fisher statistic,

we must also check that |Im| can be considered as a

deterministic variable. An image point p belongs to the

inlier set if its attached weight at the end of the IRLS

procedure, is greater than a given threshold. We can

at least empirically assess the absence of randomness,

by providing histograms of weights computed for the

estimation of the motion parameters in the IRLS pro-

cedure, as explained in subsection 3.1. Examples are

supplied in Fig.1 for the use of the Tukey function in

the motion model parameter estimation. Similar behav-

ior was observed in many experiments. The plots show

that the weight histograms are clearly bimodal, with

one mode close to 0 and the second one close to 1, af-

ter normalization of the weights. Then, the inlier set

Im is easy to get, and this step does not introduce any

randomness. In addition, there is quite a large range

to fix the threshold value. In practice, we will take 0.5

as the threshold value. Then, it does not impact the

number of inliers, which means that the cardinality of

the inlier set is as legitimate as the fit residual and the

model complexity in the definition of the robust model

selection criterion. The configuration is even simpler in

the case of the Talwarand Tuckey functions, since the

weights are null for outliers and strictly positive for in-

lier points.

Fig. 1 Examples of histograms of weights supplied by the
IRLS procedure in the robust estimation of the image domi-
nant motion model for two different experiments.

The denominator of expression (15) can be inter-

preted as a non-biased empirical estimate of the full

model variance computed on Im. It will be denoted by:

σ̂2
M (Im) =

RSS+
m

|Im| − qM
. (16)

The statistic F(m) allows us to decide whether model

m is a more significant representation of the unknown

true motion than the full model M over Im which is

the validity domain of model m in Ω. However, it will

supply all the models m of that type. We need to take

into account the dimension qm of model m to further

select the right one.

5.2 Fisher-based robust information criterion (FRIC)

Starting from (15), and penalizing the complexity of

the model expressed by the number qm of model pa-

rameters, we define the Fisher-based robust information

criterion:

FRIC1(m) = F(m)(qM − qm) + 2qm. (17)

Under the assumption of validity of model m, F(m)

follows a Fisher distribution F (qM − qm, |Im| − qM ).

Then, the first term of the right member of (17) (ap-

proximately) follows a χ2 distribution with qM − qm
degrees of freedom.
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Robust model selection in 2D parametric motion estimation 7

We can now write the test for selecting the best mo-

tion model m̃ in this robust model selection framework:

m̃ = arg min
m

FRIC1(m). (18)

The theoretical behavior of this test can be qualita-

tively described as follows. FRIC1(m) is supposed to

decrease when evaluating in turn the first successive

models in decreasing (or equivalently increasing) com-

plexity order up to the optimal model m∗, and then to

increase for the subsequent models. This is confirmed

by Fig.2 which contains plots of FRIC1(m) values for

several experiments.

Fig. 2 Plots of FRIC1(m) values corresponding to the set of
tested motion models for several experiments. Tested motion
models are those listed in Table 1, and ordered according to
the number of parameters. The true model is FA.

We design a second version of the Fisher-based ro-

bust model selection criterion, by incorporating the num-

ber of inliers in the model complexity penalization as

in the BIC criterion, that is:

FRIC2(m) = F(m)(qM − qm) + 2 log(|Im|)qm. (19)

5.3 Interpretation of FRIC as robust Cp

We now provide another interpretation of the Fisher-

based robust information criterion (FRIC) defined in

(17). Let us first make σ̂2
M (Im) appear in the expression

of FRIC1(m) as follows:

FRIC1(m) =
(RSSm − RSS+

m)

σ̂2
M (Im)

+ 2qm, (20)

By exploiting (3) and (16), it can be further developed

into:

FRIC1(m) =
1

σ̂2
M (Im)

∑
p∈Im

r2
θ̂m

(p)− |Im|+ qM + 2qm.

(21)

If we neglect qM which is a constant term for the test

(18), expression (21) can be viewed as the Mallows’

CP criterion [22], computed over the inlier set attached

to model m with |Im| as the number of observations.

Then, our test (18) could also be interpreted as a robust

version of the Mallows’ CP criterion.

Let us point out that (21) explicitly involves the

aforementioned trade-off between maximizing the size

|Im| of the inlier set and minimizing the complexity

(i.e., the number qm of parameters) of the selected mo-

tion model. In contrast, for existing robust model selec-

tion criteria such as RAIC or RBIC which write

RAIC =
∑
p∈Ω

ρ(rθ̂m(p)) + qm, (22)

and

RBIC =
∑
p∈Ω

ρ(rθ̂m(p)) + log |Ω| qm, (23)

the model selection is only implicitly influenced by the

size of the inlier set attached to model m through the

values of the robust function ρ(.) at the outlier points.

Hence, the impact depends on the asymptotic behavior

of the robust function. The same holds for [32] where in

addition the penalty term requires additional expensive

computation to be evaluated.

6 Experimental results

As pointed out in the introduction, we take the compu-

tation of the dominant image motion to experimentally

validate our robust motion selection methods. Indeed,

it is the right task for this goal. In contrast to motion

segmentation for instance, it is a pure estimation prob-

lem. Furthermore, it must tackle the presence of outliers

consisting in independently moving objects in the scene,

since the dominant motion in the image is (most gen-

erally) induced by the camera movement. Thus, it is a

robust estimation problem. Finally, choosing the right

2D motion model to properly approximate the domi-

nant image motion is an issue, since the camera motion

and the scene depth are most often unknown. In ad-

dition, it is a typical and very frequently needed task

in dynamic scene analysis. However, there is no avail-

able benchmark for this purpose, and inferring ground

truth on real videos may be not that easy. Since we

focus on the model selection issue, we will report selec-

tion results only. The accuracy of the estimated motion

model is conveyed by the model fit term of the criterion,

and it is not a concern on its own for this work.
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8 Patrick Bouthemy et al.

Dominant motion model a1, a4 a2, a3, a5, a6 a7, a8

T1 [-10,10] - -
T2 [-10,-1]∪[1,10] - -
FA1 [-10,10] [-0.001,0.001] -
FA2 [-10,-1]∪[1,10] [-0.1,-0.001]∪[0.001,0.1] -

PSRM1 [-5,5] [-0.01,0.01] [-0.001,0.001]
PSRM2 [-10,-1]∪[1,10] [-1e10−4,-1e10−2]∪[-1e10−4,-1e10−2] [-1e10−5,-1e10−4]∪[1e10−5,1e10−4]

Table 2 Range of parameter values for the different motion models.

6.1 Statistical objective evaluation

To quantitatively assess the performance of the model

selection criteria, we carried out a comparative objec-

tive evaluation on a synthetic dataset. We generated a

series of image pairs by applying a velocity field to a

real image, as demonstrated in Fig.3. The velocity field

involves two parametric subfields chosen from the list

given in Table 1. The first parametric motion subfield is

the dominant motion, and the outliers, forming a rect-

angular region in the middle of the image, undergo the

second one.

Three groups of 3000 synthetic image pairs were

generated, each group formed by different dominant

and secondary motions. The first group involves a trans-

lation (T) motion model as dominant motion model and

a full affine (FA) as secondary motion. The second set

has a FA model as dominant motion and a planar sur-

face rigid motion (PSRM) as secondary motion model.

The last group has a PSRM model as the dominant

one and a T model as the secondary one. Each group is

divided in two sub-groups of 1500 image pairs each de-

pending on the range used for the values of the parame-

ters of the dominant motion, as summarized in Table 2.
For each motion model used to create the image pairs,

the value of its parameters is randomly selected in the

interval given in Table 2.

Fig. 3 From left to right: the input image, the outlier subset
(in black) in the middle of the image, typical velocity field
applied to the input image formed by a dominant motion and
a secondary one.

We proceed to the selection of the dominant mo-

tion model in each experiment for each tested criterion.

Rates of correct selection are summarized in Fig.4. For

a fair comparison, we decided to use the same penalty

function in all the experiments, for estimating the dom-

inant parametric motion model, and for computing the

four compared robust motion model selection criteria.

For implementation issues, we took the Talwar penalty

function, also available in the Motion2D software. Scores

are given in percentage of the total number of the im-

ages in each experiment.

Overall, the proposed criteria FRIC1, FRIC2 and

RTIC outperform the existing one RBIC. Regarding

FRIC2, the rate of successful motion model selection is

rather stable at a high level, ranging from a minimum

of 74.4% of frames to a maximum of 83.4%. FRIC1 also

provides good results, but it has a lowest success rate

with a minimum of 61.2% and a maximum of 82.1%. In

general, RBIC has a close but lower success rate than

the three new criteria, and even reaches down to a very

low rate at 38.6% for the FA2 experiment. RTIC has

the lowest success rate in the T2 experiment by a small

margin, while being the best performing criterion for all

the other experiments.. Especially, when the complexity

of the dominant motion models increases, RTIC yields

the best results, even scoring over a 94% success rate

in a couple of experiments.

Tables 3 and 4 detail the scores obtained with FRIC2

and RTIC respectively, the two best criteria, for all the

tested models and for the six subsets of experiments.

Wrong selections are spread, but mostly concern more

complex models than the true one.

Fig. 4 Rates of correct classification for each group of exper-
iments obtained with the four model selection criteria (given
in percentage of the total number of examples in each exper-
iment).
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Robust model selection in 2D parametric motion estimation 9

True dominant motion models
Tested models T T FA FA PSRM PSRM

T 76.9 76.4 0.1 1.5 0.1 0.1
TR 9.3 7.7 0.7 0.6 0.1 0.2
TS 1.4 11.8 0.3 1.1 0.1 0.1

TRS 0.1 0.6 2.1 0.2 0.3 0.2
FA 0.4 0.3 80.5 83.4 0.2 2.1
PT 2.1 0.7 0.1 3.9 0.9 2.4

PSRM 1.3 0.4 7.3 6.9 74.4 74.7
FQ 8.5 2.1 8.9 2.4 23.9 20.2

Table 3 Scores obtained with criterion FRIC2 for all the tested models and for the six experiments, in percentage of the total
number of examples in each experiment.

True dominant motion models
Tested models T T FA FA PSRM PSRM

T 80.3 60.7 0 0 0 0
TR 11 15.9 0 0 0 0.1
TS 4 17.2 0 0 0 0

TRS 0.4 3.2 0.2 0 0 0
FA 0.6 0.5 95 87.3 0 0.2
PT 3.4 1 0 0.4 0 0

PSRM 0 0.7 1.1 9.1 87.5 94.4
FQ 0.3 0.8 3.7 3.2 12.5 5.3

Table 4 Scores obtained with criterion RTIC for all the tested models and for the six experiments, in percentage of the total
number of examples in each experiment.

6.2 Results on real image sequences

To evaluate the performance of the proposed criteria

on real cases, we carried out experiments on two sets of

video sequences. The first one contains videos acquired

with a robot setup in our lab, the second set gathers

videos collected on the web.

Fig. 5 Robotic setup for the acquisition of video sequences.
The camera is mounted at the robot end effector. The scene
background is a planar surface formed by a poster. The out-
lier object is a square flat object translating along an axis put
on the poster.

For the real experiments, we keep a subset of five

motion models of Table 1: {T, TR, TS, PSRM,FQ}.
FA was removed since it does not precisely correspond

to any given camera motion. Clearly, inferring the ground-

truth motion models in real sequences is harder. As a

consequence, we limited the set of motion models to

models representative of real physical camera motion.

In addition, FQ still serves as the full model. PT is re-

moved since it involves the same two parameters as T,

and the perceived motion is quite similar for the two

respective camera motions.

The first set of real image sequences were acquired

with a camera mounted on a Cartesian coordinate robot

available in our lab. The setup enables to apply a given

motion type to the robot. Ideally, the motion applied

to the robot, and then to the camera, induces the dom-

inant motion of the image sequence. Since we estimate

one single motion model to account for the dominant

image motion, we need to assume a planar scene so that

the ground-truth motion model can be inferred unam-

biguously for the dominant image motion. Otherwise,

in case of a non shallow scene, we would need multiple

motion models and a segmentation framework to fit a

motion model to each part of the scene, since depth and

surface orientation impact on the resulting image mo-

tion. However, this is beyond the scope of this work. For

these lab video sequences, a poster depicting an aerial

view of a city constitutes the scene background. In addi-

tion, we introduce an independent motion in the scene

using an additional single axis robot bearing a flat ob-

ject and moving in the field of view of the camera. The

complete setup is drawn on Fig.5. A sample of acquired
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10 Patrick Bouthemy et al.

images is given in Fig.6 showing that the outlier mov-

ing region may occupy a substantial part of the image

(on the left of the image).

We report two experiments. In the first experiment,

a rotation around the view axis is applied to the robot

to produce an image sequence of 146 frames as illus-

trated in Fig.6. Since the rotation axis does not pass

by the optical center, the expected dominant motion

model is the combination of a translation and a in-plane

rotation (TR).

Fig. 6 First and last frames of the first robot sequence, and
the dominant flow between frames 0 and 1 computed with TR
model.

Table 5 contains the model selection results pro-

vided by our criteria FRIC1, FRIC2 and RTIC, along

with RBIC. FRIC2 and RTIC select the true motion

model (TR) with a good percentage rate of 64.8% and

76% respectively. Let us observe that the motion mod-

els without rotation (T and TS) are never selected,

demonstrating that the key component of the dominant

motion is consistently well identified. FRIC1 selection

is more balanced between TR and the full model FQ.

RBIC selects the full model in almost the whole se-

quence. For this experiment, RTIC is the best criterion

by a large margin.

T TR TS PSRM FQ
FRIC1 0 46.4 0 7.8 45.8
FRIC2 0 64.8 0 6.7 28.5
RTIC 0 76 0 0.5 23.5
RBIC 0.6 0 0 3.9 95.5

Table 5 Selected motion models over the sequence of Fig.6
for the four compared criteria (in percentage of the total
number of frames).

For the second experiment using the robotic setup,

a translation is applied along one axis of the Cartesian

robot and parallel to the camera optical axis, produc-

ing a divergent motion in the image. However, the focus

of expansion is not at the center of the image plane.

Then, the expected dominant motion model is TS. A

sequence of 170 frames was acquired. Results are col-

lected in Table 6. This experiment illustrates that the

problem is not that simple and the criteria may partly

fail. The three proposed criteria mostly select PSRM

as dominant motion model. RTIC and FRIC1 select TS

in third place, while FRIC2 selects TS (the assumed

true dominant motion model) in second place. Mean-

while, RBIC still selects the full model. However, the

expected true model (TS) may possibly be question-

able, since the actual robot motion may slightly de-

part from the specified command. Yet, PSRM is also

a relevant choice since the surface is planar and the

robot motion is rigid. Then, if we add the scores for TS

and PSRM, we get a cumulated score of 71.2%, 77.6%

and 58.2%, for FRIC1, FRIC2, and RTIC respectively,

whereas RBIC stagnates at a score of 7.6%. For this

experiment, FRIC2 is the best criterion by a large mar-

gin.

T TR TS PSRM FQ
FRIC1 0 0 23.5 47.7 28.8
FRIC2 0 0 28.2 49.4 22.4
RTIC 0 0.6 15.3 42.9 41.2
RBIC 0 0 4.1 3.5 92.4

Table 6 Motion models selected by the compared criteria
over the second robot sequence (in percentage of the total
number of frames).

We now report results on three video sequences taken

from the net. The first one depicts a field scene ac-

quired from an airborne camera. The sequence contains

84 frames and the scene is almost planar. The outlier

moving object is the reaping machine with the dust

cloud behind it (Fig.7). It is difficult to infer the pre-

cise ground truth from the video alone, we do not know

the camera orientation with respect to the ground and

its exact motion. However, it can be assumed that the

PRSM model should be the most relevant one. Since

in previous experiments, FRIC2 systematically outper-

forms FRIC1, we only include FRIC2 in the next ex-

periments.

Table 7 shows that both proposed criteria FRIC2

and RTIC first select PSRM as the dominant motion of

the sequence. However, FRIC2 achieves a greater cor-

rect classification rate of 73.8% of the image pairs, than

RTIC which obtains a rate of 54.8%. In contrast, RBIC
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Robust model selection in 2D parametric motion estimation 11

Fig. 7 First and last frames of the field scene sequence, and
the dominant flow between frames 0 and 1 computed with
PSRM model.

selects the full model as dominant motion, with PSRM

in second place.

T TR TS PSRM FQ
FRIC2 9.5 0 3.6 73.8 13.1
RTIC 0 0 2.4 54.8 42.8
RBIC 0 1.2 13.1 34.5 51.2

Table 7 Selected motion models over the field sequence of
Fig.7 for the three compared criteria.

The second real video consists of a sequence of 54

frames (Fig.8). Visually, the camera moves away from

the scene, which leads to consider TS as the true dom-

inant motion model. As in the previous sequence, the

scene is almost planar and the vehicles present in it

constitute the outliers to the dominant motion.

We report in Table 8 the selection scores of the com-

Fig. 8 First and last frames of the roundabout sequence and
the dominant motion between the first and second images
computed with TS model.

pared criteria for the five tested motion models in the

sequence of Fig.8. The right motion model TS is cor-

rectly selected by FRIC2, but not by RTIC nor RBIC,

both selecting the FQ model.

T TR TS PSRM FQ
FRIC2 16.6 0 72.2 5.6 5.6
RTIC 0 5.6 0 16.6 77.8
RBIC 0 0 0 16.7 83.3

Table 8 Motion models selected by the three compared cri-
teria over the roundabout sequence of Fig.8.

The last real video example involves a sequence where

a partly planar scene is recorded from an aerial camera

(Fig.9). A passing train introduces outliers to the domi-

nant motion, The camera motion is apparently parallel

to the ground with a slight rotation. We can assume

that the TR motion model is the true one.

Fig. 9 First and last frames of the train sequence and the
dominant motion between the first and second frames com-
puted with TR model.

We can observe in Table 9 that FRIC2 selects TR as

dominant motion, both with a rate of 45.9%. They also

select T and TS in almost half of the sequence, which

are still reasonable choices. RTIC and RBIC incorrectly

select the full model for most of the sequence.

For these three real image videos, FRIC2 is the one

which consistently supplies good results. Let us add

that the RAIC criterion will not give better results than

RBIC which is almost always stuck on the full model

FQ when dealing with real image sequences. Indeed,

the RAIC penalty of the model dimension (eq.(22) is

far lower than the one of RBIC (eq. (23).

7 Conclusion

We have proposed two new robust motion model se-

lection criteria. The first one is a robust version of the
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12 Patrick Bouthemy et al.

T TR TS PSRM FQ
FRIC2 25 45.9 20.8 8.3 0
RTIC 0 0 0 4.2 95.8
RBIC 0 8.3 8.3 0 83.4

Table 9 Motion models selected by the three compared cri-
teria over the train sequence of Fig.9.

Takeuchi information criterion called RTIC. The second

one departs from the usual approach by starting from

the Fisher statistic. We designed two variants of the

latter, FRIC1 and FRIC2. All three are easy to com-

pute. The three criteria explicitly tackle the trade-off

between the size of the inlier set (to be maximized) and

the complexity of the motion model (to be minimized).

In addition, FRIC1 can be viewed as a proposition for a

robust Mallows’ CP criterion. Experiments on synthetic

and real image sequences, along with comparison with

RBIC, demonstrate that our criteria achieve superior

performance. RTIC supplied the best performance on

the synthetic dataset, whereas FRIC2 performed the

best on the tested real videos. This demonstrates that

the two proposed robust motion selection criteria, RTIC

and FRIC, are complementary and bring valuable con-

tributions.
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