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Abstract
Many records in environmental sciences exhibit asymmet-
ric trajectories. The physical mechanisms behind these
records may lead for example to sample paths with different
characteristics at high and low levels (up–down asymme-
tries) or in the ascending and descending phases leading
to time irreversibility (front–back asymmetries). Such fea-
tures are important for many applications, and there is a
need for simple and tractable models that can reproduce
them. In this paper, we explore original time-change mod-
els where the clock is a stochastic process that depends
on the observed trajectory. The ergodicity of the proposed
model is established under general conditions, and this
result is used to develop nonparametric estimation proce-
dures based on the joint distribution of the process and its
derivative. The methodology is illustrated on meteorologi-
cal and oceanographic data sets. We show that, combined
with a marginal transformation, the proposed methodology
is able to reproduce important characteristics of the data set
such as marginal distributions, up-crossing intensity, and
up–down and front–back asymmetries.
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1 INTRODUCTION

Many situations in environmental science or in econometrics lead to study asymmetric records.
For example, the propagation of ocean waves in shallow water leads to waves with sharper
crests compared to the troughs (referred to as up–down asymmetries hereafter) and steeper fronts
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FIGURE 1 Sequence of sea-surface elevation in shallow water (see Section 4 for a description of the data)

compared to the backs ( front–back asymmetries). This leads to modeling records such as the one
shown in Figure 1 where the two asymmetries can easily be seen.

Gaussian processes fail to represent such asymmetric features. A very classical alternative in
time series analysis, sometimes referred to as the transformed Gaussian (TG) model, consists in
applying a marginal transformation to a Gaussian process where the marginal transformation is
generally chosen to match non-Gaussian margins (see, e.g., Grigoriu, 1998). TG processes can
reproduce some constrained form of up–down asymmetries but no front–back asymmetries. In
this paper, we propose to add a time change in the static TG framework. It allows to stretch sym-
metric Gaussian sequences both vertically and horizontally and gives flexibility in the modeling
of up–down asymmetries and front–back asymmetries.

A multivariate time-changed process Z = (Zt)t⩾0 is defined as

Zt = Y𝜑(t), (1)

where {𝜑(t)}t⩾0 denotes a nondecreasing stochastic process referred to as the time change or clock
hereafter and Y denotes a multivariate process referred to as the base process. Hereafter, we assume
that only the time-changed process Z is observable, and we aim at finding a time change, which
is such that the nonobservable (or latent) process Y is a multivariate stationary Gaussian process.
An originality of the dependent time-change model considered in this paper consists in assuming
that the time change 𝜑 is a stochastic process that depends on the base process Y as follows:

𝜑(t) = ∫
t

0
𝑓 (Y𝜑(s))ds, (2)

where f is a positive function that describes the speed of the clock. It is referred to as the
time-change function hereafter. In Section 2, an ergodicity result is given for this general model.
Note that Y is a multivariate process, and thus, the speed of the clock may depend on several
covariates.

For example, in order to generate asymmetric trajectories from a univariate Gaussian process
Y with symmetric sample path, we can let the time change depend on Y = (Y , Ẏ ), where Ẏ denotes
the derivative of Y and consider the processes Z defined as

Zt = Y𝜑(t). (3)
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FIGURE 2 Sequences simulated with the time-change model (3), (4). (Top) Gaussian sequence
(𝑓1(𝑦) ≡ 𝑓2(�̇�) ≡ 1). (Second row) sequence with up–down asymmetries ( f1(y) = 2s(y), 𝑓2(�̇�) ≡ 1 with
s(𝑦) = exp(𝑦)

1+exp(𝑦)
). (Third row) sequence with front–back asymmetries ( f1(y) ≡ 1, 𝑓2(�̇�) = 2s(�̇�)). (Bottom) sequence

with up–down and front–back asymmetries ( f1(y) = 2s(y), 𝑓2(�̇�) = s(�̇�)). The background color corresponds to
the value of 𝑓1(Y𝜑(t))𝑓2(Ẏ𝜑(t)) (speed of the clock)

In the sequel, we focus on the special case on separable time-change functions f, which can
be written as the product of two functions f1 and f2 such that

𝜑(t) = ∫
t

0
𝑓1

(
Y𝜑(s)

)
𝑓2

(
Ẏ𝜑(s)

)
ds. (4)

Figure 2 shows that it is possible to generate asymmetries with the model (3), (4). The top panel
corresponds to the case where f1 ≡ f2 ≡ 1, thus to the case where Zt = Yt is a Gaussian sequence
with symmetric path. The second row of panels corresponds to the case where f1 is an increasing
function and 𝑓2(�̇�) ≡ 1. In this case, the clock accelerates with the level of the base process leading
to a time-changed process Z with narrower crest compared to the ones of Y and, thus, up–down
asymmetries. The opposite behavior will be observed if f1 is a decreasing function. In the third
case, we assume that f2 is an increasing function and f1( y) ≡ 1; thus, the clock accelerates with the
derivatives of the process. It leads to front–back asymmetries with steeper wave fronts compared
to the backs. In the bottom plot, we assume that f1 and f2 are increasing functions; thus, the clock
also accelerates with the derivatives of the process, and this leads to both up–down and front–back
asymmetries.
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In this paper, we propose to combine marginal transformation and time change and consider
the model where the observed X satisfies

h(Xt) = Zt,

where Z is the time-changed process defined by (3, 4) and the marginal link function h is assumed
to be one to one. This paper mainly aims at investigating some theoretical properties of this
model and proposing methods to fit it on real data, more precisely, to estimate h, f1, f2 from the
observation of a trajectory of (Xt)0⩽ t⩽T.

Let us shortly discuss how this model compares to previous works. Models with time change
have become popular for financial applications because they were introduced in Clark (1973);
see also, for example, Veraart and Winkel (2010) for a recent review. In this application field,
the modified time 𝜑(t) is generally interpreted as a “business time”: periods with higher market
activity corresponds to periods when the markets move at a higher speed and higher volatility.
In these financial applications, Y and 𝜑 are generally assumed to be independent Levy processes,
whereas in the model considered in this paper, they are strongly dependent of each other.

Deformations have also been extensively used for modeling nonstationary fields in environ-
mental applications since the seminal paper of Sampson and Guttorp (1992). It generally consists
in seeking a transformation 𝜑 to map a stationary field Y into a nonstationary field Z through
(1). These methods can deal with multidimensional (e.g., spatial) fields, but the estimation of 𝜑
generally require replicates of the random field as input to fit the model. More recently, meth-
ods that can deal with a unique realization of a densely observed field have been proposed (see
Anderes & Stein, 2008, and the references therein). Note that, in this application field, 𝜑 is gen-
erally assumed to be deterministic, whereas in the present paper, it is a stochastic process and we
add the additional constraint that Y is not only stationary but also Gaussian.

Another related technique is dynamic time warping where the transformation 𝜑 is chosen
to “align” the processes Y and Z by minimizing some criteria (see, e.g., Wang & Gasser, 1997).
When using dynamic time warping methods, both Y and Z are observed, whereas hereafter, Y is
not directly observable and the transformation 𝜑 is estimated such that it transforms the observed
sequence Z into a Gaussian sequence Y.

The paper is organized as follows. The ergodicity of the general model (1, 2) is discussed in
Section 2.1. This is the key result that is used in the following sections to fit time-change models.
Then, in Section 2.2, the joint density of the time-changed process (Zt, Żt) is derived (as a function
of f1 and f2). Section 3 is dedicated to the estimation of the marginal transformation function h
and time-change functions f1 and f2. In Section 4, the model is applied to real data. We show that
dynamic time-change and static marginal transformations can be combined in order to repro-
duce asymmetries, which are observed in atmospheric pressure time series and shallow water
wave records. Conclusions are given in Section 5. Theoretical results and proofs are given in the
Appendix.

2 TIME- CHANGE MODEL

2.1 Ergodicity of the dependent time-change model
In this section, we discuss the ergodicity of general time-changed process Z defined by (1, 2). This
is important because it shows that statistical properties of the model can be derived from a single
long-enough realization as soon as the marginal distribution of the base process Y is known.
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It is useful to consider the multivariate setting for the next sections and bold letters are used to
stress that Y and Z have values onRd. In order to ensure that the model is well defined, we assume
that (Yt)t⩾0 has continuous sample paths and that f (.) is a measurable real-valued positive func-
tion defined on Rd. Let g be a measurable real-valued function defined on Rd and let us discuss
the convergence of the time average estimate defined as 1

H
∫ H

0 g(Zs)ds when H tends to infinity.
Using the model definition and a change of variables, we obtain

1
H ∫

H

0
g(Zs)ds = 𝜑(H)

H
1

𝜑(H) ∫
𝜑(H)

0

g(Ys)
𝑓 (Ys)

ds. (5)

In order to show the convergence of the quantities that appear in the left-hand side of (5),
we further assume that Y is a stationary ergodic process. This implies the convergence almost
everywhere (a.e.) of time averages to a deterministic value, which is its expected value and in
particular that

lim
H→∞

1
H ∫

H

0

1
𝑓 (Ys)

ds = q0 a.e.,

provided that q0 = E[ 1
𝑓 (Y0)

] < +∞.

Now, remark that the function 𝜓 defined as 𝜓(t) = ∫ t
0

1
𝑓 (Ys)

ds, which appears in the previous

expression, is the reciprocal function of 𝜑. We have limH→∞
𝜓(H)

H
= q0 a.e., and thus,

lim
H→∞

𝜑(H)
H

= q−1
0 a.e.

This shows the convergence of the first term, which appears in the right-hand term of (5). For
the convergence of the second term, we further assume that E[ |g(Y0)|

𝑓 (Y0)
] < ∞. Using again that Y is

ergodic and that limH→∞𝜑(H) = +∞ a.e., we obtain that

lim
H→∞

1
𝜑(H) ∫

𝜑(H)

0

g(Ys)
𝑓 (Ys)

ds = E
[
g(Y0)
𝑓 (Y0)

]
a.e.

Finally, we have shown that

lim
H→∞

1
H ∫

H

0
g(Zs)ds = q−1

0 E
[
g(Y0)
𝑓 (Y0)

]
a.e. (6)

This is the key result for the rest of this paper. It shows that empirical means computed on a
realization of the time-changed process Z converge, when the length of the realization tends
to infinity, to a limit that depends on the marginal distribution of the base process Y and the
time-change function f in a simple way.

A more formal and general statement of this result is given in Theorem 1, which shows that
the process Z is stationary and ergodic under a measure equivalent to E. This formalism is not
necessary to understand the rest of this paper and is given in the Appendix, together with some
comments on the theoretical properties of the model.
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2.2 Transformed time-changed process
In the remainder of this paper, we focus on the particular models that are defined below.

Definition 1. A transformed time-changed Gaussian (TTCG) process X is defined as

h(Xt) = Zt, Zt = Y𝜑(t), 𝜑(t) = ∫
t

0
𝑓1(Y𝜑(s))𝑓2(Ẏ𝜑(s))ds (7)

with h a continuously differentiable increasing function, Y a continuously differentiable
ergodic stationary Gaussian process such that E[Yt] = 0 and var(Yt) = var(Ẏt) = 1, and f1 and
f2 positive continuous real-valued functions defined on R such that q0 = E[ 1

𝑓1(Y0)𝑓2(Ẏ0)
] < +∞.

When h(x) = x (no marginal transformation), the process X = Z is referred to as the
time-changed Gaussian (TCG) process.

Note first that only the product f1 f2 appears in the model definition, and thus, f1 and f2 are
defined up to a multiplicative constant. A constraint is thus needed to ensure identifiability.
Hereafter, we assume, without loss of generality, that

∫
+∞

−∞

exp(−u2∕2)
𝑓2(u)

du = 1√
2𝜋

. (8)

It implies that q0 = 1√
2𝜋

∫ +∞
−∞

exp(−u2∕2)
𝑓1(u)

du, which is useful to simplify various expressions in
the sequel.

Note that scaling h, f1, and f2 permits to assume, without restriction, that E[Yt] = 0, var(Yt) =
1 and var(Ẏt) = 1 (see the discussion in Appendix A.3).

In the TTCG model, starting from a Gaussian process Y with symmetric trajectories, we
combine both a vertical stretching (associated to the marginal transformation h) and horizon-
tal stretching (associated to the time change) to describe asymmetric trajectories. As illustrated
in Figure 2, f1 describes the effect of the level of the process on the time change and is thus
related to up–down asymmetries, whereas f2 models the effect of the slope on the time-change
and front–back asymmetries. We expect that an increasing f1 (respectively f2) function will lead
to a process Z with crests narrower than the troughs (respectively ascending phases steeper than
descending phases). The time-change function 𝑓 (𝑦, �̇�) = 𝑓1(𝑦)𝑓2(�̇�) has a product form, and thus,
there is no interaction between the effect of the level and the derivative (separable model). Some
results given in this paper are also valid in the more general case where f is not separable. However,
the separability assumption leads to a more tractable expression for the joint stationary probability
density function (pdf) and simplifies the statistical inference.

The TCG model of Definition 1 is a particular case of the general time-changed model (1)–(2)
with Yt = (Yt, Ẏt), and the results given in Section 2.1 apply. The conditions on the base process
Y and the time-change function f ensure that the process Z is well defined and continuously dif-
ferentiable. The following proposition gives the joint stationary pdf of (Zt, Żt) for the TCG model.
It is one of the key results used to build nonparametric estimates for f1 and f2 in Section 3.

Proposition 1. Let Z be a TCG process with a separable time-change function. Assume further
that f1 and f2 are continuously differentiable positive functions and that the function �̇� → �̇�𝑓2(�̇�)
is a bijection fromR toR and denote by k its inverse function. Then, for any bounded measurable
function g ∶ R2 → R,

lim
H→∞

1
H ∫

H

0
g(Zs, Żs)ds = ∫∫

R2
g(z, ż)pZ,Ż(z, ż)dzdż a.e.
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with joint stationary pdf

pZ,Ż(z, ż) = 1
q0

k̇
(

ż
𝑓1(z)

)
𝑓1(z)2𝑓2

(
k
(

ż
𝑓1(z)

))pY ,Ẏ

(
z, k

(
ż

𝑓1(z)

))
, (9)

where k̇ denotes the derivative of k and pY ,Ẏ denotes the joint pdf of (Yt, Ẏt).
The proof of this proposition is given in the Appendix. It is based on the application of

Equation (6) with Yt = (Yt, Ẏt) and Zt = (Y𝜑(t), Ẏ𝜑(t)) (note that Zt ≠ (Zt, Żt)).
Proposition 1 is not restricted to the case where the base process Y is Gaussian (see the

discussion in Section 3.5). If we assume that Y is a Gaussian process, then Yt and Ẏt are inde-
pendent Gaussian variables and we obtain the following expression for the joint stationary pdf
of (Zt, Żt):

pZ,Ż(z, ż) = 1
2𝜋q0

k̇
(

ż
𝑓1(z)

)
𝑓1(z)2𝑓2

(
k
(

ż
𝑓1(z)

)) exp
⎛⎜⎜⎜⎝−

z2 + k
(

ż
𝑓1(z)

)2

2

⎞⎟⎟⎟⎠ . (10)

It is then possible to deduce the stationary marginal pdf of Z and the conditional pdf Żt given
Zt = z, which are given respectively by

pZ(z) =
1√

2𝜋q0

exp
(
− z2

2

)
𝑓1(z)

(11)

pŻ|Z=z(ż) =
1√
2𝜋

k̇
(

ż
𝑓1(z)

)
k
(

ż
𝑓1(z)

)
ż

exp
⎛⎜⎜⎜⎝−

k
(

ż
𝑓1(z)

)2

2

⎞⎟⎟⎟⎠ . (12)

These expressions are used in the next section to build nonparametric estimates of the functions
f1 and f2. Remark in particular that the marginal distribution of Z only depends on f1 and that
if f1(y) ≡ 1, such as on the third example of Figure 2; then, the marginal distribution of Z is
Gaussian.

3 NONPARAMETRIC ESTIMATION

In this section, we first discuss the estimation of the marginal transformation h using
up-crossings. Then, we discuss the estimation of the time-change functions f1 and f2 using the
results obtained in the previous section. Finally, we show that the TTCG model has enough flexi-
bility to describe important characteristics of observed trajectories related to the joint distribution
of the process and its derivative in Section 3.5.

3.1 Marginal transformation function h
A classical way to “Gaussianize” a non-Gaussian sequence consists in applying a marginal
transformation and consider a TG process X defined as

h(Xt) = Yt, (13)

where Y is a stationary Gaussian process and h is an increasing real-valued function. It is a
particular case of the TTCG model with f1 ≡ f2 ≡ 1.
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Different parametric models, such as the power Box–Cox transformation and the Tuckey
transformation (see Yan & Genton, 2017, and the references therein), have been proposed for
the transformation h. In this work, we focus on nonparametric approaches. In this setting, h
is generally chosen such that the transformed process Y has a Gaussian marginal distribution
and is estimated using the probability integral transform and the empirical distribution function
(see, e.g., Grigoriu, 1998).

Here, we propose an alternative approach that takes advantage of the properties of
the up-crossing intensity as in Rychlik, Johannesson, and Leadbetter (1997) and Azaïs and
Wschebor (2009) and has the advantage to generalize to the TTCG model. More precisely,
let 𝜈+H(X ,u) denote the number of up-crossings of the level u of the process X on the time interval
[0,H] and

𝜈+(X ,u) ∶= lim
H→∞

1
H
𝜈+H(X ,u)

denote the up-crossing intensity, where ∶= holds for “is defined by.” 𝜈+(X,u) can be interpreted
as the expected number of up-crossings of the level u per time unit. It is an important quantity
for many applications for which only few analytical results are known (see Lindgren, 2012, for a
review) with the noticeable exception of the so-called Rice formula

𝜈+(X ,u) = pX (u)E
[|Ẋ| | X = u

]
. (14)

It shows that the expected number of 𝜈+(X,u) depends only on the marginal pdf pX of X, and
the so-called derivative scale function E[|Ẋt| | Xt = x]. This formula holds true for stationary
differentiable stationary processes, and thus, for the Gaussian base process Y for which we get

𝜈+(Y ,u) = 1
2𝜋

exp
(
−u2

2

)
.

The proposition below shows that the Rice formula also holds true for a TTCG process X and that
the up-crossing intensity mainly depends on the marginal link function h. An intuitive explana-
tion is that the horizontal stretching associated with the time deformation does not modify the
levels of the observed sequence, and thus, the up-crossing intensities of the processes Z and Y are
equal up to a scaling factor.

Proposition 2. If X is a TTCG process, then

𝜈+(X ,u) = 𝜈+(Z, h(u)) = 1
q0

𝜈+(Y , h(u)) = 1
2𝜋q0

exp
(
−h(u)2

2

)
. (15)

The proof of this proposition is given in the Appendix. Note that the two first equalities of
Proposition 2 hold true in the general case where Y is not Gaussian.

According to (15), we get

−h(u)2

2
= log(𝜈+(X ,u)) − log

(
1

2𝜋q0

)
. (16)

This relation shows that an estimate of h can be deduced from an estimate of the up-crossing
intensity (see Section 3.4 for the details).

3.2 Up–down asymmetries time-change function f1

In this section, we assume that the process Z is observed. In practice, if only the process X is
observed and an estimate ĥ of h is available; then, it is possible to compute an approximation
Ẑt = ĥ(Xt) of Zt and replace Z by Ẑ in the estimates defined below.
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According to (11), f1 is related to the marginal pdf of Zt, but using this relation requires a
nonparametric estimate of 1

pZ
. This approach was found to be numerically unstable. Instead,

we propose to use (12) where f1 appears as a scale factor of the conditional distribution of the
derivative. More precisely, f1 is proportional to the derivative scale function

𝑓1(z) =
√

𝜋

2
E[|Żt| | Zt = z]. (17)

This expression can be derived from (12) by applying the change of variable u = k( ż
𝑓1(z)

), which is
valid because k is assumed to be a bijection from R to R. An estimate of f1 can be deduced from
any nonparametric estimate of the conditional expectation E[|Żt| | Zt = z] (see Section 3.4 for
more details).

3.3 Front–back asymmetries time-change function f2

In this section, we assume that Zt is observed and f1 is known (in practice, these unknown quan-
tities will be replaced by the estimates defined in the previous section). We propose to estimate f2
using the relation (12), which shows that f2 is related to the shape of the pdf of the derivative Żt.

Let us first notice that, according to 10, the scaled derivative Vt =
Żt

𝑓1(Zt)
is independent of Zt

and that the pdf pV of Vt is

pV (v) =
k̇(v)k(v)

v
√

2𝜋
exp

(
−k(v)2

2

)
. (18)

If f2 is a constant function, then k is proportional to the identity function and Vt is a Gaussian
variable. In the general case, this distribution may be non-Gaussian with, for example, skewed
distributions associated to front–back asymmetries in the trajectories.

We deduce from (18) that

k̇(v)k(v) exp
(
−k(v)2

2

)
=
√

2𝜋vpV (v),

and thus, after integration between 0 and v (note that k is increasing and k(0) = 0), we get

1 − exp(−k(v)2∕2) =
√

2𝜋 ∫
v

0
upV (u)du,

and finally,

k(v) = sign(v)

√
−2 ln

(
1 −

√
2𝜋 ∫

v

0
zpV (z)dz

)
. (19)

In this expression, the function k appears as a function of the expected value

∫
v

0
zpV (z)dz = E[Vt1[0,v] (Vt)],

which can be estimated from the data. Then, using the link between the functions k and f2, it is
possible to deduce an estimate of f2. This is discussed more precisely in Section 3.4.

3.4 Estimation procedure
Using the results of Sections 3.1, 3.2, and 3.3, we now propose a three-stage procedure for fitting
the TTCG model. h is first estimated using up-crossings; then, f1 is estimated using the derivative
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scale function of the marginally transformed sequence and, finally, f2 is estimated using the scaled
derivative.

Estimation of h. The estimation of the marginal function h is based on up-crossings as dis-
cussed in Section 3.1. According to (16), h is directly related to the up-crossing intensity function
up to the scaling factor q0 = E[ 1

𝑓 (Y0)
], which depends on the time-change function f. In order to

estimate q0, we use that this quantity is related to the mode of the up-crossing intensity (i.e., the
intensity of the most often crossed level) because

sup
x

{
log(𝜈+(X , x))

}
= log

(
1

2𝜋q0

)
. (20)

Once q0 is estimated, we are faced with a similar estimation problem as discussed in Rych-
lik et al. (1997) for TG models. It consists in taking a square root of (16) using the monotonicity
of h. The obtained estimate was found to be noisy, and the LOESS method (locally weighted poly-
nomial regression; see Cleveland, 1979) is used to smooth it. An isotonic regression method may
also be applied to force the obtained estimate to be increasing, but this was not necessary for the
practical cases considered in this paper.

After estimating h, it is possible to compute an approximation Ẑ of the process Zt = h(Xt).
The final estimates of f1 and f2 are obtained by replacing Z by Ẑ in the expressions below.

Estimation of f1. f1 is estimated by plugging in a nonparametric estimate of the conditional
expectation E[|Żt| | Zt = z] in (17). Again, the LOESS approach is used to estimate this conditional
expectation. The corresponding estimate is denoted 𝑓1.

Estimation of f2. The estimation of f2 is based on the four following steps.

1. Compute an approximation V̂t of Vt as V̂t =
Żt

𝑓1(Zt)
.

2. Estimate the expectation ∫ v
0 zpV (z)dz using the corresponding sample mean, for example, for

v ⩾ 0, by

1
N

∑
t∶0⩽V̂t⩽v

V̂t,

where N denotes the length of the observed sequence. Plug this estimate into (19) to deduce
an estimate k̂ of k.

3. By definition, k is the inverse function of ż → ż𝑓2(ż), and thus,

𝑓2 (k(ż)) =
ż

k(ż)
.

The next step consists in inverting numerically this relation after replacing k by k̂ to deduce
an estimate 𝑓2 of f2.

4. The obtained estimate is noisy near the origin (the computation of ż
k(ż)

leads to a division by
values close to 0 at the origin), and we found it useful to smooth the estimate. The LOESS
smoothing method is used again.

We performed a simulation study to assess the quality of the estimates. The model considered
for simulation is inspired from the real data of Section 4.2. It is a TTCG model with a separable
time-change function. The functions f1 and f2 are shown in Figure 3 and the other quantities,
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FIGURE 3 Fluctuation intervals for the estimates of f1 (left) and f2 (right). The full lines correspond to the true
functions used for the simulation, the dashed line to the mean estimated values, and the dotted line to 95%
fluctuation intervals. Results based on 1000 sequences simulated with the model fitted on the wave data

which define the model (function h and second-order structure of the base process Y ) in Figure 6.
1000 sequences were generated with the model. Each sequence corresponds to a record of 40 min
with a sampling time step of 0.070 s comparable to the amount of data available when consid-
ering wave observations (about 1000 waves with 34 points per wave). According to Figure 3, the
proposed nonparametric estimates seem to be able to retrieve the shape of f1 and f2 with a small
bias and reasonable fluctuation intervals.

3.5 Model versatility
In this section, we discuss the versatility of the proposed approach and show that combining a
marginal transformation and a time change permits to handle important properties of observed
sequences.

Let us first focus on the effect of applying a time change and consider a general transformed
time-changed model defined by (7) where Y is a continuously differentiable ergodic stationary
process (not necessarily Gaussian as for the TTCG model). Then, (9) gives the stationary joint
distribution of (Zt, Żt). If we further assume that f2 ≡ 1, then it can be easily deduced that

E[|Żt| | Zt = z] = 𝑓1(z)E[|Ẏt| | Yt = z]. (21)

The derivative scale function E[|Żt| | Zt = z] describes the dispersion of the derivative at the
level z. (21) shows that the application of a time change permits to transform a process Z into a
process Y such that the derivative scale function does not depend on the level y. Such a process will
be referred to as conditionally homoscedastic hereafter by analogy to discrete-time models where
homoscedasticity implies that the future time variability does not depend on the past (see, e.g.,
Fan & Yao, 2003). The derivative scale function is also somewhat related to vertical asymmetries.
Indeed, if the processes Z and −Z have the same distribution, then the derivative scale function
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is even (i.e., E[|Żt| | Zt = z] = E[|Żt| | Zt = −z]) and this relation holds true for conditionally
homoscedastic processes. On the opposite, if the derivative scale function is a decreasing function
of z, as it is the case for the data set considered in Section 4.1, then the trajectories will typically
have higher slopes at low levels and look asymmetric.

Time-change models have thus enough versatility to match any prescribed derivative scale
function, and Proposition 2 shows that adding a marginal transformation permits to act on the
up-crossing intensity. By combining both transformations as in the TTCG model, we obtain a
model that has enough flexibility to generate a process with given up-crossing intensity function
and derivative scale function. Then, the Rice formula (14) implies that the marginal distributions
also match (see proposition 3). This is a clear improvement compared to the more usual TG model,
which can handle only one of these quantities.

This is stated more precisely in the proposition below. It shows that, under general condi-
tions, the application of both a marginal transformation and a time change permits to transform
a process X into a process Y, which is conditionally homoscedastic and has Gaussian margin.
Reciprocally, TTCG processes have enough versatility to simulate sequences with a prescribed
derivative scale function and marginal distribution.

Proposition 3. Let X denote a continuously differentiable ergodic stationary process. Assume
that there exists a positive function f and an increasing function h such that

𝜈+(X ,u) = r0

2𝜋
exp

(
−h(u)2

2

)
(22)

𝑓1(z) =
√

𝜋

2
E[|Żt| | Zt = z] (23)

with Zt = h(Xt) and r0 = E[ f(Z0)] < ∞.
Then, the time-changed process Y defined as

h(Xt) = Zt, Yt = Z𝜓(t), 𝜓(t) = ∫
t

0

1
𝑓1(Ys)

ds

is such that (7) holds true, 𝜈+(Y ,u) = 1
2𝜋

exp(− u2

2
), E[|Ẏt| | Yt = 𝑦] =

√
2
𝜋

and Y has standard
Gaussian margins.

Reciprocally, let Y o be any continuously differentiable ergodic stationary Gaussian process
with standard Gaussian margin such that var(Ẏ o

t ) = 1 and assume that q0 = E[ 1
𝑓1(Y0)

] < +∞.
Then, the TTCG process Xo defined as

h
(

Xo
t
)
= Zo

t , Zo
t = Y o

𝜑o(t), 𝜑o(t) = ∫
t

0
𝑓1

(
Y o
𝜑(s)

)
ds

is such that, for all x 𝜈+(X, x) = 𝜈+(Xo, x), E[|Ẋt| | Xt = x] = E[|Ẋo
t | | Xt = x] and pX (x) =

pXo(x).

The proof of this proposition is given in the Appendix. This result is illustrated in Section 4.1
on a meteorological time series.
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4 NUMERICAL RESULTS

In this section, the proposed TTCG model is applied to real data. Firstly, an atmospheric pressure
time series is considered. In this example, we focus on up–down asymmetries. We highlight that
the combination of a marginal transformation h and a time-change function that depends on
the level ( f2 ≡ 1) allows to describe the complex features of the time series much better than a
marginal transformation alone. In the second application, we consider a time series of shallow
water wave data, which exhibits both up–down and front–back asymmetries.

4.1 Up–down asymmetries: Atmospheric pressure data
To illustrate the proposed models, we consider a particular time series Xt of hourly sea-level
atmospheric pressure data measured at Guipavas (northwest of France, latitude 48◦26′36′′N, lon-
gitude 4◦24′42′′W). We focus on the winter months (January, February, and March) to reduce
seasonal variations. One of the 17 winters available in the data set is shown in Figure 4a. It shows
an alternation of periods with high-pressure (anticyclonic) and low-pressure (cyclonic) condi-
tions with different characteristics. Cyclonic conditions tend to be less stable with successions
of low-pressure systems coming from the Atlantic Ocean and reaching the west coast of France,
whereas anticyclonic conditions generally corresponds to large and slowly evolving high-pressure
systems. Visually, it leads to up–down asymmetries with different behaviors at low and high lev-
els. It can also be seen on the empirical joint distribution of (Xt, Ẋt) (see Figure 4b). In particular,
the marginal distribution of X is asymmetric and the scatterplot shows heteroscedasticity with
more variability in the derivative when the pressure is low.

Similar behavior can also be seen on other weather variables such as rainfall, temperature, or
wind, but here, we have chosen to focus on pressure to simplify the interpretation of the model
(pressure is more directly related to synoptic weather conditions). The model proposed below
could be used as an input to a stochastic weather generator (see Ailliot, Allard, Monbet, & Naveau,
2015) for the other weather variables mentioned above. The most classical approach to describe
the abovementioned alternation is based on the so-called weather-type models (see, e.g., Ail-
liot et al., 2015, for a recent review). In weather-type models, a discrete variable is introduced
to describe explicitly the meteorological regimes (e.g., cyclonic/anticyclonic conditions), and the
temporal evolution of the weather variables is modeled conditionally to this discrete variable. In
this section, we explore a method based on transforming a Gaussian process.

Recall that, for a Gaussian process Y, the process Yt and the derivative Ẏt at the same time are
independent and Gaussian. This is clearly not true for the pressure data considered here. More
generally, a stationary Gaussian process Y is symmetric about its mean 𝜇 (the processes Y − 𝜇

and 𝜇 − Y have the same distribution) and, thus, cannot describe up–down asymmetries.
Let us first focus on the TG model (TTCG model with f1 ≡ f2 ≡ 1). Figure 4e shows some

properties of the sequence Ŷt = ĥ(Xt) with ĥ estimated using (15). The empirical joint distribu-
tion shown in Figure 4f indicates that the marginal transformation was able to “Gaussianize” the
marginal distribution but not the joint distribution of the process and its derivatives with still
higher temporal variability at low levels. This is an indication that the transformed sequence is
not Gaussian and that the fitted TG model is not able to reproduce some properties of the data
such as up-crossing intensity. This is confirmed when looking at the transformed sequence shown
in Figure 4e. The marginal transformation has reduced up–down asymmetries compared to the
original sequence, but different behaviors at high and low levels are still visible.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIGURE 4 Left plots, from top to bottom: (a) sea-level pressure measured at Guipavas during the winter
1999–2000, (c) marginally transformed sequence Ŷt = ĥ(Xt) for the fitted transformed Gaussian (TG) model,
(e) estimated base process for the fitted time-changed Gaussian (TCG) model (h(x) = x, f2 ≡ 1), (g) estimated
base process for the fitted transformed time-changed Gaussian (TTCG) model with f2 ≡ 1, (i) example of sequence
simulated with the fitted TTCG model. The background colors in panels (c) and (g) correspond the value of 𝑓 (Ŷt)
(speed of the clock). Right plots: corresponding joint distribution of the process (x-axis) and its derivative at the
same time ( y-axis) with nonparametric estimates of the joint probability density function (full lines) and of the
conditional expectation (17) (dashed line) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Let us now consider the TCG model (TTCG model with h(x) = x) without front–back asym-
metries ( f2 ≡ 1.). As discussed in Section 3.4, f1(x) is estimated using the derivative scale function
E[Ẋt | Xt = x]. The obtained estimate is superimposed on the scatterplot 4b. It is decreasing
because the temporal variability is higher when the pressure is low. Once f1 is estimated, it is possi-
ble to derive an estimate of the time change 𝜑, using (7) with f1 replaced by its estimate and, then,
an approximation Ŷ of the base process Y. An example of transformed sequence Ŷ is shown in
Figure 4c. Because the estimated time-change function is decreasing, the transformed sequence
Ŷ has paths with shorter excursions at high levels and longer excursions at low levels and, thus,
more symmetric paths compared to the original sequence. The value of 𝑓1(Ŷt) is superimposed
on this plot to show the effect of the pressure on the speed of the clock. According to the scatter-
plot of the estimated transformed process Ŷ and its derivative (see Figure 4d), the transformed
sequence seems to be approximatively conditionally homoscedastic as expected from the fitting
procedure. However, the marginal distribution of Ŷ is asymmetric with a negative skewness. It is
a clear indication that applying only a time change does not permit to “Gaussianize” the observed
sequence.

Let us now focus on the TTCG model with f2 ≡ 1. It is also possible to compute an approxi-
mation Ŷ of the base process Y, which should be close to Gaussian if the fitted model is valid. No
obvious asymmetry can be seen on the sequence shown in Figure 4g. As expected from Propo-
sition 3, the empirical distribution of Ŷ seems to be close to Gaussian and the derivative scale
function close to constant (see Figure 4h). Other criteria may be considered, but as far as we know,
there is no well-established formal test that could be used to check if the obtained sequence is
Gaussian. Another way to validate the model consists in generating sequences of the fitted model
and compare the statistical properties of the simulated sequences with the ones of the original
data. For this, the autocovariance function (ACF) of the base process Y is first estimated using
the sample ACF of Ŷ . Then, a Gaussian sequence with this ACF is generated before applying
the time-change and the marginal transformation. An example of simulated sequence is shown
in Figure 4i. Visually, it seems to exhibit a behavior similar to the original pressure sequence
(Figure 4a) with some up–down asymmetries. Various statistics of the simulated sequences were
compared to the one of the original data. The results were compared with the ones obtained with
the classical TG model. We found that both models are able to reproduce the marginal of the pro-
cess. Compared to the TG model, the TTCG model clearly improves the description of the joint
distribution of the process and its derivatives at the same time (see Figure 4j) and the up-crossing
intensity (not shown). This is expected given the fitting procedure and Proposition 3.

We also found that the both models are able to reproduce the second-order structure of the
data (not shown), but this is not ensured by the fitting procedure. A more elaborate approach for
estimating the second-order structure of the latent Gaussian process Y would consist in choosing
it in such a way the ACF of the transformed process X match the one of the observed process. For
this, we would need an explicit expression that relates the second-order structure of the processes
X and Y. Unfortunately, we could not derive such an expression for the time-changed models
(see discussion of Theorem 1 in the Appendix). Note that such an expression is available for TG
models when a specific marginal transformation such as the Tuckey transformation is used (see
Xu & Genton, 2017) but not for general TG models.

4.2 Up–down and front–back asymmetries: Sea wave data
Marine coastal systems are subject to loadings induced by ocean waves, and long time series of
wave conditions are needed to study the performances of such systems. The systems are often
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FIGURE 5 (A detailed description of the considered experiment can be found in Becq-Girard et al., 1999)
layout of the experimental setup for the irregular flume experiment. The numbers indicate the position of the
wave probes. Sequences of waves measured at Stations 2 (middle panel) and 7 (bottom panel)

located near the shore where the waves are asymmetric. It is known that it is very difficult to
make in situ measurements of such wave conditions. A classical alternative consists in carry-
ing experiments in a wave flume. A detailed description of the considered experiment can be
found in Becq-Girard, Forget, and Benoit (1999). The bathymetric profile of the flume experi-
ment is shown in Figure 5 together with the various locations where the sea-surface elevation
is measured (numbered from 1 close to the wave maker to 16). The wave maker (wave paddle)
generates random-phase waves, which are expected to be close to a realization of a Gaussian pro-
cess with a JONSWAP-type spectrum, which is one of the classical parametric models for wave
spectra (see Holthuijsen, 2010). Then, the waves propagate to the right on a varying bathymetry,
which induces strong nonlinearities. Examples of time series measured at Locations 2 and 7 are
shown in Figure 5. At location 2, before the waves are modified by the varying bottom, we obtain
a measurement with no obvious asymmetries as expected for a Gaussian sequence, whereas at
Location 7, both up–down and front–back asymmetries are prominent. Free-surface elevation is
recorded over a duration of 40 min with a sampling time step of 0.070 s. The mean wave period is
around 2.4 s.

In this section, we investigate a stochastic model that could simulate quickly long or repeated
time series of wave data with similar characteristics than the ones observed at Location 7. This
generator could be used as an alternative to physically based wave models. In this section, X
denotes the process that describes water elevation at Location 7. The TTCG modeling prin-
ciple is summarized in Figure 6. Starting from an observed trajectory of X with asymmetric
path (bottom left), we first apply a marginal transformation h whose estimate is shown on the
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FIGURE 6 (Bottom left) sequence of measured sea-surface elevation (Location 7). (Middle left and top left)
estimated processes Ẑ and Ŷ for the transformed time-changed Gaussian model. The vertical dotted lines
materialize the time change introduced in the model. The right panel shows the estimated functions ĥ (bottom)
and 𝑓 = 𝑓1𝑓2 (middle), and the empirical spectral density of Y (top) [Colour figure can be viewed at
wileyonlinelibrary.com]

bottom right panel. After estimating h, it is possible to compute an approximation Ẑt = ĥ(Xt) of Xt.
The concavity of h leads to decreasing the steepness of the crests compared to the troughs (mid-
dle left). Then, a time deformation is applied. The estimated f1 and f2 functions are increasing
(see their product f1 f2 on the middle right panel), and thus, the chronometer accelerates with the
level of the process and its derivatives. It permits to act both on up–down and front–back asym-
metries and obtain a transformed trajectory Ŷ (top left), which has an approximately symmetric
path and can reasonably be modeled as a realization of a Gaussian process. No obvious asymme-
try can be seen on the sequence Ŷ shown in Figure 7c and the empirical distribution of Ŷ , and its
derivative seems to be close to Gaussian (see Figure 7d). We also compared the distributions of
the four slopes defined in Figure 9, which have similar distributions (not shown) as expected for
a Gaussian process that has symmetric paths.

Then, we checked that the fitted TTCG model is able to generate realistic wave sequences. Note
that the fitted model can be simulated very quickly (about one-half second to generate 1000 waves
on a basic laptop using MATLAB). An example of simulated sequence is shown in Figure 7e. It
looks visually coherent with the observed sequence shown on the same figure.

It is not straightforward to define quantitative criteria, which measure the asymmetries of
a trajectory (see Baxevani, Podgórski, & Wegener (2014, for a discussion). It is partly related to
the joint distribution of (Xt, Ẋt). Indeed, up–down asymmetries, with crests that are more peaked
and narrower compared to the troughs, lead to a heteroscedastic joint distribution for (Xt, Ẋt)
with higher derivatives at high levels (see Figure 7b). Front–back asymmetries, with steeper
fronts compared to the backs, lead to an asymmetric distribution for Ẋt with a positive skew-
ness (the empirical skewness is equal to 0.53). According to Figure 7f, the fitted TTCG model
seems to be able to reproduce the shape of this bivariate distribution and clearly outperforms
the TG (see Figure 7h). The quantile–quantile plots shown in Figure 8 confirm that both mod-
els are able to reproduce the marginal distribution of X but the TG model cannot reproduce
the marginal distribution of Ẋt. This can be problematic for applications sensitive to the wave
steepness.

http://wileyonlinelibrary.com


18 Scandinavian Journal of Statistics AILLIOT ET AL.
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FIGURE 7 Left plots, from top to bottom: (a) elevation measured at Location 7, (c) estimated base process for
the transformed time-changed Gaussian (TTCG) model, (e) example of sequence simulated with the fitted
TTCG model, (g) example of sequence simulated with the fitted transformed Gaussian (TG) model. The
background color on the second plot corresponds to the value of 𝑓1(Yt)𝑓2(Ẏt) (speed of the clock). Right plots:
corresponding joint distribution of the process (x-axis) and its derivative at the same time ( y-axis) with
nonparametric estimates of the joint probability density function (full lines) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 8 Left: quantile–quantile plot of the data versus the fitted TTCG model. Right: quantile–quantile plot
of the data versus the fitted TG model. The top plots correspond to the process and the bottom plots to the
derivative. Results obtained at Location 7. The dotted lines are 95% prediction intervals computed using
simulations

Note that Gaussian processes, and thus, TG processes are time reversible, and Figure 7g
confirms visually that the TG model cannot reproduce the observed front–back asymmetries.
A time-reversible process X is such that the conditional distribution of the slope Ẋt given
Xt = x is symmetric for all level x, and thus, the distribution of Ẋt is symmetric. It can be
shown that the conditional distribution of Ẋt is also symmetric for the TTCG model in the par-
ticular case when f2 is constant. A nonconstant f2 function permits to create asymmetries in this
distribution.

Another usual characterization of asymmetries in ocean waves is based on the comparison
of the distributions of the various slopes (trough front, trough back, crest front, and crest back)
shown on the top panel of Figure 9, where individual waves are extracted using zeros-crossings.
The differences in these four distributions (see bottom panel of Figure 9) are linked to waves
asymmetries. For example, it shows that the fronts of the crests are the steepest, whereas the fronts
of the troughs are the flattest. Figure 9 shows that the fitted TTCG model is able to reproduce
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FIGURE 9 Definition of the trough front steepness (𝜃1), trough back steepness (𝜃2), crest front steepness (𝜃3)
and crest back steepness(𝜃4) (top) and corresponding box plots (bottom). For each criterion, the first box plots
correspond to the observation (Location 7), the second ones to the fitted TTCG model and the third ones to the
fitted TG process. Results obtained using simulations [Colour figure can be viewed at wileyonlinelibrary.com]

these distributions. Note that the fitted TG model also reproduces some up–down asymmetries
(the distributions for the crests and the troughs are different) but no front–back asymmetries (the
distributions for the fronts and the backs are the same).

5 CONCLUSIONS AND PERSPECTIVES

This paper proposes an original framework for modeling asymmetric sequences where a
time-change is combined with a marginal transformation. The ergodicity of the proposed
time-changed model is established under general conditions. This result is used to build non-
parametric estimation procedures. The marginal transformation is estimated beforehand using
up-crossings. Then, the estimation of the time-change function is based on the joint distribution
of the process and its derivative. The methodology is illustrated on two environmental time series.
We show that the fitted models are able to reproduce important characteristics of the data sets such
as marginal distributions, conditional heteroscedasticity, up-crossing intensity, and up–down and
front–back asymmetries.

The proposed methodology only applies to univariate temporal sequences. Generalizations to
multivariate processes and spatial or spatiotemporal processes will be the topic of future work.
On the theoretical side, important properties of the process, such as its second-order properties,
are still unknown and need to be further investigated. Finally, we plan to develop paramet-
ric approaches. They may be useful for applications such as wave modeling where the amount
and quality of observations are not always sufficient to use the nonparametric fitting procedures
discussed in this paper.

http://wileyonlinelibrary.com
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APPENDIX A

This appendix provides formal statements and proofs of the various theoretical results used in
this paper.

A.1 Ergodicity of the time-changed process
Theorem 1. Let (Yt)t⩾0 be a stationary process with values on Rd and continuous sample paths
and let f (.) be a measurable real-valued positive function defined on Rd such that E[ 1

𝑓 (Y0)
] <

+∞. Denote q0 = E[ 1
𝑓 (Y0)

] and define the process (Zt)t⩾0 by (1)–(2). Then, Z is stationary for the
measure P′ associated to the conditional expectation E′ defined as

E′[g(Z.)] = q−1
0 E

[
g(Z.)
𝑓 (Z0)

]
. (A1)

If Y is ergodic, then Z is ergodic under P′. In particular, for any measurable real-valued function
g defined on Rd such that E[ |g(Y0)|

𝑓 (Y0)
] < ∞,

E′[g(Zt)] = lim
H→∞

1
H ∫

H

0
g(Zs)ds = q−1

0 E
[
g(Y0)
𝑓 (Y0)

]
a.e. (A2)

Proof of Theorem 1. Let us first introduce some notations. Z and Y, as well as Z. and Y., will
denote the processes (Zt)t⩾0 (Yt)t⩾0. The stationarity of Y means that, for any measurable func-
tion g, g(Y.) has the same distribution as g(Y.+s) for any s > 0. The ergodicity means that, for
any bounded measurable function g,

lim
H→∞

1
H∫

H

0
g(Y.+s)ds = E[g(Y.)] a.e.

In order to check stationarity and ergodicity, it suffices to consider functions g of the form

g(Y) = g0(Yt1 , …Ytn), (A3)

where g0 is a bounded Borel measurable function; we may even assume that g0 is continuous.
We will however keep the notation g(Y.) because it will appear to be handier.

Let us denote by 𝜓 the reciprocal function of 𝜑. Remark that Equation (2) means that
�̇�(t) = 𝑓 (Y𝜑(t)), that is, setting s = �̇�(t), �̇�(s)−1 = 𝑓 (Ys). Finally,

Z𝜓(t) = Yt, (A4)

𝜓(t) = ∫
t

0

1
𝑓 (Ys)

ds. (A5)

This alternative formulation provides a more direct and tractable definition of the model.
Let us denote the shifted processes Y𝜏

. = Y.+𝜏 and (𝜓𝜏,Z𝜏) denote the processes obtained
by replacing Y with Y𝜏 in (A4–A5). We get

𝜓𝜏(t) = ∫
t

0

1
𝑓
(
Y𝜏

s
)ds = ∫

t

0

1
𝑓 (Ys+𝜏)

ds = 𝜓(𝜏 + t) − 𝜓(𝜏).

In addition, (A4) becomes Z𝜏
𝜓𝜏 (t) = Y𝜏

t ; hence,

Z𝜏
𝜓(𝜏+t)−𝜓(𝜏) = Z𝜏

𝜓𝜏 (t) = Y𝜏
t = Y(t + 𝜏) = Z𝜓(t+𝜏).

Thus, Z𝜏
. = Z.+𝜓(𝜏), which means that the effect of a shift on Y is a random shift on Z.
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Now, by the stationarity of Y, we have for any 𝜏 > 0 and any function g of the form (A3)

q0E′[g(Z.)] = E
[
g(Z.)
𝑓 (Z0)

]
= E

[
g (Z𝜏

. )
𝑓
(
Z𝜏

0
)] = E

[
g(Z.+𝜓(𝜏))
𝑓 (Z𝜓(𝜏))

]
.

Because this is true for any t ⩾ 0, for any H > 0,

q0E′[g(Z.)] =
1
H∫

H

0
E
[
g(Z.+𝜓(𝜏))
𝑓 (Z𝜓(𝜏))

]
d𝜏

= E
[

1
H∫

𝜓(H)

0

g(Z.+s)
𝑓 (Zs)

�̇�(s)ds
]
, (𝜏 = 𝜑(s))

= E
[

1
H∫

𝜓(H)

0
g(Z.+s)ds

]
and, for any t > 0,

q0
(

E′[g(Z.)] − E′[g(Z. + t)]
)
= E

[
1
H∫

𝜓(H)

0
g(Z.+s)ds

]
− E

[
1
H∫

𝜓(H)

0
g(Z.+t+s)ds

]
= E

[
1
H∫

t

0
g(Z.+s)ds

]
− E

[
1
H∫

𝜓(H)+t

𝜓(H)
g(Z.+s)ds

]
q0|E′[g(Z.)] − E′[g(Z. + t)]| ⩽ 2t

H
||g||∞,

where ||g||∞ < +∞ denotes the sup norm of the bounded function g. Because the right-hand
side can be made arbitrarily small, we have proven the stationarity. Similar equations can be
used for proving the ergodicity. Indeed, we have

1
H∫

H

0
g(Z.+s)ds = 1

H∫
𝜑(H)

0

g(Z.+𝜓(𝜏))
𝑓 (Z𝜓(𝜏))

d𝜏 (s = 𝜓(𝜏))

= 𝜑(H)
H

1
𝜑(H)∫

𝜑(H)

0

g (Z𝜏
. )

𝑓
(
Z𝜏

0
)d𝜏. (A6)

Note that

lim
H→∞

𝜓(H)
H

= lim
H→∞

1
H∫

H

0

du
𝑓 (Yu)

= q0 a.e.

by the ergodicity of Y, and thus, limH→∞
𝜑(H)

H
= q−1

0 a.e. Using again the ergodicity of Y and
that limH→∞𝜑(H) = +∞ a.e., we deduce that the second term in the right-hand size term of
(A6) converges to a deterministic limit that is its expected value.

(A2) is a particular case of the general convergence result proved above with g(Y ) = g0(Yt)
and remarking that Y0 = Z0.

Some remarks on the general time-change model.

1. The limit E′ is a measure equivalent to E and this equivalence explains why the middle limit
in (A2) holds w.p.1 under E′ and E. E′ is essentially the limit distribution of (Zt+s)s⩾0 when t
tends to infinity. One has indeed from (A1) and from the stationarity of Z under E′ that, for
any t ⩾ 0 and for any bounded function h,

E′[h(Z.)] = E′[h(Zt+.)] = q−1
0 E

[
h(Zt+.)
𝑓 (Z0)

]
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(we have applied (A1) to g(Z.) = h(Zt+.)). If for any bounded function h, the correlation
between h(Zt + .) and 1∕f (Z0) tends to zero as t → ∞ (this is a reasonable mixing assumption),
we get that

E′[h(Z.)] = lim
t→∞

q−1
0 E

[
h(Zt+.)
𝑓 (Z0)

]
= lim

t→∞
E[h(Zt+.)].

In other terms, Z is asymptotically stationary, and unsurprisingly, the empirical means capture
this limit stationary measure.

2. Equation (A1) implies actually the more general statement

E′[g(Z.)] = lim
H→∞

1
H ∫

H

0
g(Z.+s)ds = q−1

0 E
[
g(Z.)
𝑓 (Z0)

]
a.e.,

which appears to be uneasy to utilize unless g(x.) is a function of x0. This explains why it is
difficult to work with joint distributions at lagged times (e.g., autocovariance functions) in this
model.

3. Unicity of time change. Notice that 1∕q0 f is the density of E′ w.r.t. the distribution of Z0
(use (A2) and notice that Y0 = Z0). The function f is thus uniquely determined, up to a scalar
factor, by the distribution of the observation process Z. In practice, if only one trajectory is
observed, the distribution of Z0 is unknown. f is characterized by the fact that the process Y
given by (A4) is stationary, but finding the function f that would make the Y process stationary
is impossible because one cannot measure the stationarity of Y based on a single trajectory.
This makes the estimation of f impossible. However, under additional assumptions on Y, f
may actually be a function of the stationary measure E′, which means that it can be estimated
by using statistics calculated over only one trajectory. In Section 3.2, we show that if Y is a
univariate differentiable Gaussian process, then f can be consistently estimated from empirical
means 1

H
∫ H

0 g(Zs)ds. The necessity of the differentiability assumption is an open problem.

A.2 Proof of Proposition 1, Proposition 2, and Proposition 3
Proof of Proposition 1. Set

𝑓 (u, v) = 𝑓1(u)𝑓2(v).

We have
1
H∫

H

0
g(Zs, Żs)ds = 1

H∫
H

0
g
(

Y𝜑(s), 𝑓 (Y𝜑(s), Ẏ𝜑(s))Ẏ𝜑(s)
)

ds.

Now, by applying Theorem 1 with Yt = (Yt, Ẏt), we get that Zt = (Y𝜑(t), Ẏ𝜑(t)) is a stationary
ergodic process such that

lim
H→∞

1
H ∫

H

0
g
(

Y𝜑(s), 𝑓
(

Y𝜑(s), Ẏ𝜑(s)
)

Ẏ𝜑(s)
)

ds = q−1
0 E

[
g
(

Y0, 𝑓
(

Y0, Ẏ0
)

Ẏ0
)

𝑓 (Y0, Ẏ0)

]
a.e.

with q0 = E[ 1
𝑓 (Y0,Ẏ0)

]. Hence,

lim
H→∞

1
H ∫

H

0
g(Zs, Żs)ds = 1

q0 ∫∫
g(u1,u2𝑓 (u1,u2))

𝑓 (u1,u2)
pY ,Ẏ (u1,u2)du1du2 a.e.

= 1
q0 ∫

(
∫

g(u1,u2𝑓1(u1)𝑓2(u2))
𝑓1(u1)𝑓2(u2)

pY ,Ẏ (u1,u2)du2

)
du1.
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The change of variable ż = u2𝑓1(u1)𝑓2(u2) (or equivalently u2 = k(ż∕𝑓1(u1))) in the inner
integral gives (9), proving Proposition 1.

Proof of Proposition 2. Because h is increasing and the time change does not modify the
observed level we have 𝜈+H(X ,u) = 𝜈+H(Z, h(u)) = 𝜈+

𝜑(H)(Y , h(u)). We deduce that

lim
H→∞

1
H
𝜈+H(X ,u) = lim

H→∞

1
H
𝜈+H(Z, h(u))

= lim
H→∞

𝜑(H)
H

1
𝜑(H)

𝜈+
𝜑(H)(Y , h(u)),

where lim
H→∞

𝜑(H)
H

= q−1
0 (see proof of Theorem 1). The result can then be deduced from the fol-

lowing classical result, which holds true for differentiable Gaussian processes (Rice formula;
see, e.g., Lindgren, 2012):

lim
H→∞

1
H
𝜈+H(Y ,u) = 1

2𝜋
exp

(
−u2

2

)
,

where we have used that E[Yt] = 0 and var(Yt) = var(Ẏt) = 1.

Proof of Proposition 3. Using similar arguments than in the proof of Proposition 2, we get

𝜈+(Y , h(u)) = 1
r0
𝜈+(X ,u)

and, then, using (22), that 𝜈+(Y ,u) = 1
2𝜋

exp
(
− u2

2

)
. Then, remark that Y is a time-change

process with base process Z and time-change function 1
𝑓1

. Using (21), we get that

E[|Ẏt| | Yt = 𝑦] = 1
𝑓1(z)

E[|Żt| | Zt = 𝑦]

and, then, using (23), that E[|Ẏt| | Yt = 𝑦] =
√

2
𝜋

. Finally, using (14), we obtain that pX (u) =
1√
2𝜋

exp(− u2

2
).

Applying (15), we get 𝜈+(X ,u) = 1
2𝜋q0

exp(− h(u)2

2
). Now, using (9), we obtain that pY =

1
r0
𝑓1pZ and, thus, E[ 1

𝑓1(Y0)
] = 1

r0
. Because the processes Y and Y o have both standard Gaussian

margins, we deduce that q0 = 1
r0

and, using (22), that 𝜈+(X, x) = 𝜈+(X o, x). We can also deduce
that Z and Zo and, then, X and X o have the same marginal distributions.

A.3 The identifiability constraint var(Y t) = var(Ẏ t) = 𝟏
We consider the TTCG model and show that a scaling of (h, f1, f2) permits to assume, without
restriction, that var(Yt) = var(Ẏt) = 1. Set

𝜎 = var(Yt)1∕2, 𝛼 = 1
𝜎

var(Ẏt)1∕2

Z̃t = 1
𝜎

Zt, Ỹt = 1
𝜎

Yt∕𝛼, �̃�(t) = 𝛼𝜑(t)

h̃(x) = 1
𝜎

h(x), 𝑓1(x) = 𝛼𝑓1(𝜎x), 𝑓2(x) = 𝑓2(𝛼𝜎x).
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Then, one has clearly h̃(Xt) = Z̃t, Z̃t = Ỹ�̃�(t) and
d
dt
�̃�(t) = 𝛼𝑓1(Y𝜑(t))𝑓2(Ẏ𝜑(t))

= 𝛼𝑓1(𝜎Ỹ𝛼𝜑(t))𝑓2(𝜎𝛼 ̇̃Y𝛼𝜑(t))
(
̇̃Y t =

1
𝜎𝛼

Ẏt∕𝛼

)
= 𝑓1(Ỹ�̃�(t))𝑓 ′

2(
̇̃Y �̃�(t)).

In addition, var(Ỹt) = var( ̇̃Y t) = 1.
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