
Adv. Appl. Prob. 50, 833–857 (2018)
doi:10.1017/apr.2018.38

© Applied Probability Trust 2018

INTEGRAL ESTIMATION BASED
ON MARKOVIAN DESIGN

ROMAIN AZAÏS,∗ Inria Nancy and Institut Élie Cartan de Lorraine

BERNARD DELYON,∗∗ Univ Rennes, CNRS, IRMAR

FRANÇOIS PORTIER,∗∗∗ Télécom ParisTech and University of Paris-Saclay

Abstract

Suppose that a mobile sensor describes a Markovian trajectory in the ambient space and at
each time the sensor measures an attribute of interest, e.g. the temperature. Using only the
location history of the sensor and the associated measurements, we estimate the average
value of the attribute over the space. In contrast to classical probabilistic integration
methods, e.g. Monte Carlo, the proposed approach does not require any knowledge of the
distribution of the sensor trajectory. We establish probabilistic bounds on the convergence
rates of the estimator. These rates are better than the traditional ‘root n’-rate, where n
is the sample size, attached to other probabilistic integration methods. For finite sample
sizes, we demonstrate the favorable behavior of the procedure through simulations and
consider an application to the evaluation of the average temperature of oceans.
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1. Introduction

In recent decades, climate scientists have been interested in the evolution of different physical
attributes of the Earth in order to quantify the effects of global warming. For instance, attributes
such as temperature, acidity and salinity of the oceans, or the concentration of greenhouse
gases in the atmosphere are important indicators of global warming. These measurements are
often obtained by sensors placed on drifting buoys in the oceans or weather balloons in the
atmosphere, each describing an area or a volume. Whenever the data have been collected,
a crucial quantity is the average of the measurements over a given space. As the sensors are
eventually subjected to unpredictable effects such as marine currents or winds, their trajectories
are modeled as random sequences. Our approach is concerned with trajectories satisfying the
Markov property, meaning roughly that the distribution of the location at time t + 1 is fully
determined by the location at t and an independent random noise. For the sake of realism,
the underlying transition probability and the invariant probability measure associated to the
Markov chain are supposed unknown. In summary, we evaluate the average value of a physical
quantity over some space when the measurements are taken along the path of a Markov chain.
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834 R. AZAÏS ET AL.

More formally, letQ denote a given bounded and open set of R
d and suppose thatϕ : Q → R

represents a physical attribute to each location inQ, e.g. the temperature in the air over a volume
or the wind velocity on the sea over a surface. For simplicity, the Lebesgue measure of Q is
set to be 1. Hence, we are interested in the average value of ϕ over Q, defined as

I0 =
∫
Q

ϕ(x) dx.

In most examples of interest, the function ϕ is unknown and only some images of the function
are obtained from measurement instruments. Suppose that we observe n ∈ N

∗ points from the
trajectory of a time-homogeneous Harris recurrent Markov chain X1, X2, . . . (see Meyn and
Tweedie (2009)) with state space E ⊇ Q. Suppose, moreover, that we know the associated
images by the map ϕ, i.e. ϕ(X1), . . . , ϕ(Xn). Letπ denote the density of the stationary measure
of the chain. If π were known, it would be tempting to compute the Monte Carlo estimator
of I0, i.e.

Îmc = n−1
n∑
i=1

ϕ(Xi)

π(Xi)
,

which satisfies, under standard conditions (see Meyn and Tweedie (2009, Chapter 17)), a central
limit theorem, i.e. n1/2(Îmc − I0) converges weakly to a centered Gaussian distribution. As the
previous estimator requires knowledge of π , which is not the case in our framework, we instead
consider the following kernel smoothing estimator of I0:

Îks = n−1
n∑
i=1

ϕ(Xi)

π̂(Xi)
,

where π̂ is the classical kernel estimator of the density (see Silverman (1986)), i.e.

π̂(x) = (nhdn)
−1

n∑
i=1

K

(
x −Xi

hn

)
, x ∈ R

d ,

with K : R
d → R, a symmetric function, called the kernel, that integrates to 1, and (hn)n∈N∗ ,

a sequence of positive numbers, called the bandwidth, that goes to 0 as n → +∞.
As the stationary measure is unknown, we cannot rely on Monte Carlo integration techniques,

often used in simulation-based approximation such as importance sampling, control variates, or
Metropolis–Hastings integration. We refer the reader to Evans and Swartz (2000) and Robert
and Casella (2004) for more on integral approximation techniques.

The estimator Îks was introduced by Delyon and Portier (2016). The authors established
bounds on the rate of convergence and in probability in the case of an independent and identically
distributed (i.i.d.) sequence X1, X2, . . .. Their main observation was that the convergence rate
of Îks to I0 is faster than the convergence rate of the Monte Carlo estimator Îmc to I0 (even though
Îmc requires knowledge ofπ ). In contrast to standard Monte Carlo methods, the main ingredient
of their proposal is the evaluation of the image of the design points by the kernel estimator,
i.e. π̂(X1), . . . , π̂(Xn). These quantities capture an essential information: the isolation of
each point. Basically, the more isolated Xi , the larger the weight 1/π̂(Xi) (and conversely).
Hence, these weights realize an adaptation to the design points by attributing more weight to
the lonely points.

Our main theoretical objective is to extend the results of Delyon and Portier (2016) when
the sequence (Xi)i∈N∗ is a time-homogeneous Harris recurrent Markov chain. Denote by s
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Integral estimation based on Markovian design 835

and r the (Nikolski) regularity of the functions ϕ and π , respectively. For any set B ⊂ E , let τB
denote the return time of the chain to B. If there exist A ⊂ E and p0 > 3 such that

sup
x∈A

Ex[τp0
A ] < +∞, (1)

where Ex is the expectation for the Markov chain starting at X0 = x, and if, as n → +∞,

nh
d(p0/p0−1)
n

| log(n)| → +∞,

we show (Theorem 3), under mild additional conditions, that as n → +∞,

Îks − I0 = OP(h
r
n + n−1/2hsn + n−1h−d

n ).

This is the same convergence rate as the one provided by Delyon and Portier (2016) for i.i.d.
sequences (Xi)i∈N∗ . The previous rate is better than the rate of Îmc whenever n1/2hrn → 0
and n−1/2h−d

n → 0 as n → +∞. Taking hn ∝ n−1/(r+d), we obtain a rate in n−r/(r+d) +
n−1/2n−s/(r+d) which is negligible before n−1/2 if and only if r > d. Consequently, in addition
to being consistent when facing Markovian design, the kernel smoothing integral estimator
might give an acceleration of the rate of convergence of the Monte Carlo estimator. This
acceleration is unfortunately subject to the well-known curse of the dimension as one needs
r > d. In contrast, a nice feature of the method is that only mild constraints are required on the
regularity of ϕ. Finally, there exists a theoretical lower bound for random integration methods
(see Novak (2016, Theorem 3)) which takes the form n−1/2n−s/d , while our proposal achieves
n−1/2n−s/2(s+d) ≥ n−1. This gap in efficiency might be explained by the design distribution
which is imposed in our framework.

The mathematical proofs follow from a mixture between the Nummelin splitting technique
for Markov chains (see Nummelin (1978)), Hoeffding-type decompositions for U -statistics
(see van der Vaart (1998, Section 11.4)), and uniform bounds for kernel density estimators
in the case of independent observations (see Einmahl and Mason (2005)). More specifically,
the Nummelin splitting technique, also called regeneration theory and presented in Section 2,
allows the chain to be divided into ln independent blocks. Assumption (1) implies that ln and n
have the same order allowing us to mimic the approach of Delyon and Portier (2016) taken in
the independent case.

(i) Linearize the terms 1/π̂(X1), . . . , 1/π̂(Xn) by the use of a Taylor expansion. This is
typically used in semi-parametric problems such as, for instance, the single-index model;
see Härdle and Stoker (1989) and Roget-Vial (2003).

(ii) Find a probabilistic bound on some degenerate U -statistic depending on the sequence
K((Xj − Xi)/h)/h

d , (i, j) ∈ {1, . . . , n}2. We follow the approach of Bertail and
Clémençon (2011) by using an Hoeffding-type decomposition based on the blocks.

(iii) We avoid letting the values in the denominator of Îks become small by showing that
infx∈Q π̂(x) is bounded away from 0 with large probability. In particular, we show
(Theorem 2) that as n → +∞,

sup
x∈Rd

|π̂(x)− πhn(x)| → 0 in probability,

where πhn(x) is the expectation of π̂(x) under stationarity. We rely on empirical process
theory and, more precisely, on a formulation of Talagrand’s inequality established in
Einmahl and Mason (2005). To the best of the authors’ knowledge, the previous result
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836 R. AZAÏS ET AL.

in the case of general time-homogeneous Markov chains is new. Consistency results
(nonuniform) for time-homogeneous Markov chains can be found in Roussas (1969).
In the case of mixing-type dependency, uniform convergence rates can be found in
Hansen (2008).

Steps (i) and (ii) are directly developed in the proof of Theorem 3, while the consistency
result (iii) is presented in Section 3.

In contrast with the framework of Delyon and Portier (2016), in which the density is needed
to be continuously differentiable on R

d , we include density functions that possibly jump at the
boundary of Q (see the discussion before the statement of Theorem 3).

To compute Îks, the bandwidthhn and the kernelK need to be chosen. Preliminary numerical
experiments show that Îks is quite sensible for the values of hn chosen, whereas the choice ofK
has no strong influence. In Delyon and Portier (2016), hn was chosen according to both the
independent points of the design and the function ϕ. In this paper, we use the multivariate plug-
in bandwidth selection developed by Chacón and Duong (2010). A simulation study shows the
favorable behavior of the estimator with this choice of bandwidth in various settings.

The organization of the paper is as follows. In Section 2 we present a brief overview of the
regeneration approach for Markov chains. The notation and concepts introduced there will be
useful in the rest of the paper. Section 3 is concerned with the uniform convergence of kernel
density estimators for Markov chains. In Section 4 we provide the main theoretical statement
of the paper which consists of a bound on the rate of convergence of Îks − I0. In Section 5
we present a large simulation study as well as a real-data analysis performed from sea surface
temperature data of the three major oceans. Technical details concerning regeneration-based
bounds for expectations and of the initial measure, as well as the proofs of the results of
Section 3, are presented in Sections A–C of the supplementary material; see Azaïs et al. (2018).
For the sake of readability, results and equations from the supplementary material are prefixed
with an asterisk.

2. Regeneration

In this section we give a short account of the regeneration theory, also referred to as the
Nummelin splitting technique, as discovered byAthreya and Ney (1978) and Nummelin (1978),
and extensively studied by Nummelin (1984) and Meyn and Tweedie (2009).

We consider a Markov chain X0, X1, X2, . . . with state space E and transition probabilities
P(x, dy). The notation Eν denotes the expectation according to the chain under X0 ∼ ν,
and Ex in the ν = δx case. The associated probabilities are denoted by Pν and Px , respectively.
We assume that for some set A, the hitting time

τA = min{i ≥ 1 : Xi ∈ A}
satisfies, for all x ∈ E ,

Px(τA < ∞) = 1, (2)

sup
x∈A

Ex[τA] < ∞. (3)

We assume also that for some probability measure ψ , some λ0 > 0, and some m0 ≥ 1,

Pm0(x, B) ≥ λ0ψ(B) for all x ∈ A, B measurable. (4)

The previous equation means that A is a ‘petite set’ in the terminology of Meyn and Tweedie
(2009, Section 5.5.2). In particular, the set A is ψ-communicating in the sense that (see
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Integral estimation based on Markovian design 837

Nummelin (1984, Definition 2.2, p. 11)), for all x ∈ A, B measurable,

ψ(B) > 0 �⇒ there exists m ≥ 1, Pm(x, B) > 0.

From (2), we see that the time to reach A is finite with probability 1, and the chain is ψ-
irreducible, i.e. the whole space E is ψ-communicating. An irreducible Markov chain is called
Harris recurrent if, for all B ⊂ E such that ψ(B) > 0 and for all x ∈ E ,

Px({Xn ∈ B} infinitely often) = 1.

As a consequence of (2), for all x ∈ E , Px({Xn ∈ A} infinitely often) = 1. Starting from A

and if ψ(B) > 0, we can use (4) to show that the chain reaches B with positive probability.
Consequently, under (2) and (4), the chain is Harris recurrent (see Meyn and Tweedie (2009,
Proposition 9.1.7) or Nummelin (1984, Proposition 4.8)). From Meyn and Tweedie (2009,
Theorem 10.0.1) (see also Nummelin (1984, Corollary 5.3(ii))), the chain admits an invariant
measure and (3) allows us to prove that this measure is finite.

If m0 = 1, the regeneration theory (see below) allows us to split the chain into independent
subsequences. This is obviously of great technical interest as many results can be adapted from
the independent setting. The m0 > 1 case is somewhat different and we shall say a few words
about it later.

When m0 = 1,

P(x, B) ≥ λ0ψ(B) for all x ∈ A,B measurable, (5)

i.e. each time the chain hits A it can be restarted with probability λ0 with the measure ψ . Note
that this assumption is weaker than the well-known Doeblin condition which requires (5) to
hold for every x ∈ E . In order to make these regeneration times stopping times, the chain has
to be extended and redefined as the so-called split chain Zi = (Xi, Yi), i = 1, 2 . . . , having
the following transitions:

• generation of Yi , given Xi ,

Xi /∈ A → Yi = 0, Xi ∈ A → Yi ∼ binomial(1, λ0);
• generation of Xi+1,

Xi /∈ A → Xi+1 ∼ P(Xi, dx),

Xi ∈ A, Yi = 0 → Xi+1 ∼ (1 − λ0)
−1(P (Xi, dx)− λ0ψ(dx)),

Xi ∈ A, Yi = 1 → Xi+1 ∼ ψ(dx).

It is easily checked that the chain X0, X1, X2, . . . has the correct transition probability P .
In addition, the set a = A × {1} is now an atom for Z0, Z1, Z2, . . . in the sense that (the
transition probability of Z0, Z1, Z2, . . . is abusively still denoted by P )

P(z, C) = 	(C) for all z ∈ a, C measurable, (6)

where 	 depends only on the measure ψ and λ0. The measure 	 is P(z, B × {1}) =∫
B
ψ(x)λ01{x∈A} dx and P(z, B × {0}) = ∫

B
ψ(x)(1 − λ01{x∈A}) dx.) In particular, the chain

regenerates as soon as it enters a, i.e. whenever Zi ∈ a, the distribution of Zi+1, Zi+2, . . . is
always the same. We denote the expectation under this measure as Ea . We also set

θa = inf{i ≥ 1 : Zi ∈ a}.
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As a consequence of (2) and (3) (see Lemma ∗1 of the supplementary material),

Pz(θa < ∞) = 1, α0 = Ea[θa] < ∞ for all z ∈ E × {0, 1}. (7)

Two essential consequences of (6) and (7) are the following. Let θa(k) denote the kth hitting
time of a (θa(1) = θa > 0). Then the variables

Bk = (Zθa(k)+1, . . . , Zθa(k+1)), k ∈ N
∗, (8)

form an i.i.d. sequence of random variables valued in
⋃
i≥1 R

i . These random variables are
called ‘blocks’. Second, the chain has a unique invariant probabilityπ and we have the classical
formula (see Nummelin (1984, Equation (5.7))), for any bounded function g,

Ea

[ θa∑
i=1

g(Zi)

]
= α0π(g). (9)

Based on this, many properties of independent sequences can be extended to Markov chains. As
it is useful in our study, in Section A of the supplementary material, we derive a bound on the
second-order moments of certain empirical sums over Markov chains satisfying (2), (3), and (5).

Control of the recurrence. As we see with (3) above, a key point for the application of
this theory is the control of the moments of τA. This can be classically achieved through the
following result (see Jarner and Roberts (2002, Theorem 3.6)): if there exists a function V ≥ 1
such that, for all x ∈ E ,

Ex[V (X1)] ≤ V (x)− cV (x)1−1/p + c−11A(x) (10)

with c > 0, then for some c′ > 0 and for all x ∈ E , Ex[τpA ] ≤ c′V (x).
The m0 > 1 case. Consider, e.g. the chain Xi = (Ai, Bi), i ∈ N, with the following

transition: givenXi−1, drawUi ∼ binomial(1, 1
2 ),A

′
i , B

′
i ∼ N (0, 1), and setXi = (A′

i , Bi−1)

if Ui = 0, and otherwiseXi = (Ai−1, B
′
i ). Then (Xi)i∈N does not satisfy (4) withm0 = 1, but

does withm0 = 2. This may induce serious complications since the block theory actually fails
for the chain (Xi)i∈N.

However, for k = 0, . . . , m0 − 1, the chain (Xim0+k)i∈N satisfies (5). Consequently, some
properties when m0 > 1 might be directly deduced from the m0 = 1 case, e.g. for obtaining
bounds on empirical sums.

3. Convergence of density estimators

This section includes some results on kernel estimators of the density of the invariant measure
associated to a Markov chain. We start by stating approximation results in Lp-spaces and then
we consider the question of uniform convergence with the help of empirical process theory.

As the proofs of certain results are technical, we postpone their proofs to Section B of the
supplementary material.

3.1. Approximation in Lp-spaces

We denote by �s� the greatest integer smaller than s, e.g. �3� = 2. Following Tsybakov
(2009), we define the Nikolski class of functions Hq(s,M) of regularity s with constantM > 0
and order q ≥ 1 as the set of functions ψ bounded by M and �s�-times differentiable whose
derivatives of order �s� satisfy, for every u ∈ R

d ,∫ ∣∣ψ(l)(x + u)− ψ(l)(x)
∣∣q dx ≤ Mq |u|q(s−�s�)

1 , l = (l1, . . . , ld ) ∈ N
d ,

d∑
i=1

li ≤ �s�,
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Integral estimation based on Markovian design 839

where ψ(l) = ∂
l1
x1 · · · ∂ldxdψ and | · |1 denotes the 
1-norm. Note that 0 < s − �s� ≤ 1. When

s < 1, the Nikolski class contains discontinuous functions whereas the more classical Hölder
regularity class does not (see Delyon and Portier (2016, Lemma 9)). As a result, the Nikolski
class is too large to guarantee pointwise convergence of kernel density estimators. It still ensures
the convergence in theLq(π)-norm which is enough for our purpose. While the usual definition
of the Nikolski class is with q = 2, considering different values of q helps when treating the
bias of the density estimator along the blocks of the chain.

We say that K is a kernel with order p ∈ N
∗ whenever K : R

d → R is symmetric about 0,
bounded, and satisfies∫

K(x) dx = 1,
∫
xlK(x) dx = 0, l = (l1, . . . , ld ), 0 <

d∑
i=1

li ≤ p − 1

with the notation xl = (x
l1
1 , . . . , x

ld
d ).

For every h > 0, we introduce the notation

Kh(·) = h−dK
( ·
h

)
.

For any other function ψ : R
d → R, the convolution between ψ and Kh is

ψh(x) = (ψ � Kh)(x) =
∫
ψ(x − hu)K(u) du.

In the next lemma, we assert that for kernels with sufficiently high order, the larger the Nikolski
regularity of ψ and π the better the rate of convergence of ψh to ψ in Lq(π)-norm. For any
bounded real-valued function g defined on some space X, we set

g∞ = sup
x∈X

|g(x)|.

Lemma 1. Let s > 0, q ≥ 1, and suppose that K has order (strictly) greater than �s� such
that

∫ |u|s1|K(u)| du < +∞ and ψ : R
d → R belongs to Hq(s,M1). Then for any bounded

density π on R
d and every h > 0,

‖ψ − ψh‖Lq(π) ≤ C1M1π
1/q∞ hs, (11)

where C1 depends on K and s. Suppose the previous assumptions hold with q = 1. Let r > 0
and assume, moreover, thatK has order (strictly) greater than �r� such that

∫ |u|r1|K(u)| du <
+∞, π belongs to H1(r,M2), and

∫ |ψ(x)| dx < +∞. Then there exists C2 > 0 such that,
for every h > 0,

|π(ψ − ψh)| ≤ C2(M1π∞ +M2ψ∞)hr∨s , (12)

where C2 depends on K , s, and r .

3.2. Uniform concentration

Our approach is based on empirical process theory and more precisely on the result from
Einmahl and Mason (2005). Given i.i.d. random variables ξ1, ξ2, . . ., it can be used to provide
a bound on the expected value of

sup
f∈F

∣∣∣∣ n∑
i=1

(f (ξi)− E[f (ξ1)])
∣∣∣∣,

whenever the class of functions F is a Vapnik–Chervonenkis (VC) class of functions (see
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Theorem 1 below). A class F is VC whenever there exist A > 0 and v > 0 such that for every
probability measure Q satisfying ‖F‖L2(Q) < ∞ and every 0 < ε < 1,

N (F , L2(Q), ε‖F‖L2(Q)) ≤
(
A

ε

)v
,

where F is an envelope for F , i.e. for any f ∈ F , |f (x)| ≤ F(x), and N (T , d, ε) denotes the
ε-covering number of the metric space (T , d) (see van der Vaart and Wellner (1996)). Many
classes of interest turn out to be VC, e.g. polynomials and indicators, and several preservation
properties are available (see Propositions 1–3 below).

The following statement is actually a slight modification of Einmahl and Mason (2005,
Proposition 1). Comments are given below.

Theorem 1. (Einmahl and Mason (2005).) Let ξ1, . . . , ξn be an i.i.d. sequence and F be a
VC class of functions with envelope F and characteristics (A, v) with A ≥ e and v ≥ 1.
Set β2 = E[F(ξ1)

2]. Let σ 2 be such that

σ 2 ≥ sup
f∈F

E[f (ξ1)
2], σ 2 ≥ 16vn−1 log

(
A

(
β

σ
∨ 1

))
sup

f∈F , x∈X
f (x)2, (13)

then

E sup
f∈F

∣∣∣∣ n∑
i=1

(f (ξi)− E[f (ξ1)])
∣∣∣∣ ≤ C0

√
vnσ 2 log

(
A

(
β

σ
∨ 1

))
, (14)

where C0 is a universal constant.

In Einmahl and Mason (2005), the left-hand side was actually a Rademacher sum, but
then (14) follows from the Symmetrization lemma, e.g. van der Vaart and Wellner (1996,
Lemma 2.3.1). Another difference is that it is stated only in the σ ≤ β case. But if σ ≥ β,
we can increase F , e.g. F → a ∨ F , in such a way that β will be equal to σ (A and v do not
change) and apply the previous result; this leads to (14).

Preservation properties of the covering number’s size will be useful in the sequel to show
that some classes are VC. In the following proposition we assert that locally Lipschitz trans-
formations of VC classes are still VC. This result is a slight variation of van der Vaart and
Wellner (1996, Theorem 2.10.20) in which the authors considered uniform entropy numbers
with respect to discretely finite probability measures.

Proposition 1. Let F1, . . . ,Fd be VC classes of functions defined on a common space X such
that each f ∈ Fj is valued in the set Ij ⊂ R and Fj has envelopeFj . Let	 : I1×· · ·×Id → R

be such that, for any A = (A1, . . . , Ad) ∈ R
d+,

|	(z)−	(z̃)|
d∑
j=1

Cj (A)|zj − z̃j | (15)

for all z, z̃ ∈ ([−A1, A1] ∩ I1)× · · · × ([−Ad,Ad ] ∩ Id), where Cj : R
d → R, j = 1, . . . , d,

are nonnegative functions. Let G denote the class of functions x �→ 	(f1(x), . . . , fd(x))when
(f1, . . . , fd) ranges over F1 × · · · × Fd . The class G is a VC class of functions with envelope

G = |	(f0)| + 2
d∑
j=1

(1 ∨ Fj )Cj (F ),

where F = (F1, . . . , Fd), and f0 is an arbitrary function in F1 × · · · × Fd .
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In the following proposition, which includes a result from Nolan and Pollard (1987), we
have interesting examples of uniformly bounded VC classes of functions. We consider a kernel
function K : R

d → R that takes one of the two following forms:

K(x) =

⎧⎪⎪⎨
⎪⎪⎩
K(0)(|x|), (16a)
d∏
k=1

K(0)(xk), (16b)

where K(0) is a bounded real function of bounded variation. We denote by K∞ the supremum
of K .

Proposition 2. The class of functions {x �→ 1{x≤M} : M ∈ R} is a uniformly bounded VC class
of functions. Assume that (16a) and (16b) hold. The class of functions {x �→ K(h−1(y −
x)) : y ∈ R

d , h > 0} is a uniformly bounded VC class of functions.

By applying Proposition 1 to the VC classes of the previous proposition, we establish the
VC property for some class of functions which will be of great interest in the sequel.

Proposition 3. Assume that (16a) and (16b) hold. The class of functions

{(t, x) �→ t1{t≤M}K(h−1(y − x)) : y ∈ R
d , h > 0, M ∈ R} (17)

defined on R×R
d is aVC class of functions with envelope (t, x) �→ 2((1∨K∞)|t |+(1∨|t |)K∞).

Based on Proposition 2, if the random variables X1, X2, . . . used in the construction of π̂
were independent, then we would have, under the assumptions of Theorem 1 and Proposition 2,

sup
y∈R

|π̂(y)− πhn(y)| = OP

(√
log n

nhdn

)
,

whenever hn → 0 and nhdn/ log(n) → +∞ as n → +∞. For Markov chains, we require the
stronger condition on the sequence of bandwidth, i.e.

hn → 0,
nh

dp0/(p0−1)
n

log(n)
→ +∞ (18)

for some p0 > 2 such that
ξ(p0) = sup

x∈A
Ex[τp0

A ] < +∞. (19)

In addition, our approach only permits us to obtain the convergence to 0 in probability, not any
sharp bound on the rate of convergence.

Theorem 2. Let (Xi)i∈N be a Markov chain satisfying (2), (5), and (19) for some p0 > 2.
Suppose that K satisfies (16a) and (16b), and that (18) holds for the same p0 > 2. If π is
bounded, and

∫
(|K(x)| +K(x)2) dx < +∞, we have

sup
y∈Rd

|π̂(y)− πhn(y)| → 0 in Pπ -probability.

Further analysis on the difference between π and πhn leads to the following statement which
prevents the estimated density from being close to 0.
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Corollary 1. Under the assumptions of Theorem 2, suppose thatQ ⊂ R
d is a compact set such

that π is continuous on Q and infy∈Q π(y) ≥ b > 0. If K has bounded support and if there
exist c > 0 and h0 > 0 such that for every x ∈ Q, 0 < h < h0, it holds that (1{Q} �Kh)(x) ≥ c,
then

Pπ

(
inf
y∈Q π̂(y) ≥ cb

2

)
→ 1.

4. Main result

We now provide the rate of convergence of the estimator Îks of I0. We rely largely on the
regenerative framework described in the previous section. In particular, the following set of
assumptions ensures the statements of Theorem 2 and Corollary 1.

(H1) For some s > 0 and M1 > 0, the support of ϕ is a compact set Q ⊂ R
d and ϕ belongs

to Hq(s,M1) for any q ≥ 1.

(H2) For some r > 0 andM2 > 0, π is continuous, bounded onQ, and belongs to Hq(r,M2)

for any q ≥ 1. Moreover, there exists b > 0 such that infy∈Q π(y) ≥ b.

(H3) Let K be a kernel satisfying (16a) and (16b) with order (strictly) greater than r and s.
There exist c > 0 and h0 > 0 such that for every x ∈ Q and 0 < h < h0,

(1{Q} �Kh)(x) ≥ c.

(H4) Let (Xi)i∈N be a Markov chain satisfying (2) and (5) with initial measure ν absolutely
continuous with respect to π . There exists p0 > 3 such that

sup
x∈A

Ex[τp0
A ] < +∞,

whereA is the recurrent set introduced in (2), and asn → +∞, the sequence of bandwidth
(hn)n∈N∗ satisfies, as n → +∞,

hn → 0,
nh

dp0/(p0−1)
n

log(n)
→ +∞.

Most stable Markov chains satisfy (H4). This has been the subject of many studies; see
Meyn and Tweedie (2009) where the drift condition (10) was used to bound the moments
of the return times. Examples include, for instance, auto-regressive models (see Meyn and
Tweedie (2009, Theorem 16.5.1, Equation (16.43))) or the Metropolis–Hastings algorithm (see
Jarner and Roberts (2002, Example 5.2)). Since the invariant measure π is the solution to
π(y) = ∫

π(x)P (x, y) dx, where P is the transition density, the smoothness of y �→ P(x, y)

will essentially ensure the smoothness ofπ as required in (H2). Wheneverπ > 0 on the support
of ϕ (e.g. as soon as P(x, y) > 0 for all (x, y)) and continuous, the lower bound in (H2) holds.

High-order kernels can be constructed using the radial kernel (16a) or using the product-type
kernel (16b) following, for instance, Gasser et al. (1985) or Li and Racine (2007, Section 1.11).
The condition that (1{Q} �Kh) is lower bounded (uniformly for x and small h) is applicable in
Corollary 1 which is a key ingredient to control the small values of π̂ . This condition cannot be
trivially verified as it involves the boundary ofQ and the regions whereK < 0. A first example
is when Q is the hypercube and K is a product-type kernel with initial kernel K(0) such that∫ +∞
−x K(0)(u) du > 0 for all x > 0. A second example is when the boundary of Q is smooth

and K is such that
∫
H K(u) du > 0 for every half-space H containing 0.
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Integral estimation based on Markovian design 843

In the following theorem we extend the results of Delyon and Portier (2016) for independent
sequences of random variables to Harris recurrent Markov chains. A secondary improvement
with respect to Delyon and Portier (2016) concerns the requirements on the regularity of π .
In Delyon and Portier (2016), the density π was assumed to be at least continuously differ-
entiable on R

d and bounded away from 0 on Q, excluding the case where π is supported on
Q, and possibly discontinuous on the boundary. In our approach, we include such cases by
supposing that π is in some Nikolski regularity class. This enables us to see the effect of jumps
in the shape of π . As the Nikolski regularity of such functions is smaller than 1

2 (see Delyon and
Portier (2016, Lemma 11)), a bias term in h1/2

n will appear in the asymptotic decomposition.

Theorem 3. If, moreover, (H1)–(H4) hold, we have for every initial measure,

Îks − I0 = OPν
(hrn + n−1h−d

n + n−1/2hsn).

Proof. We consider the split chain (Zi)i∈N introduced in Section 2 with initial distribution ν.
We are interested in showing that Eν1{|Îks−I0|>an} → 0 for some sequence an → 0. By applying
Lemma ∗5 of the supplementary material, it suffices to prove the result in the case when ν is
equal to π .

From (∗11), it follows that ln/n converges to its expectation α−1
0 > 0. We use the fact that

n/ln = OPπ
(1) and that the product of two OPπ

(1) remains OPπ
(1).

Without loss of generality, we can assume that ln > 2. Indeed, the complementary event
occurs with probability going to 0 as n increases.

A convenient scaling in the sequel is to put α0(ln − 1) and α0(ln − 2) instead of n, in some
places, since it simplifies many terms of our expansion. Hence, instead of Îks, we instead study

Ĩks = (ln − 1)−1α−1
0

n∑
i=1

ϕ(Xi)

π̂i

with

π̂i = α−1
0 (ln − 2)−1

n∑
j=1

Kij and Kij = Khn(Xi −Xj).

Since Îks = ((ln − 1)/(ln − 2))Ĩks and ((ln − 1)/(ln − 2)) = OPπ
(1), the rates of convergence

of Ĩks and Îks, in probability, are the same.
We now introduce the notation

ψq(x) = ϕ(x)

π(x)q
, q ∈ N.

The development (reminiscent of the Taylor expansion of π̂i around π(Xi))

1

π̂i
= 2

π(Xi)
− π̂i

π(Xi)2
+ (π(Xi)− π̂i)

2

π̂iπ(Xi)2

allows us to expand Ĩks as

Ĩks = (α0(ln − 1))−1
n∑
i=1

2ψ1(Xi)− (α2
0(ln − 1)(ln − 2))−1

n∑
i=1

n∑
j=1

ψ2(Xi)Kij + R1,n

with

R1,n = (α0(ln − 1))−1
n∑
i=1

ψ2(Xi)(π(Xi)− π̂i)
2

π̂i
.
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Reorganizing the first two terms according to the blocks leads to

Ĩks = −(α2
0(ln − 1)(ln − 2))−1

ln∑
k=0

ln∑
l=0

Hkl + (α0(ln − 1))−1
ln∑
k=0

2Gk + R1,n

with, for any (k, l) ∈ N
2,

Hkl =
∑

i∈Bk,j∈Bl
ψ2(Xi)Kij , Gk =

∑
i∈Bk

ψ1(Xi).

The notation i ∈ Bk is short for Zi ∈ Bk and the block B0 is the first (incomplete) block
Z1, Z2, . . . , Zθa (1). Diagonal terms of the above U -statistic and terms related to the first and
last block are treated as a remainder, and we write

Ĩks = −(α2
0(ln − 1)(ln − 2))−1

ln−1∑
k=1

ln−1∑
l=k+1

{H ∗
kl} + (α0(ln − 1))−1

ln−1∑
k=1

{2Gk + R1,n + R2,n}

(20)

with H ∗
kl = Hkl +Hlk and

R2,n = −(α2
0(ln − 1)(ln − 2))−1

(
H00 +Hlnln +H ∗

0ln +
ln−1∑
k=1

{H ∗
0k +H ∗

lnk
+Hkk}

)

+ (α0(ln − 1))−12(G0 +Gln).

The first term in (20) is aU -statistic whose fluctuations can be controlled by using an Hoeffding-
type decomposition with respect to the blocks. Denoting

H̃ ∗
k = Ea[H ∗

1k | Bk],
we can write

Ĩks − Iϕ = Un +Mn + Bn + R1,n + R2,n

with (we use the fact that
∑

1≤k<l≤ln−1{H̃ ∗
k + H̃ ∗

l } = (ln−2)
∑

1≤k≤ln−1 H̃
∗
k and we underbrace

terms which have been deliberately introduced and removed)

Un = −(α2
0(ln − 1)(ln − 2))−1

ln−1∑
k=1

ln−1∑
l=k+1

{H ∗
kl −H̃ ∗

k − H̃ ∗
l︸ ︷︷ ︸

1

+ Ea[H ∗
12]︸ ︷︷ ︸

2

},

Mn = (α0(ln − 1))−1
ln−1∑
k=1

{2Gk − α−1
0 H̃ ∗

k︸ ︷︷ ︸
1

− Ea(2G1 − α−1
0 H̃ ∗

1 )︸ ︷︷ ︸
3

},

Bn = α−1
0 Ea(2G1 − α−1

0 H̃ ∗
1 )︸ ︷︷ ︸

3

+ (2α2
0)

−1
Ea[H ∗

12]︸ ︷︷ ︸
2

−
∫
ϕ(x) dx.

The notation follows from the fact that Un is a U -statistic,Mn is a martingale, Bn is a bias term
(nonrandom), R1,n comes from the remainder of the Taylor expansion, and R2,n corresponds
to uncompleted blocks and diagonal terms. We now compute bounds for each term separately.
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Integral estimation based on Markovian design 845

Step 1: Un = OP(n
−1h

−d/2
n ). Let

Ũn =
(
α2

0(ln − 1)(ln − 2)

n2

)
Un.

Since ln ≤ n, we have,
|Ũn| ≤ n−2 max

1≤L≤n |SL|
with SL = ∑

1≤k<l≤L{H ∗
kl − H̃ ∗

k − H̃ ∗
l + Ea[H ∗

12]}. The independence between the blocks
(Bk)k=1,...,n, defined in (8), implies that the process L �→ SL is a martingale. Then by Doob’s
inequality, we know that

Pπ (|Ũn| > ε) ≤ EaS
2
n

ε2n4 ,

and it remains to develop the squared sum inside the expectation. By construction, the terms
in the sum defining SL are all orthogonal. As a consequence, we have

Pπ (|Ũn| > ε) ≤ n(n− 1)Ea[{H ∗
12 − H̃ ∗

1 − H̃ ∗
2 + Ea[H ∗

12]}2]
2ε2n4 ≤ Ea[H ∗2

12 ]
2ε2n2 .

Due to the symmetry of K and the boundedness of ψ2 and K , we have, denoting by �k the
length of Bk for k ∈ N (as introduced in the proof of Theorem 2),

Ea[H 2
12] = Ea

( ∑
i∈B1, j∈B2

{ψ2(Xi)Kij + ψ2(Xj )Kji}
)2

≤ ψ2
2,∞Ea

( ∑
i∈B1, j∈B2

|Kij | + |Kji |
)2

≤ ψ2
2,∞K∞h−d

n Ea

(
�1�2

∑
i∈B1, j∈B2

|Kij | + |Kji |
)

≤ ψ2
2,∞K∞h−d

n Ea

(
(�2

1 +�2
2)

∑
i∈B1, j∈B2

|Kij |
)

= 2ψ2
2,∞K∞h−d

n Ea

(
�2

1

∑
i∈B1, j∈B2

|Kij |
)
.

The independence between the blocks allows us to integrate with respect to B2, knowing B1,
and using (9) this yields

Ea

(
�2

1

∑
i∈B1, j∈B2

|Kij |
)

= α0Ea

(
θ2
a

∑
i∈B1

∫
|Khn(Xi − y)|π(y) dy

)

≤ α0π∞
∫

|K(x)| dxEa[θ3
a ].

From Lemma ∗1 and assumption (H4), Eaθ
3
a is finite. We conclude using the fact that Un =

Op(1)Ũn.
Step 2: Mn = OP(n

−1/2hs∧rn ). Consider

M̃n =
(
α0(ln − 1)

n

)
Mn.
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We have

|M̃n| ≤ n−1 max
1≤L≤n

∣∣∣∣ ∑
1≤k≤L

{2Gk − α−1
0 H̃ ∗

k − Ea(2Gk − α−1
0 H̃ ∗

k )}
∣∣∣∣,

and Doob’s inequality yields

Pπ (|M̃n| > ε) ≤ Ea(
∑

1≤k≤n{2Gk − α−1
0 H̃ ∗

k − Ea(2G1 − α−1
0 H̃ ∗

1 )})2
ε2n2

= Ea(2G1 − α−1
0 H̃ ∗

1 − Ea(2G1 − α−1
0 H̃ ∗

1 ))
2

ε2n

≤ Ea(2G1 − α−1
0 H̃ ∗

1 )
2

ε2n
.

Applying (9), we have

α−1
0 H̃ ∗

1 =
∑
i∈B1

∫
(ψ2(Xi)Khn(Xi − y)+ ψ2(y)Khn(y −Xi))π(y) dy

=
∑
i∈B1

{ψ2(Xi)πhn(Xi)+ ψ1hn(Xi)}; (21)

hence, it holds that

2G1 − α−1
0 H̃ ∗

1 =
∑
i∈B1

{ψ2(Xi)(π(Xi)− πhn(Xi))+ (ψ1(Xi)− ψ1hn(Xi))}. (22)

Then from Minkowski’s inequality and Lemma ∗3, for some 2 < p < p0 − 1 (see assump-
tion (H4)) we obtain

‖2G1 − α−1
0 H̃ ∗

1 ‖2 ≤ ψ2,∞
∥∥∥∥ ∑
i∈B1

|π(Xi)− πhn(Xi)|
∥∥∥∥

2
+

∥∥∥∥ ∑
i∈B1

|ψ1(Xi)− ψ1hn(Xi)|
∥∥∥∥

2

≤ C(‖(π(X0)− πhn(X0))τ
p/2
A ‖2 + ‖(ψ1(X0)− ψ1hn(X0))τ

p/2
A ‖2),

where C is a constant that depends on p and on the chain and ‖ · ‖2 denotes the L2(π)-norm.
Now we use Hölder’s inequality with conjugates u and v to obtain

‖2G1 − α−1
0 H̃ ∗

1 ‖2 ≤ C‖τp/2A ‖2v(‖π(X0)− πhn(X0)‖2u + ‖ψ1(X0)− ψ1hn(X0)‖2u).

Now choose v sufficiently close to 1 to ensure that, using (H4) and (∗6) and (∗2), Eπ [τpvA ] ≤
Eπ [τp0−1

A ] ≤ Eπ [θp0−1
a ] < +∞. We then use Lemma 1 to obtain the desired rate, hrn + hsn,

for the two other quantities.
Step 3: Bn = O(hrn). Using (9) and (22), we have

α−1
0 Ea(2G1 − α−1

0 H̃ ∗
1 ) =

∫
ψ2(x)(π(x)− πhn(x))π(x) dx +

∫
(ψ1(x)−ψ1hn(x))π(x) dx,

and then using (∗9) and the definition of ψ2 yields

α−1
0 Ea(2G1 − α−1

0 H̃ ∗
1 ) = 2π(ψ1 − ψ1hn).
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Similarly from (∗9), (9), and (21), it follows that

(2α2
0)

−1
Ea[H ∗

12] = (2α2
0)

−1
Ea[H̃ ∗

1 ] = 1

2

∫
(ψ2(x)πhn(x)+ ψ1hn(x))π(x) dx = π(ψ1hn).

Since
∫
ϕ(x) dx = π(ψ1), this yields

Bn = π(ψ1 − ψ1hn).

Since there exists M such that ψ1 belongs to H1(r ∧ s,M), applying Lemma 1 yields a bound
in hr∨min(r,s)

n = hrn for Bn.
Step 4: R1,n = OP(h

2r
n + n−1h−d

n ). From Corollary 1, and since n(α0(ln−1))−1 = OP(1),
we obtain

R1,n ≤ OP(1)

{
n−1

n∑
i=1

(π(Xi)− π̂i)
2
}

≤ OP(1)

{
n−1

n∑
i=1

(π(Xi)− πhn(Xi))
2 + (πhn(Xi)− π̂i)

2
}
.

We compute the expectation of the first term inside the brackets. Using Lemma 1, we obtain
a bound OP(h

2r
n ). To treat the second term inside the bracket, denote J (−i) = {1 ≤ k ≤

ln − 1 : i /∈ Bk}, l(i) = {k ∈ N : i ∈ Bk}, andK(i, B) = ∑
j∈B Khn(Xi −Xj), and write (r1,n

and r2,n are specified below)

n∑
i=1

(πhn(Xi)− π̂i)
2

=
θa(ln)∑

i=θa(1)+1

(πhn(Xi)− π̂i)
2 + r1,n

= r1,n +
θa(ln)∑

i=θa(1)+1

(
πhn(Xi)− (α0(ln − 2))−1

{
K(i, B0)+K(i, Bln)+K(i, Bl(i))

+
∑

k∈J (−i)
K(i, Bk)

})2

≤ 2(ln − 2)−2
θa(ln)∑

i=θa(1)+1

( ∑
k∈J (−i)

{πhn(Xi)− α−1
0 K(i, Bk)}

)2

+ r1,n + r2,n

≤ 2(ln − 2)−2
n∑
i=1

( ∑
k∈J (−i)

{πhn(Xi)− α−1
0 K(i, Bk)}

)2

+ r1,n + r2,n

with

r1,n =
n∑
i=1

(πhn(Xi)− π̂i)
2(1{i≤θa(1)} + 1{i>θa(ln)}) ≤ sup

y∈Rd

|π̂(y)− πhn(y)|(θa(1)+�ln)
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and

r2,n = 2(α0(ln − 2))−2
θa(ln)∑

i=θa(1)+1

(K(i, B0)+K(i, Bln)+K(i, Bl(i)))
2

≤ 2(α0(ln − 2))−2K2∞h−2d
n

θa(ln)∑
i=θa(1)+1

(�0 +�ln +�l(i))
2

≤ 6(α0(ln − 2))−2K2∞h−2d
n

θa(ln)∑
i=θa(1)+1

(�2
0 +�2

ln
+�2

l(i))

≤ 6(α0(ln − 2))−2K2∞h−2d
n

(
n(�2

0 +�2
ln
)+

θa(ln)∑
i=θa(1)+1

�2
l(i)

)
.

Since
∑θa(ln)
i=θa(1)+1�

2
l(i) = ∑ln−1

k=1 �
3
k ≤ ∑n

k=1�
3
k , we find that the above term between the

parentheses has expectation of order n(Eπθ2
a + Eaθ

2
a + Eaθ

3
a ). Since, from Lemma ∗1 and

assumption (H4), the previous expectations are bounded, it follows that r2,n = OPπ
(n(nhdn)

−2)

has a contribution OPπ
((nhdn)

−2) to R1,n. Moreover, we have r1,n = oPπ
(1) by Theorem 2,

which yields a contribution oPπ
(n−1) to R1,n. Regarding the aim of this step, r1,n and r2,n are

negligible, so that we can concentrate on
n∑
i=1

( ∑
k∈J (−i)

{πhn(Xi)− α−1
0 K(i, Bk)}

)2

.

We use the independence between the blocks to compute

Eπ

n∑
i=1

( ∑
k∈J (−i)

{πhn(Xi)− α−1
0 K(i, Bk)}

)2

= nEπ

(ln−2∑
k=1

{πhn(X0)− α−1
0 K(0, Bk)}

)2

≤ nEπ

(
max

1≤l≤n

∣∣∣∣ l∑
k=1

{πhn(X0)− α−1
0 K(0, Bk)}

∣∣∣∣
)2

.

Since l �→ ∑l
k=1{πhn(X0)− α−1

0 K(0, Bk)} is a martingale, using Doob’s inequality, we obtain

Eπ

n∑
i=1

( ∑
k∈J (−i)

{πhn(Xi)− α−1
0 K(i, Bk)}

)2

≤ 4nEπ

[( n∑
k=1

{πhn(X0)− α−1
0 K(0, Bk)}

)2]
= 4n2

Eπ [{πhn(X0)− α−1
0 K(0, B1)}2]

≤ 4n2α−2
0 Eπ [K(0, B1)

2]
≤ 4n2α−2

0 h−d
n K∞Eπ

{
�1

∑
j∈B1

|K0j |
}
.

Here we use the independence between B1 and X0 to write

Eπ

{
�1

∑
j∈B1

|K0j |
}

= Ea

{
θa

∑
j∈B1

∫
π(Xj − hnu)|K(u)| du

}
≤ π∞

∫
|K(x)| dxEa[θ2

a ].

This leads to the contribution OPπ
(n−1h−d

n ) to R1,n.
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Step 5: R2,n = OP(n
−1h−d

n ). Recall that

R2,n = −(α2
0(ln − 1)(ln − 2))−1

(
H00 +Hlnln +H ∗

0ln +
ln−1∑
k=1

{H ∗
0k +H ∗

lnk
+Hkk}

)

+ (α0(ln − 1))−12(G0 +Gln)

with Hkl = ∑
i∈Bk, j∈Blψ2(Xi)Kij , H ∗

kl = Hkl + Hlk , and Gk = ∑
i∈Bkψ1(Xi). First, the

boundedness of ψ1 yields

Eπ |G0| ≤ ψ1,∞Eπθa and Eπ |Gln | ≤ ψ1,∞Eaθa,

leading to a contribution of order OPπ
(n−1) � OPπ

((nhdn)
−1). Second, we have

Eπ |
ln−1∑
k=1

(H ∗
0k +H ∗

lnk
+Hkk)| ≤ nEπ (|H ∗

01| + |H ∗
ln1| + |H11|)

≤ nK∞ψ2,∞h−d
n (EaθaEπθa + (Eaθa)

2 + Eaθ
2
a ),

involving a (nhdn)
−1 in the OP. In a similar fashion, the term H00 + Hlnln +H ∗

0ln
has order

(n2hdn)
−1 � (nhdn)

−1. �

5. Numerical experiments

5.1. Estimation algorithm

We first recall the framework under investigation. We consider the estimation of the integral
of a function ϕ over Q from a dataset (Xi, ϕ(Xi))1≤i≤n when the Xi form a Markov chain.
The estimator Îks of I0 = ∫

Q
ϕ(x) dx is

Îks = n−1
n∑
i=1

ϕ(Xi)

π̂(Xi)
.

As noted by Delyon and Portier (2016) for independent data, the crucial factor for the
estimation of I0 is to select the optimal bandwidth parameter hn appearing in the estimator π̂
of the design distribution

π̂(x) = (nhdn)
−1

n∑
i=1

K

(
x −Xi

hn

)
, x ∈ R

d .

In this paper we propose to use the multivariate plug-in bandwidth selection developed by
Chacón and Duong (2010). More precisely, we exploit the implementation of this algorithm in
the R package ks (see R Development Core Team (2007)); see Duong (2007) for a presentation
of a preliminary version. This approach ensures better results than theϕ-based method proposed
by Delyon and Portier (2016) in both the independent and the Markov frameworks. Moreover,
this method is simpler because it provides an optimal bandwidth that only depends on the
design (and not on ϕ) contrary to the aforementioned competitive strategy. It is a particularly
interesting procedure to integrate several functions from the same design points, e.g. temperature
and salinity, since it requires only one selection of the bandwidth. We strongly recommend the
use of this method rather than the one proposed previously by Delyon and Portier (2016). Such
a choice of the bandwidth does not fit the theoretical framework of Theorem 3 (as it depends

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.38
Downloaded from https://www.cambridge.org/core. Bibliotheque de l'Universite de Rennes 1, on 27 Mar 2019 at 16:02:36, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.38
https://www.cambridge.org/core


850 R. AZAÏS ET AL.

on the design points) but does not require any knowledge on the regularity of the functions ϕ
and f .

Delyon and Portier (2016) introduced a corrected version Î cks of the integral estimator Îks
that results in both smaller bias and variance in numerical experiments, i.e.

Î cks = 1

n

n∑
i=1

ϕ(Xi)

π̂(Xi)

(
1 − v̂(Xi)

π̂(Xi)2

)
,

where

v̂(x) = 1

n(n− 1)

n∑
i=1

[
1

hdn
K

(
x −Xi

hn

)
− π̂(x)

]2

, x ∈ R
d .

This new estimator is chosen in order to eliminate the leading term in the expansion of the
estimation error in the independent case. With function v̂ being positive, Î cks is lower than Îks,
which tends to have a positive bias. In the sequel, we compute both Îks and Î cks from the same
bandwidth hn depending only on the design points, and obtained as aforementioned.

5.2. Simulation study

We consider three models. For each model, the function ϕ will be integrated on its support
Q = [0, 1]d .

Model M1. We have

ϕ(x1, . . . , xd) =
d∏
i=1

[2 sin(πxi)
21[0,1](xi)].

Model M2. We have

ϕ(x1, . . . , xd) =
d∏
i=1

[
1 + π2

π(1 + exp(1))
sin(πxi) exp(xi)1[0,1](xi)

]
.

Model M3. We have

ϕ(x1, . . . , xd) =
d∏
i=1

[
π

2
sin(πxi)(1 + cos(5πxi))1[0,1](xi)

]
.

For improved comparability, the normalizing constant of each model is chosen in such a
way that I0 = 1. In Figure 1, we present the one-dimensional shape function of each model.
The three models are continuous but have their own features. Model M1 is symmetric centered
on the center of Q, while M2 has a negative skewness. Finally, M3 has three distinct modes.
Consequently, one may expect that the models are in some way sorted by increasing difficulty
in numerical integration.

For each model Mi , 1 ≤ i ≤ 3, we compute the estimator and its corrected version, presented
in Section 5.1, from independent design (data with uniform distribution on Q is denoted by
UQ) and from Markov design. In the Markov case, the dataset is generated according to the
Metropolis–Hastings algorithm with proposition kernel

Pr(x, dy) = U[x−ε, x+ε]d (dy)

with ε = 0.2 and target measure UQ. The Markov chain that results from this Metropolis–
Hastings algorithm satisfies (H4). Indeed, first note that the kernel P 6(x, dy) has a density
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Figure 1: Shape of function ϕ for each model Mi , 1 ≤ i ≤ 3, in dimension d = 1.

which is lower bounded on [0, 1]2d by a positive number (since 6ε > 1 and ϕ(x)/ϕ(y) is lower
bounded on [0, 1]2d ), i.e. starting from any x and waiting long enough will guarantee that any
region is attained by the chain with positive probability. In other words, the uniform Doeblin
condition holds for the chains (Xmk+1)k≥1 with the Lebesgue measure. Applying Meyn and
Tweedie (2009, Theorem 16.0.2, p. 394), we find that the return time to A of this chain, which
is longer than the return time of the initial chain, has an exponential moment.

Independent and Markov designs have thus not been generated according to the same
simulation model but share the same distribution, which makes them comparable. This will
allow us to evaluate how the Markovian dependency affects the performance of the methods.
For the sake of reference, we also compute the Monte Carlo estimator

Îmc = n−1
n∑
i=1

ϕ(Xi)

π(Xi)
,

which can only be carried out in a simulation study when the distribution π is known, and not
from real data. Furthermore, we investigate various sample sizes (n = 500, n = 1000, and
n = 2000) and different dimensions (d = 1, d = 2, and d = 3). All the numerical results over
50 independent replicates are presented in Figures 2–4 (models M1–M3). In order to make
this numerical study reproducible, the R scripts implemented to generate datasets and estimate
the integrals of interest are available upon request from the authors.

First, estimators Îks and Î cks have similar dispersions, but the corrected version is more
accurate in most cases and should be the version of choice. Unsurprisingly, the results are
better in terms of bias and variance when estimation of the design distribution is computed
from independent data rather from Markov data. In addition, the accuracy deteriorates when
the dimension increases. When the sample size is small, the integral is underestimated (see,
e.g. models M1 and M2 in dimensions 2 and 3), in particular, in the Markov framework (see
model M3 in dimension 3). Numerical results are quite similar for models M1 and M2, which
indicate that the method is not sensitive to skewness. As expected, the quality is a little lower
for M3. In the three models under consideration, the Monte Carlo estimator Îmc presents no
bias but a large dispersion in comparison with Îks and Î cks, especially in the Markov framework
where the dataset does not exactly follow the distribution π . The results of the numerical study
indicate that the methodology is very efficient and applicable in various contexts, in particular,
compared to Monte Carlo methods which yield less favorable results in terms of variance and
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Figure 2: Plots of Îks, Î
c
ks, and Îmc computed from 50 replicates for model M1 in dimension d = 1

(upper), d = 2 (middle), and d = 3 (lower) from independent data (left) and Markov data (right).

cannot be applied in a statistical framework. Nevertheless, the results of additional numerical
experiments indicate that both estimators present some bias when function ϕ is not continuous.

As stated in Theorem 3, the shape of the function π (and secondarily ϕ) plays an important
role in the convergence rate of Îks: the smoother the better. Hence, the situation when π is the
uniform density onQ is far from being straightforward (as the function is not even continuous).
Continuity of π is no remedy as it implies the cancellation of π at the border and, therefore,
provides insufficient points near the border. One solution is to consider points that lie slightly
outside Q, say in Q̃ ⊃ Q, in order to stabilize the estimation of π at the border of Q. Then
compute the kernel estimator π̃ using all these points, and finally calculate

Ĩks = n−1
n∑
i=1

ϕ(Xi)1{Xi∈Q}
π̃(Xi)

.

In the applications where only points in Q are given, one might prefer to consider a different
setQ, slightly smaller than the original, in order to implement the previous method. If collecting
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Independent data Markov data
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Figure 3: Plots of Îks, Î
c
ks, and Îmc computed from 50 replicates for model M2 in dimension d = 1

(upper), d = 2 (middle), and d = 3 (lower) from independent data (left) and Markov data (right).

the points has not been carried out, it might be appropriate to allow the sensor capturing data
to leave Q.

5.3. Real-data analysis

The U.S. National Centers for Environmental Information (NCEI) are part of the National
Oceanic and Atmospheric Administration (NOAA). NCEI form the world’s largest provider of
weather and climate data. The real-data analysis presented in the present paper is based on
sea surface temperatures obtained all around the world between 2005 and 2015 from profiling
floats (PFL dataset) and is available on the NCEI’s website (World Ocean Database Search and
Select, last consulted in July 2016, and available at https://www.nodc.noaa.gov/cgi-bin/OC5/
SELECT/builder.pl). Sea surface temperatures have a large influence on climate and weather
and are therefore used in analyses of climate change. The dataset investigated in this article
contains about 1.3M data and is fully described in Table 1 and Figure 5. Data preprocessing
has been implemented in Python, while estimation and data analysis have been made with R.
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Independent data Markov data
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Figure 4: Plots of Îks, Î
c
ks, and Îmc computed from 50 replicates for model M3 in dimension d = 1

(upper), d = 2 (middle), and d = 3 (lower) from independent data (left) and Markov data (right).

Table 1: Size of the sub-datasets extracted from PFL dataset between 2005 and 2015. The total dataset
is 1 343 094.

Pacific Ocean (dataset) Atlantic Ocean (dataset) Indian Ocean (dataset)
Year

727 135 336 180 279 779

min max min max min max
2005 35 773 – 16 242 – 14 134 –
2015 – 86 961 – 45 488 – 33 049

The database of interest consists of spatiotemporal data obtained from measure instruments
with unpredictable trajectories, which makes them hardly tractable. We focus here on the
estimation of the average sea surface temperature for a given period of time, between 2005 and
2015, and for some given areas in the three major oceans. Areas considered in this paper are de-
limited by the latitude: more than 50◦ (North region), [30◦, 50◦] and [10◦, 30◦] (North Tropical
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Figure 5: Visualization of the 1 343 094 points of the PFL dataset between 2005 and 2015. Oceans are
shaded (dark to light: Pacific, Atlantic, Indian).

region), [−10◦, 10◦] (Equatorial region), [−30◦,−10◦] (South Tropical region), [−30◦,−50◦],
and less than −50◦ (South region). For each mentioned spatial region, we estimate the average
sea surface temperature over each month by the corrected algorithm presented in Section 5.1.
This technique is fully adapted to the problem at hand because measurement locations follow
erratic trajectories with unknown distribution.

We present the local average sea surface temperatures for the three oceans in Figure 6. Temp-
erature patterns are obtained according to the location on the North–South axis. We observe
that the variability of sea surface temperatures in a given region over 11 years is weak compared
to the variations in latitude, especially for the Pacific Ocean. In other words, the temperature
mainly depends on the latitude, rather on the period of the year. Unsurprisingly, sea surface
temperatures are the highest under the equator and near the tropics, where the Earth receives
the most direct sunlight.

Pacific Ocean (2005–2015) Atlantic Ocean (2005–2015) Indian Ocean (2005–2015)
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Figure 6: Average sea surface temperatures according to the latitude of the considered area for the three
major oceans. Each plot has been computed from 11 × 12 = 132 estimates of the average temperature

for each month of each year between 2005 and 2015.
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Figure 7: Times series of sea surface temperature in some specific areas of the three major oceans between
2005 and 2015. Latitude between −30◦ and −10◦ for the south tropical Pacific Ocean (left), 50◦ and 60◦

for the North Atlantic Ocean (middle), and −10◦ and 10◦ for the equatorial Indian Ocean (right).

In Figure 7 we present time series over 11 years of average sea surface temperatures in
three regions: south tropical Pacific Ocean (latitude between −30◦ and −10◦), North Atlantic
Ocean (latitude between 50◦ and 60◦), and equatorial Indian Ocean (latitude between −10◦
and 10◦). First, it should be noted that we observe an expected seasonal effect on sea surface
temperatures of South Pacific and North Atlantic Oceans: the highest temperatures occur in
January and February in the southern hemisphere, while they occur in August and September
for the North Atlantic Ocean. In addition, we note a general decrease in sea surface temperature
in the southern pacific between 2006 and 2009 followed by a stable period. This phenomenon
has been taken into account in simulations proposed by Kosaka and Xie (2013). In particular,
they showed that recent cooling in the Pacific Ocean is tied to the recent global warming hiatus.
We also remark that the temperature in the NorthAtlantic Ocean has decreased recently. Indeed,
there is a region of cooling in the Northern Atlantic. Rahmstorf et al. (2015) suggested that
this cooling may be due to changes in the Atlantic meridional overturning circulation in the late
twentieth century. Finally, we point out that the equatorial Indian Ocean has tended to warm
for at least 10 years. According to Roxy et al. (2014), this warming began more than a century
ago and is linked to the El Niño–Southern Oscillation periodical phenomenon.
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