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Bootstrap Testing of the Rank of a Matrix via
Least-Squared Constrained Estimation

François PORTIER and Bernard DELYON

To test if an unknown matrix M0 has a given rank (null hypothesis noted H0), we consider a statistic that is a squared distance between
an estimator M̂ and the submanifold of fixed-rank matrix. Under H0, this statistic converges to a weighted chi-squared distribution. We
introduce the constrained bootstrap (CS bootstrap) to estimate the law of this statistic under H0. An important point is that even if H0

fails, the CS bootstrap reproduces the behavior of the statistic under H0. As a consequence, the CS bootstrap is employed to estimate the
nonasymptotic quantile for testing the rank. We provide the consistency of the procedure and the simulations shed light on the accuracy of
the CS bootstrap with respect to the traditional asymptotic comparison. More generally, the results are extended to test whether an unknown
parameter belongs to a submanifold of the Euclidean space. Finally, the CS bootstrap is easy to compute, it handles a large family of tests
and it works under mild assumptions.

KEY WORDS: Dimension reduction; Hypothesis testing; Rank estimation.

1. INTRODUCTION

Let M0 ∈ Rp×H be an unknown matrix. To infer about the
rank of M0 with hypothesis testing, the general framework
usually considered is the following: there exists an estimator
M̂ ∈ Rp×H of M0 such that

n1/2(M̂ − M0)
d−→ W, with vec (W ) = N (0, �), (A1)

where vec(·) vectorizes a matrix by stacking its columns. In the
whole article, the hatted quantities are random sequences that
depend on the sample number n, all the limits are taken with
respect to n. Moreover, there exists an estimator �̂ such that

�̂
P−→ �, (A2)

and in some cases, one may ask that

� is full rank. (A3)

Let d0 be the rank of M0 and m ∈ {1, . . . , p}, we consider the
set of hypotheses

H0 : d0 = m against H1 : d0 > m. (1)

Thus, d0 would be estimated in the following way: we start by
testing m = 0, if H0 is rejected we go a step further m := m + 1,
if not we stop the procedure and the estimated rank is d̂ = m

(see Robin and Smith 2000 for more details on this procedure).
In this article, by considering the hypotheses (1), we focus on
each step of this procedure.

To test (1), many different statistics have been proposed in the
literature. For instance, Cragg and Donald (1996) introduced a
statistic based on the Lower Upper (LU) decomposition of M̂ ,
Kleibergen and Paap (2006) studied the asymptotic behavior of
some transformation of the singular values of M̂ , and Cragg and
Donald (1997) considered the minimum of a squared distance
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between M̂ and the submanifold of fixed-rank matrix. In some
other fields with similar issues, close ideas have been devel-
oped: Li (1991) proposed a statistic equal to the sum of squared
singular values of M̂ , Bura and Yang (2011) examined a nor-
malized version of the Li’s statistic, and Cook and Ni (2005)
also considered the minimum of a squared distance under rank
constraint. For comprehensiveness, in this article, we consider
the following three statistics. The first one is introduced in Li
(1991) as

�̂1 = n

p∑
k=m+1

λ̂2
k, (2)

where (̂λ1, . . . , λ̂p) are the singular values of M̂ arranged in a
descending order. Under H0 and (A1), this statistic converges
in law to a weighted chi-squared distribution (Bura and Yang
2011). The main drawback of such a test is that �̂1 is not pivotal,
that is, its asymptotic law depends on unknown quantities that
are M0 and �. Accordingly, the consistency of the associated test
requires assumptions (A1) and (A2). In Bura and Yang (2011),
a standardized version of �̂1 is studied with

�̂2 = n vec(Q̂1M̂Q̂2)T [(Q̂2 ⊗ Q̂1)�̂(Q̂2 ⊗ Q̂1)]+

× vec(Q̂1M̂Q̂2), (3)

where M+ stands for the Moore–Penrose inverse of M and
Q̂1 and Q̂2 are, respectively, the orthogonal projectors on the
left and right singular spaces of M̂ associated with the p − m

smallest singular values. The authors proved that under H0, if
(A1) and (A2) hold, the Wald-type statistic �̂2 is asymptotically
chi-squared distributed. Besides, Cragg and Donald (1997) and
Cook and Ni (2005) proposed

�̂3 = n min
rank(M)=m

‖�̂−1/2 vec(M̂ − M)‖2, (4)

which is also asymptotically chi-squared distributed under H0,
assuming (A1), (A2), and (A3). We will refer the minimum dis-
crepancy approach as in Cook and Ni (2005), where the authors
argued for the optimality of this approach. Although the statis-
tics �̂2 and �̂3 have the convenience of being asymptotically
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Table 1. Values of Â and B̂ in (5) and (6) for computing �̂1, �̂2,
and �̂3

�̂1 �̂2 �̂3

Â I I �̂−1

B̂ I [(Q̂2 ⊗ Q̂1)�̂(Q̂2 ⊗ Q̂1)]+ �̂−1

pivotal, they both require the inversion of a large matrix and
this may cause robustness problems when the sample number
is not large enough. For α ∈ (0, 1) and under the relevant as-
sumptions, each of these statistics �̂1, �̂2, and �̂3 is consistent
at level 1 − α in testing (1), that is, the level goes to 1 − α and
the power goes to 1 as n goes to ∞.

Nevertheless the estimation of the quantile is difficult because
either the asymptotic distribution depends on the data (�̂1 is not
pivotal) or the true distribution may be quite different than the
asymptotic one (slow rates of convergence of �̂2 and �̂3). The
objective of the article is to propose a bootstrap method for
quantile estimation in this context.

An important remark that instigates the sketch of the article
is that all the previous statistics share the form

�̂ = n‖B̂1/2 vec(M̂ − M̂c)‖2, (5)

with

M̂c = argmin
rank(M)=m

‖Â1/2 vec(M̂ − M)‖2, (6)

and ‖ · ‖ is the Euclidean norm, Â ∈ RpH×pH , B̂ ∈ RpH×pH .
The values of Â and B̂ corresponding to the statistics �̂1, �̂2,
and �̂3 are summarized in Table 1.

We refer to traditional testing (resp. bootstrap testing) when
the statistic is compared to its asymptotic quantile (resp. boot-
strap quantile). The bootstrap test is said to be consistent at level
α if

PH0 (�̂ > q̂(α)) −→ 1 − α and PH1 (�̂ > q̂(α)) −→ 1,

(7)

where q̂(α) is the quantile of level α calculated by bootstrap.
The advantages of bootstrap testing with respect to traditional

testing can be summarized with the two following arguments.
From a practical point of view, the bootstrap approach is simpler
than the traditional approach because it alleviates the sometimes
difficult derivation of the asymptotic law of the statistic. From
a theoretical point of view, bootstrap testing enjoys a high level
of accuracy under H0. This fact is emphasized by considering
the two possibilities: when the statistic is pivotal (as �̂2 and �̂3)
and when the asymptotic law of the statistic depends on un-
known quantities (as �̂1). First, as highlighted by Hall (1992),
when the statistic is pivotal, under some conditions the gap
between the distribution of the statistic and its bootstrap dis-
tribution is OP (n−1). Since the normal approximation leads
to a difference O(n−1/2), the bootstrap enjoys a better level
of accuracy. Second, if the asymptotic law of the statistic is
unknown, the bootstrap appears as an alternative even more
convenient because it avoids its estimation. In Hall and Wilson
(1991), the authors gave two advice for the use of the bootstrap
testing:

(a) Whatever the sample is under H0 or H1, the bootstrap
estimates the law of the statistic under H0.

(b) The statistic is pivotal.

The first guideline is the most crucial one because if it fails it
may lead to inconsistency of the test (see Hall and Wilson 1991
for some examples). The second guideline aims at improving
the accuracy of the test by taking full advantage of the accuracy
of the bootstrap.

In this article, we introduce the constrained (CS) bootstrap
whose procedure is as follows when testing (1).

The CS bootstrap procedure for testing (1)
Required: • An estimator M̂ of M0.

• Bootstrap values of
√

n(M̂ − M0) noted
W ∗.

Test statistic: �̂ = n‖B̂1/2vec(M̂ − M̂c)‖2,
with M̂c = argmin

rank(M)=m

‖Â1/2vec(M̂ − M)‖2,

where Â and B̂ are design matrix.

Bootstrapped statistic: �∗ = n‖B∗1/2

× vec(M̂c + n−1/2W ∗ − M∗
c )‖2,

with M∗
c = argmin

rank(M)=m

‖A∗1/2

× vec(M̂c + n−1/2W ∗ − M)‖2,
where A∗ and B∗ are bootstrapped
version of Â and B̂.

Test: Compare �̂ to the empirical quantile of the sample
of �∗.

The choice of the bootstrap for W ∗ is free. For instance in
Section 4, the estimate M̂ will have the form

M̂ = n−1
n∑

i=1

Mi,

where (Mi) is a sequence of random variables, and we will use
the bootstrap

W ∗ = n−1
n∑

i=1

wi(Mi − M̂),

where (wi) is an iid sequence of random variables with
variance 1.

More generally, the CS bootstrap can be used to test whether
a parameter belongs to a submanifold of the Euclidean space. As
a result, the test (1) becomes a particular case. This more general
context does not involve too much difficulties with respect to
rank estimation since the statistic has the same form as (5) and
so involves least-squared constraint estimation (LSCE) (see,
e.g., Boos 1990). The sketch of the article is as follows:

• The CS bootstrap in LSCE (Section 2).
• Bootstrap testing procedure in rank estimation for �̂1, �̂2,

and �̂3 (Section 3).
• Application to sufficient dimension reduction (SDR)

(Section 4).
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2. THE CONSTRAINED BOOTSTRAP IN LSCE FOR
HYPOTHESIS TESTING

Because of (5), LSCE has a central place in the article. More-
over, since LSCE intervenes in many statistical fields as M-
estimation or hypothesis testing, this section is independent from
the rest of the article.

2.1 LSCE

Let θ0 ∈ Rp be called the parameter of interest, and let θ̂ ∈ Rp

be an estimator of θ0. We define the constrained estimator of
θ0 as

θ̂c = argmin
θ∈M

‖Â1/2(θ̂ − θ )‖2, (8)

where M is a submanifold of Rp with co-dimension q, and
Â ∈ Rp×p. The constrained statistic is defined as

�̂ = n‖B̂1/2(θ̂ − θ̂c)‖2, (9)

where B̂ ∈ Rp×p. Note that if Â is full rank, the unique mini-
mizer of (8) without constraint is θ̂ , hence it could be understood
as the unconstrained estimator. We introduce now the notion of
nonsingular point in M. This one is needed to express the La-
grangian first-order condition of the optimization (8). For any
function g = (g1, . . . , gq) : Rp → Rq , we define its Jacobian as
Jg = (∇g1, . . . ,∇gq), where ∇ stands for the gradient operator.

Definition 1. We say that θ isM-nonsingular if θ ∈ M and if
there exists a neighborhood V of Rp and a function g : V → Rq

continuously differentiable on V with Jg(θ ) of full rank such that
V ∩ M = {g = 0}.

Using the vocabulary of the book of Lee (2003), any point
of an embedded submanifold is nonsingular (see Proposition
8.12 of Lee 2003). Moreover, by example 8.14 of Lee (2003),
the submanifold {M ∈ Rp×H , rank(M) = m} is an embedded
submanifold. As a consequence, the introduction of the notion
of nonsingular points in a submanifold of Rp is a great gener-
alization for rank testing. We are interested in the hypothesis
test

H0 : θ0 ∈ M against H1 : θ0 /∈ M, (10)

and the decision rule to reject H0 if �̂ is larger than a quantile
of its asymptotic law. The previous framework can be seen as
an extension of the Wald test statistic that handles the simple
hypothesis θ0 = θ with the statistic n‖A−1/2(θ̂ − θ )‖2.

2.2 The Bootstrap in LSCE

Since LSCE is a particular case of estimating equation, we
shortly review the bootstrap literature with two principal direc-
tions: estimating equation and hypothesis testing.

The Efron’s resampling plan (C bootstrap) has been studied
in the M- and Z-estimation theory (see Arcones and Giné 1992;
Wellner and Zhan 1996 among others), but such procedures
are not adapted to hypothesis testing since it does not satisfy
guideline (a).

By contrast, the biased bootstrap (B bootstrap) introduced
in Hall and Presnell (1999) is directly motivated by the test of
equal mean. The original idea of their work is to resample with
respect to a distribution that satisfies the constraint. The main

drawback of the B bootstrap deals with algorithmic difficulties
when computing this distribution. To our knowledge, the study
of the B bootstrap has not been extended to other tests than the
test of equal mean.

Some other ideas about the bootstrap of Z-estimators can
be found in Lele (1991) and Hu and Kalbfleisch (2000) where
the estimating function bootstrap is studied. The authors also
provided a procedure for testing whether g(θ0) = 0, which is a
particular case of (10).

Their bootstrap of �̂ when Â = �̂−1 is carried out by

n(θ∗ − θ̂ )T Jg(θ̂ )(Jg(θ̂ )T �∗Jg(θ̂ ))−1Jg(θ̂)T (θ∗ − θ̂ ).

Although it verifies the guideline (a), one can see that
the good behavior of such an approach is more based
on the rank deficiency of Jg(θ̂) than on the bootstrap of√

n(θ̂ − θ̂c). Indeed
√

n(θ∗ − θ̂ ) bootstraps the nonconstrained
estimator

√
n(θ̂ − θ0). Then as the authors noticed, it is

first of all a bootstrap of the Wald-type statistic n(θ̂ −
θ0)T Jg(θ0)

(
Jg(θ0)T �̂Jg(θ0)

)−1
Jg(θ0)T (θ̂ − θ0), which has for-

tunately the same asymptotic law than the targeted one. This may
induce some loss in accuracy. However, it requires the knowl-
edge of the function Jg , which is not the case for fixed-rank
constraints where g depends on the limit M0.

2.3 The Constrained Bootstrap

The CS bootstrap is introduced to solve all the issues we have
raised through the previous little review, which are essentially:
computational difficulties and small scope of the existing meth-
ods. The CS bootstrap targets an estimation q̂(α) of the quantile
under H0 of �̂. The consistency of the procedure, that is, (7),
forms the main result about the CS bootstrap. Another important
issue that occurs beforehand in the section is the bootstrap of
the law of

n1/2(θ̂c − θ0) under H0.

Basically, we show that a bootstrap of the unconstrained esti-
mator

√
n(θ̂ − θ0) allows a bootstrap of the constrained esti-

mator
√

n(θ̂c − θ0) under H0. We point out that the heuristic in
CS bootstrap is rather different than the C and EF bootstrap.
Otherwise it shares the idea to “reproduce” H0 even if H1 is
realized with the B bootstrap. Assuming that we can bootstrap√

n(θ̂ − θ0), the CS bootstrap calculation of the statistic is real-
ized as follows.

The CS bootstrap procedure
Compute

θ∗
0 = θ̂c + n−1/2W ∗, with

L∞(W ∗|P̂ ) = L∞(n1/2(θ̂ − θ0)) a.s., (11)

where W ∗ can be obtained by any standard bootstrap proce-
dure. Calculate

θ∗
c = argmin

θ∈M
‖A∗1/2(θ∗

0 − θ )‖2, and

�∗ = n‖B∗1/2(θ∗
0 − θ∗

c )‖2, (12)

where A∗ ∈ Rp×p and B∗ ∈ Rp×p (see Theorem 2 for more
details).
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Intuitively, this choice appears natural because θ∗
0 equals θ̂c

plus a small perturbation going to 0. Accordingly θ∗
0 is somewhat

reproducing the behavior of θ̂ under H0, especially because W ∗

has the right asymptotic variance. As we should notice, A∗ and
B∗ could be chosen as Â and B̂ but this is not the best choice in
practice. As highlighted by Hall (1992), we should normalize
by the associated bootstrap quantities (e.g., the variance com-
puted on the bootstrap sample). The following lemma gives
a first-order decomposition of the bootstrap law

√
n(θ∗

c − θ̂c)
under mild conditions. The following lemma is proved in the
Appendix.

Lemma 1. Let M be a submanifold of Rp. Assume there
exists θ̂c ∈ M and θc a M-nonsingular point such that θ̂c

a.s.→ θc.
If moreover L∞(

√
n(θ∗

0 − θ̂c)|P̂ ) exists a.s. and conditionally
a.s. A∗ P→ A is full rank, then we have conditionally a.s.

n1/2(θ∗
c − θ̂c) = (I − P )n1/2(θ∗

0 − θ̂c) + oP (1),

with P = A−1Jg(θc)(Jg(θc)T A−1Jg(θc))−1Jg(θc)T .

Note that if θ0 is M-nonsingular and L∞(
√

n(θ̂ − θ0)|P̂ )
exists, we can apply Lemma 1 with θ̂c = θc = θ0. This gives the
following proposition:

Proposition 1. Let M be a submanifold of Rp. Assume that
L∞(

√
n(θ̂ − θ0)|P̂ ) exists with θ0 M-nonsingular. Assume also

that Â
P→ A is full rank, then we have

n1/2(θ̂c − θ0) = (I − P )n1/2(θ̂ − θ0) + oP (1),

with P = A−1Jg(θ0)(Jg(θ0)T A−1Jg(θ0))−1Jg(θ0)T .

Proposition 1 leads easily to the weak convergence of �̂

under H0 and extends classical results of Boos (1990) about
constrained estimation with constraint {g = 0} to manifold type
constraints. Besides statements of Lemma 1 and Proposition 1
together explain the preceding definition of θ∗

0 in (11). They also
lead to the following theorem.

Theorem 1. LetM be a submanifold of Rp . Assume that θ̂
a.s.→

θ0 with θ0 M-nonsingular and Â
P→ A hold. If moreover (11)

holds and conditionally a.s. A∗ P→ A is full rank, then we have

L∞(n1/2(θ∗
c − θ̂c)|P̂ ) = L∞(n1/2(θ̂c − θ0)) a. s.

Essentially, Theorem 1 is an application of Lemma 1 un-
der H0, indeed as we saw in the proof of Lemma 1, Equation
(A.1), the assumption θ̂

a.s.→ θ0 ∈ M implies that θ̂c
a.s.→ θc. Nev-

ertheless under H1 nothing guarantee such a convergence (see
Example 1). Roughly speaking, asking for an equality in law
under H1 as in Theorem 1 may be too much to ask. However,
as stated in the following theorem, we do not require that θ̂c

converges a.s. to a constant to provide that the power of the
corresponding test goes to 1. This leads to the consistency of
the CS bootstrap for hypothesis testing. For the statement of the
consistency theorem, we need to define the quantile function of
the bootstrap statistic

q̂(α) = inf {x : F̂ (x) ≥ 1 − α},
where F̂ is the cdf of �∗ conditionally on the sample.

Theorem 2. Let M be a submanifold of Rp. Assume that
θ̂

a.s.→ θ0 with θ0 M-nonsingular under H0. We assume also
that Â

P→ A is full rank, B̂
P→ B and

√
n(θ̂ − θ0) converges

in law to a distribution having a density. If moreover a.s.
L∞(

√
n(θ∗

0 − θ̂c)|P̂ ) = L∞(
√

n(θ̂ − θ0)), and conditionally a.s.

A∗ P→ A, B∗ P→ B, then we have

PH0 (�̂ > q̂(α)) −→ 1 − α, and PH1 (�̂ > q̂(α)) −→ 1.

In other words, the test described in (10) with statistic �̂ and
CS bootstrap calculation of quantile is consistent.

We provide the following example under H1, where θ̂c does
not converge to a constant in probability. Although we cannot
get the conclusion of Theorem 1, the least-squared constrained
statistic still converges in distribution.

Example 1. Let (Xi)i∈N be an iid sequence such that X1
d=

N (0, 1). Define θ̂ = X, and H0 : θ2
0 = 1. Clearly H0 does not

hold and naturally the statistic n minθ2=1‖θ̂ − θ‖2 goes to infin-
ity in probability. One can find that θ̂c = sign(X), which does
not converge. Since

θ∗
c = argmin

θ2=1
‖θ∗

0 − θ‖2 and θ∗
0 = θ̂c + n−1/2W ∗,

we get that θ∗
c = θ̂c a.s. and naturally, we do not have the asymp-

totic given by Theorem 1. Besides, the convergence to a chi-
squared distribution holds for the quantity n minθ2=1‖θ∗

0 − θ‖2.

3. RANK ESTIMATION WITH HYPOTHESIS TESTING

In this section through a review of the literature about rank
estimation, we apply the results obtained in Section 2 to provide
a consistent bootstrap procedure for the test described by (1)
associated with the statistics �̂1, �̂2, and �̂3.

3.1 Application of the Theorem 2

We define q0 = p − d0 the dimension of the kernel of MT
0 .

We denote by (λ1, . . . , λp) the singular values of M0 arranged in
descending order and we write the singular value decomposition
(SVD) of M0 as

M0 = (U1 U0)

(
D1 0

0 0

)(
V T

1

V T
0

)
,

with U1 ∈ Rp×d0 , U0 ∈ Rp×q0 , V1 ∈ RH×d0 , V0 ∈ RH×q0 , and
D1 = diag(λ1, . . . , λd0 ). For m ∈ {1, · · · , p}, we note q = p −
m and we write the SVD of M̂ as

M̂ = (Û1 Û0)

(
D̂1 0

0 D̂0

)(
V̂ T

1

V̂ T
0

)
,

with Û1 ∈ Rp×m, Û0 ∈ Rp×q , V̂1 ∈ RH×m, V̂0 ∈ RH×q , D̂1 =
diag(̂λ1, . . . , λ̂m), and D̂0 = diag(̂λm+1, . . . , λ̂p). We also intro-
duce the orthogonal projectors

Q1 = I − P1 = U0U
T
0 , Q2 = I − P2 = V0V

T
0 ,

Q̂1 = I − P̂1 = Û0Û
T
0 , and Q̂2 = I − P̂2 = V̂0V̂

T
0 .
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Whereas the link between �̂3 and LSCE is evident, the one
connecting �̂1 and �̂2 to LSCE relies on the following classical
lemma, whose proof is avoided.

Lemma 2. Let M̂ ∈ Rp×H , it holds that

argmin
rank(M)=m

‖M̂ − M‖2
F = P̂1M̂P̂2,

and ‖M̂ − P̂1M̂P̂2‖2
F =

p∑
k=m+1

λ̂2
k,

where λ̂1, . . . , λ̂p are the singular values of M̂ arranged in de-
scending order, and P̂1 and P̂2 are right and left singular orthog-
onal projectors (uniquely determined if and only if λ̂m �= λ̂m+1)
of M̂ associated with λ̂1, . . . , λ̂m.

Remark 1. Using the previous Lemma, we have that each
statistic �̂1, �̂2, or �̂3 has the form (5) and so belongs to the
framework of LSCE. To apply Theorem 2, it remains to note
that, by example 8.14 of Lee (2003), the submanifold {M ∈
Rp×H , rank(M) = m} is an embedded submanifold and so any
of its point is a nonsingular point (see Definition 1).

3.2 Nonpivotal Statistic

Following Section 2.3 and by using Lemma 2, we define

M∗
0 = P̂1M̂P̂2 + n−1/2W ∗ with W ∗|P̂ d→ W a. s., (13)

with W defined in (A1). We introduce the CS bootstrap statistic

�∗
1 = n

p∑
k=m+1

λ∗2
k ,

with λ∗
m+1, . . . , λ

∗
p the smallest singular values of M∗.

Proposition 2. If (A1), (13), and M̂
a.s.→ M0 hold, then the test

described in (1) with the statistic �̂1 and calculation of quantile
with �∗

1 is consistent.

The next proposition describes the asymptotic behavior of
�̂1 = n

∑p
k=m+1 λ̂2

k . It was stated in Bura and Cook (2001) and
some recent extension can be found in Bura and Yang (2011).
Our statement goes further because we are also concerned about
the estimation of the asymptotic law of �̂1, that is, the estima-
tion of the weights that intervenes in the weighted chi-squared
asymptotic law. Besides, the proof we give in the Appendix is
quite simple because we no longer need the results of Eaton and
Tyler (1994) about the asymptotic behavior of singular values.

Proposition 3. (Bura and Cook 2001; Bura and Yang 2011)
Under H0, if (A1) holds we have

�̂1
d−→

∑
νkW

2
k ,

where the νk’s are the eigenvalues of the matrix (Q2 ⊗
Q1)�(Q2 ⊗ Q1) and the Wk’s are iid standard Gaussian vari-
ables. If moreover (A2) holds, we have

(̂ν1, . . . , ν̂pH )
P−→ (ν1, . . . , νpH ),

where the ν̂k’s are the eigenvalues of the matrix (Q̂2 ⊗
Q̂1)�̂(Q̂2 ⊗ Q̂1).

Remark 2. Unlike Theorem 1 in Bura and Cook (2001) or
Theorem 1 in Bura and Yang (2011), we prefer to state this
theorem with the quantities Q1 and Q2 rather than with U0 and
V0. Because we do not assume that the kernel of M has dimension
1, the vectors that form U0 or V0 are not unique because vector
spaces with dimension larger than 2 have an infinite number
of basis. As a consequence it does not make sense to estimate
either U0 or V0. To characterize convergence of spaces, a suitable
object is their associated orthogonal projectors.

Note that in contrast to the traditional test, the bootstrap test
no longer requires a consistent estimator of � since (A2) is not
needed anymore.

3.3 Wald-Type Statistic

The Wald-type statistic �̂2 = vec(Q̂1M̂Q̂2)T [(Q̂2 ⊗ Q̂1)
�̂(Q̂2 ⊗ Q̂1)]+ vec(Q̂1M̂Q̂2) has been introduced in Bura and
Yang (2011) to get a pivotal statistic. Following (12), we define
the associated bootstrap statistic by

�̂∗
2 = vec(Q∗

1M
∗
0 Q∗

2)T [(Q∗
2 ⊗ Q∗

1)�∗(Q∗
2 ⊗ Q∗

1)]+

× vec(Q∗
1M

∗
0 Q∗

2),

where M∗
0 is defined in (13), �∗ ∈ RpH×pH , Q̂∗

1, and Q̂∗
2 are

the eigenprojectors associated with the smallest eigenvalues of
M∗

0 M∗T
0 and M∗T

0 M∗
0 . As Proposition 2, the following one is an

easy application of Theorem 2.

Proposition 4. If (A1), (A2), (13), M̂
a.s.→ M0, and �∗ P→ �

hold, then the test described in (1) with the statistic �̂2 and
calculation of quantile with �∗

2 is consistent.

For traditional testing, Bura and Yang (2011) obtained the
following proposition for which we provide a different proof in
the Appendix.

Proposition 5. (Bura and Yang 2011) If (A1) and (A2) hold,
we have

�̂2
d−→ χ2

s ,

with s = min(rank(�), (p − d)(H − d)).

3.4 Minimum Discrepancy Approach

In general, a minimizer

M̂c = argmin
rank(M)=m

‖�̂−1/2 vec(M̂ − M)‖2

does not have an explicit form as it was for the constrained
matrix associated with �̂1 and �̂2. Therefore, we define

M∗
0 = M̂c + n−1/2W ∗ with W ∗|P̂ d→ W a. s., (14)

where W is defined in (A1). We also define the associated CS
bootstrap statistic

�∗
3 = n min

rank(M)=m
‖�∗−1/2 vec(M∗

0 − M)‖,

and applying Theorem 2 we have the following result.

Proposition 6. If (A1), (A2), (A3), (14), �∗ P→ �, and M̂
a.s.→

M0 hold, then the test described in (1) with the statistic �̂3 and
calculation of quantiles with �∗

3 is consistent.
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For traditional testing, noting that {rank(M) = m} has co-
dimension (H − m)(p − m) and applying Proposition (1) we
get the following proposition (see Cragg and Donald 1997 for
the original proof).

Proposition 7. (Cragg and Donald 1997; Cook and Ni 2005)
If (A1), (A2), and (A3) hold, we have

�̂3
d−→ χ2

(H−m)(p−m).

Remark 3. The set of assumptions needed to obtain Propo-
sition 7 is stronger than the ones stated in propositions 3 and 5
ensuring the convergence of �̂1 and �̂2. As a consequence this
is also true for Proposition 6 with respect to Propositions 2 and
4. The main difference is that we add the assumption on � to be
nondeficient. This assumption cannot be alleviated in the state-
ment but is not as restrictive in practice. On the one hand, if � is
deficient the optimization under constraint has a free coordinate
that implies the nonconvergence of the minimizer. On the other
hand, because of the semidefinite character of � the projection
of M̂ on the null space of � is null. Then one can apply the
proposition to the restriction of M̂ on the range of �. This is the
case in the application to SDR in Section 4.

Remark 4. Unlike �̂1 and �̂2, an optimization algorithm is
needed to obtain �̂3 and �∗

3, this points out an important issue
of such a procedure. In Cook and Ni (2005), the authors noticed
that

�̂3 = n min
A∈Hd,B∈Rd×l

‖�̂−1/2 vec(M̂ − AB)‖2

where Hd is the set of orthogonal basis lying in Rp with dimen-
sion d. We follow their algorithm in the computation of �̂3 (see
Cook and Ni 2005, sec 3.3 for the details).

4. APPLICATION TO SUFFICIENT
DIMENSION REDUCTION

Dimension reduction in regression is a modern statistical is-
sue and a great field of application of rank estimation. There
exist other applications such as principal component and factor
analysis, or time series analysis. We refer to Gill and Lewbel
(1992) for more details.

4.1 A Weighted Bootstrap for SIR

We focus on a particularly famous method in SDR called
sliced inverse regression (SIR), which has been introduced in Li
(1991) to deal with the regression model

Y = f (PX, ε), (15)

where ε ⊥⊥ X ∈ Rp, Y ∈ R, and P is an orthogonal projector
on the vector space E with dimension d0 < p, called the central
subspace. The objective is to estimate E. If X is elliptically
distributed, then we have that 
−1E[(X − E[X])ψ(Y )] ∈ E

with 
 = var(X), for any measurable function ψ . Accordingly,
to recover the whole central subspace one needs to consider
many functions ψ . For a given family of functions (ψh)1≤h≤H ,
we define � = (ψ1(Y ), . . . , ψH (Y ))T . Under some additional
conditions (Portier and Delyon 2013), the image of the matrix

−1/2 cov(X,�(Y )) is equal to 
1/2E. Then one can make an
SVD of an estimator of this matrix to obtain d0 vectors that

form an estimated basis of 
1/2E. Motivated by the curse of
dimensionality, the estimation of d0 is one of the most crucial
points in SDR. A popular way consists in estimating the rank of

−1/2 cov(X,�) using the hypothesis testing framework given
by (1) (see, e.g., Li 1991; Bura and Cook 2001; Cook and Ni
2005). Assume that ((X1, Y1), . . . , (Xn, Yn)) is an iid sequence
from model (15), denote by P̂ its associated empirical cdf and
define the quantity

C = E[K], with K = (X − E[X])(�(Y ) − E[�(Y )])T ,

associated with its empirical estimator

Ĉ = K̂, with K̂i = (Xi − X)(�i − �)T , and �i = �(Yi).

We apply the CS bootstrap to calculate the quantiles of each
statistic. Facing (13) and (14), we use an independent weighted
bootstrap to reproduce the asymptotic law of

√
n(Ĉ − C), that

is, we define the bootstrap matrix

C∗ = Ĉc + K∗, with K∗
i = wi(K̂i − K̂), (16)

where Ĉc stands for the solution of an optimization problem
depending on the selected statistic �̂1, �̂2, or �̂3 (see Section 3
for the details) and (wi) is a sequence of iid random variables.
We also define

V = var(vec(K)) and

V ∗ = 1

n

n∑
i=1

vec(K∗
i − K∗) vec(K∗

i − K∗)T .

To apply Propositions 2, 4, and 6, we need the following result
that is of particular interest since it provides a new bootstrap
procedure for SIR that is different than the one proposed in
Barrios and Velilla (2007).

Proposition 8. Assume that E[‖X‖2] < +∞, E[‖�(Y )‖2],
and E[‖K‖4

F ] are finite, if moreover (wi) is an iid sequence of
real random variables with mean 0 and variance 1, then we have

L∞(n1/2 K∗|P̂ ) = L∞(n1/2(Ĉ − C)) a.s. and

V ∗ P→ V conditionally a.s.

Remark 5. Defining {I (h), h = 1, . . . , H } as a partition
of the range of Y we recover the original SIR method
with the family formed by the p

−1/2
h 1{Y∈I (h)}’s with ph =

P (Y ∈ I (h)). Then CSIR = 
−1/2 cov(X,1)D−1/2 with 1 =
(1{Yi∈I (1)}, . . . ,1{Yi∈I (H )})T and D = diag(ph), and it is clear that
estimated CSIR is more complicated than estimated C. Since we
are interested in estimating the rank, we prefer to deal directly
with C to avoid the introduction of an additional noise due to
the estimation of 
 and D.

Remark 6. For most of the SDR methods such as sliced av-
erage variance estimation (SAVE) (Cook and Weisberg 1991),
directional regression (2007) (Li and Wang 2007), and order 2
optimal function (2013) (Portier and Delyon 2013), among oth-
ers, the estimation of the dimension relies on the estimation of
the rank of a candidate matrix. This makes the example of SIR
quite general. Moreover, the CS bootstrap works for every meth-
ods for which a bootstrap of the candidate matrix is available
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(for instance, Ye and Weiss 2003 used Efron’s bootstrap to cali-
brate the methods SIR, SAVE, and principal Hessian direction,
Li 1992).

4.2 Simulation Study

Recall that m is a nonnegative integer, for k ∈ {1, 2, 3} and
B ∈ N∗ we calculate independent copies �∗

k,1, . . . , �
∗
k,B with

the CS bootstrap algorithm corresponding to each statistic. Then,
we estimate the quantile with

q∗
k (α) = inf

t∈R
{F ∗

k (t) > α} = �∗
k,(�Bα�),

where F ∗
k (t) = B−1

B∑
b=1

1{�∗
k,b≤t},

�·� is the integer ceiling function and �∗
k,(·) stands for the rank

statistic associated with the sample �∗
k,1 . . . �∗

k,B . On the one
hand, we conduct the test described by (1) using the CS boot-
strap, that is,

H0 is rejected if �̂k > q∗
k (α). (17)

On the other hand, the traditional test is conducted by compar-
ing the statistic �̂2 and �̂3 to the quantile of their asymptotic
law, respectively, given by propositions 5 and 7. For �̂1, by
Proposition 3 the limit in law is quite complicated in general
(see also Bura and Cook 2001) so that we use approximations:
the Wood’s approximation (see Wood 1989) as it is computed

in the R software, an adjusted version �̂1,adj. = �̂1/a
d→ χ2

b ,
with a = ∑s

k=1 ω2/
∑s

k=1 ωk , b = (
∑s

k=1 ωk)2/
∑s

k=1 ω2
k , and

a rescaled version �̂1,sc = �̂1/c
d→ χ2

s , c = ω (see Bentler and
Xie 2000 for these two corrections).

In all the simulations, we compute the matrix Ĉ by tak-
ing �(t) = (1{y∈I (1),...,y∈I (H )}) where the I (h)’s form an equi-
partition of the range of the data Y1, . . . , Yn. In the whole
study, we put (p,H ) = (6, 5), B = 1000 and we consider
n = 50, 100, 200, 500. Although the parameter H does not re-
ally affect the SIR method, we choose it globally good with
respect to all the situations.

The first model we study is the following standard model:

Model I: Y = X1 + .1e with e ⊥⊥ X, X
d= N (0, I ),

e
d= N (0, 1).

To highlight guidelines (a) and (b), we produce in Figure 1 two
graphics each representing situations under H0 and H1 for the
statistic �̂3. Similar graphics dealing with �̂2 have been drawn
but are not presented here. On the second one, we see that even
if the sample is under H1, the bootstrap distribution reflects H0.
As a consequence, guideline (a) is satisfied and the power of
the bootstrap test is going to 1. The first graph shows that the
statistic distribution is closer to the bootstrap distribution than
its asymptotic distribution. This has no reason to occur when
the statistic is not pivotal (see the Introduction and Hall 1992 for
the details). As a consequence, we believe that this good fitting
is due to guideline (b).

In Figure 2, we analyze the asymptotic distribution of q̂(α) in
model I for each statistic. To measure the error we consider the
behavior of

Fn(̂q(α)),
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Figure 1. For �̂3 in the case of Model I. Plot of the asymptotic
distribution, the true distribution, and, for six different samples, the
distribution of the bootstrap statistic.

which is optimally equal to 1 − α. To make that possible, Fn is
estimated with a large sample size so that the estimation error is
negligible. Then we run over 100 samples the CS bootstrap to
provide, for each sample, a bootstrap estimation of the quantile
q̂(α). The associated boxplot for n = 100, 200, 500 is provided
in Figure 2. As a consequence, we may notice that the behavior
of �̂2 and �̂3 are quite similar facing the one of �̂1. Even
if every boxplot argues for convergence to 1 − α, testing with
�̂1 seems a better choice when n is small because of a quasi-
immediate convergence of the bias. When n increase, this is
no longer evident because the variance of either �̂∗

2 or �̂∗
3 is

smaller.
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Figure 2. Boxplot over 100 samples of q̂(α) for �̂1, �̂2, �̂3, and
α = 0.95 in the case of Model I for different values of n.

Furthermore, we go into details in Table 2 by running Model I
over 5000 samples. For each of them and every statistic, we con-
duct the bootstrap test (17) and its traditional version. The table
presents for each m = 0, . . . , d0, the proportion of rejected tests.
This corresponds to either estimate of the power or estimate of
the level of the test.

Although it has not the best power for n = 50, it seems that
the most consistent tests over every choice of n are the ones
based on �̂1. Inside this group, for any sample number, the
bootstrap and the rescaled version are the closest to the nominal
level. Concerning �̂2 and �̂3, the results are quite impressive
when n is small: for n = 50, whereas traditional testing makes
a Type I error 30% of the time, the bootstrap testing goes wrong
around 7%. This confirms observation on the second graph of
Figure 1.

In Tables 3 and 4, we consider the same model than Model
I excepted that we change the distribution of the predictors: in
Model Ia, X has independent coordinates with a student distri-
bution with three degrees of freedom, in Model Ib, X

d= .1X1ε+
X2(1 − ε) with ε

d= B(1/2), X1
d= N ((6, 0, . . . , 0), I ), X2

d=
N (0, I ). For these two models, we have similar conclusions
to Model I concerning �̂2 and �̂3, that is, the CS bootstrap

really improves the accuracy of the test. For �̂1, the rescaled
version (which was the most serious competitor of the CS boot-
strap in Model I) is not robust to the distribution of the predictors
(Table 4, Model Ib).

We introduce a nonlinear relationship by considering the
model

Model II: Y = tanh(X1) + .1e with e ⊥⊥ X,

X
d= N (0, I ), e

d= N (0, 1).

In Table 5, we present similar results as before with the differ-
ence that the nominal level is α = 1% to highlight differences
in the power of each test. Again, the CS bootstrap induces a
large improvement of the accuracy of the test with �̂2 and �̂3.
At n = 50, the tests based on �̂1 are less powerful than the
others but they are more accurate under H0. The more accurate
under H0 remains the CS bootstrap with �̂1 in every considered
sample number. A new important thing is that at n = 500, it
seems better to use the CS bootstrap with �̂2 and �̂3. Actually
this is due to the variance of the formers, which is smaller than
the variance of �∗

1 as it was already highlighted in Figure 2.
We conclude by increasing difficulty considering the follow-

ing model, introduced in Li (1991),

Model III: Y = X1

0.5 + (X2 + 2)2
+ .1e e ⊥⊥ X,

X
d= N (0, I )

We still present in Table 6 the estimated level and power with
the nominal level α = 2% for each test. For such a model, the
conclusions are quite mitigated because it induces a trade-off
between high power and accurate level. Indeed when n is small,
the better powers are provided by the traditional tests with �̂2

and �̂3. Nevertheless the more accurate levels can be found
looking at the CS bootstrap with �̂2 (n = 100) or �̂1 (n = 200).
Moreover, the tests associated with �̂1 without bootstrap are the
worst concerning this model. Accordingly, the simulation study
highlighted the good behavior of the CS bootstrap: in every
model it improves the accuracy of the traditional test for each
statistic. One may remember that the bias of the CS bootstrap
with �̂1 has the faster rate of convergence with respect to the
CS bootstrap of �̂2 or �̂3. Otherwise, the variance of �̂∗

1 may
be greater than the variance of �̂∗

2 or �̂∗
3. Finally, for simple

models as Model I, or when the dimension of the matrices are
high with respect to the sample number, it seems to be better to
use the CS bootstrap with the statistic �̂1.

Table 2. Estimated levels and power in Model I for α = 5%

�̂1 �̂2 �̂3

n m Wood Resc. Adj. CSBoot. Trad. CSBoot. Trad. CSBoot.

50 0 0.9988 0.9998 0.9988 0.9988 1.0000 1.0000 1.0000 1.0000
1 0.0326 0.0590 0.0336 0.0494 0.3466 0.0744 0.3098 0.07

100 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0386 0.052 0.0388 0.0456 0.1494 0.0676 0.1466 0.0722

200 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0474 0.055 0.0476 0.0514 0.096 0.0646 0.0954 0.0664

500 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0492 0.0514 0.0494 0.0516 0.0656 0.0584 0.0654 0.0584
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Table 3. Estimated levels and power in Model Ia for α = 5%

�̂1 �̂2 �̂3

n m Wood Resc. Adj. CSBoot. Trad. CSBoot. Trad. CSBoot.

50 0 0.8294 0.9544 0.8274 0.8394 0.9998 0.9980 0.9998 0.9980
1 0.0386 0.0798 0.0390 0.0582 0.3544 0.0554 0.2820 0.0546

100 0 0.9746 0.9954 0.9732 0.972 1.000 1.0000 1.0000 1.0000
1 0.0298 0.0536 0.0300 0.039 0.149 0.0582 0.1342 0.0622

200 0 0.9944 0.9996 0.9938 0.9940 1.0000 1.0000 1.000 1.000
1 0.0348 0.0552 0.0352 0.0384 0.0862 0.064 0.0818 0.065

500 0 0.9992 1.0000 0.9992 0.9992 1.000 1.0000 1.00 1.0000
1 0.0332 0.0464 0.0340 0.0408 0.061 0.06 0.0604 0.0608

Table 4. Estimated levels and power in Model Ib for α = 5%

�̂1 �̂2 �̂3

n m Wood Resc. Adj. CSBoot. Trad. CSBoot. Trad. CSBoot.

50 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.034 0.1072 0.034 0.0378 0.2122 0.0396 0.1394 0.015

100 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.037 0.0904 0.0374 0.0404 0.0986 0.0572 0.0614 0.0284

200 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0484 0.096 0.0488 0.0518 0.0708 0.066 0.056 0.0506

500 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0486 0.0912 0.0486 0.0490 0.0598 0.0664 0.0612 0.0674

Table 5. Estimated levels and power in Model II for α = 1%

�̂1 �̂2 �̂3

n m Wood Resc. Adj. CSBoot. Trad. CSBoot. Trad. CSBoot.

50 0 0.9308 0.9884 0.9428 0.9448 1.0000 0.9988 1.0000 0.9988
1 0.0036 0.0148 0.0050 0.0086 0.1816 0.0148 0.1404 0.0130

100 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0072 0.0122 0.0082 0.0096 0.0536 0.02 0.0496 0.021

200 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0076 0.0114 0.0086 0.0102 0.0252 0.0192 0.0248 0.02

500 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.0068 0.0076 0.007 0.0082 0.012 0.011 0.012 0.011

Table 6. Estimated levels and power in Model III for α = 2%

�̂1 �̂2 �̂3

n m Wood Resc. Adj. CSBoot. Trad. CSBoot. Trad. CSBoot.

50 0 0.9950 0.9992 0.9962 0.9960 1.0000 0.9966 1.0000 0.9966
1 0.3750 0.5342 0.3990 0.4676 0.9074 0.5066 0.8344 0.3270
2 0.0078 0.0156 0.0086 0.0240 0.0620 0.0164 0.0344 0.0136

100 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.9330 0.9556 0.9368 0.9446 0.9952 0.9842 0.9934 0.9806
2 0.0134 0.0176 0.0138 0.0210 0.0306 0.0228 0.0266 0.0278

200 0 1.000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000
1 1.000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.0154 0.0182 0.0158 0.0198 0.025 0.024 0.0244 0.026

500 0 1.0000 1.000 1.0000 1.0000 1.0000 1.000 1.0000 1.0000
1 1.0000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.0184 0.0194 0.0184 0.02 0.0228 0.0228 0.0228 0.023
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Figure 3. Boxplot of the estimated squared error using the
Nadaraya–Watson estimate of the regression with 0 up to 4 directions
provided by SIR.

4.3 Case Study: Near Infrared Spectrometry

Datasets resulting from near infrared (NIR) spectrometry are
typically high dimensional and it is often necessary to reduce
the dimension to analyze such datasets. Since the beginning of
chemometrics, NIR spectrometry data have been treated using
famous techniques, such as principal component analysis (PCA)
or partial least squares (PLS). In the following, we investigate
the application of the SIR method to this kind of data.

The data we used were described in Kalivas (1997) and con-
sist of 90 wheat samples with known NIR spectra (explanatory
variables) and moisture content (response). The NIR spectra
have been reduced from 701 to 141 wavelengths by taking the
mean over every five wavelengths. To quantify the level of mois-
ture in the wheat, we try to explain the moisture by the NIR
spectra. We randomly split the sample into two subsets. The
calibration set contained 50 observations is used to estimate
both the central subspace by SIR and the regression function by
the Nadaraya–Watson estimate. The validation set contained 40
observations is used to compute the mean squared error (MSE).

Table 7. Results given by the traditional and bootstrap tests for �̂1

and �̂2 with confidence level α = 5%

�̂1 �̂2

m Wood Resc. Adj. CSBoot. Trad. CSBoot.

0 False False False False False False
1 True True True True False True
2 True True True True True True

Using the calibration set, we run the SIR method with a
number of slices equal to 5. The number of directions to keep
in the regression is determined by testing the rank of the matrix
SIR (Ĉ in the previous section) using �̂1 and �̂2 (the dimension
of the predictors was too high to compute reasonably �̂3). The
results obtained are detailed in Table 7. All the tests based on
�̂1 give a dimension equal to 1. For �̂2, the bootstrap estimate
of the dimension is 1 whereas the traditional estimate of the
dimension is 2. For each recommended dimension, we compute
the associated Nadaraya–Watson estimate of the regression (in
each case, the window was chosen minimizing the MSE).

To get an idea of the true dimension, we use the validation set
to draw boxplots of the measured error in Figure 3. We compute
the error as the squared distance between the true and predicted
value of moisture in the validation set.

Since the error does not decrease beyond dimension 1, it
seems that the better dimension to used is 1. As a consequence,
for this type of datasets the bootstrap of �̂3 improves the accu-
racy of the regression analysis.

We conclude by providing in Figure 4 the plot of the response
versus the predictors projected on each first directions of SIR.
This gives a simple representation of the data and this also argues
in favor of a structural dimension equal to 1. For information, in
the same figure, we also provide the plot of the first eigenvector
of the matrix SIR.
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Figure 4. Plot of the data projected on the eigenvectors of the matrix SIR and plot of the principal component of SIR.
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5. CONCLUDING REMARKS

Along this study, we found that the main advantages of the
CS bootstrap are the following.

1. The CS bootstrap is a powerful alternative to the asymp-
totic comparison. This argument is even stronger since the
asymptotic law can be unknown (or difficult to estimate)
or the asymptotic law remains too much different from the
statistic law (e.g., large matrix inversion).

2. By Theorem 4, which provides its consistency, the CS
bootstrap works under mild assumptions. Essentially,
we ask the submanifold to be locally smooth, and we
require to be able to bootstrap the unconstrained estimator
M̂ .

3. Provided that a bootstrap of M̂ is available, the calculation
of �∗ does not involve additional difficulties with respect
to �̂. Indeed, the bootstrap statistic applies the same trans-
formation as the initial statistic (see the box page 161).

4. In the case of rank testing, for each considered statistic, the
CS bootstrap improves the accuracy of the traditional test.
The simulation study argues for the choice of the statistic
�̂1 when the sample number is small with respect to the
dimension of the matrix.

Besides, there exist some natural extensions of the previous
work. First, although it is suitable for testing, the form of the
objective function we minimize is quiet restrictive. For example,
we believe that the CS bootstrap could be extended to M- and
Z-estimation. Second, conditions that guarantee

q̂(α) = qn(α) + oP (n−1/2)

have not been provided yet. This would valid theoretically the
use of the CS bootstrap with respect to traditional testing. Third,
because of the application of the CS bootstrap to rank estima-
tion, the extension of the CS bootstrap to the high-dimensional
context, when p varies with n, is an interesting subject for further
study (see, e.g., Feng and He 2009 in a more specific problem).

APPENDIX: PROOFS

Proof of Lemma 1

The whole proof is made conditionally on the sample. By definition
of θ̂c, with high probability, A∗ is full rank for n large enough, we have

‖A∗1/2(θ∗
c − θc)‖ ≤ ‖A∗1/2(θ∗

c − θ∗
0 )‖ + ‖A∗1/2(θ∗

0 − θc)‖
≤ 2‖A∗1/2(θ∗

0 − θc)‖. (A1)

Then since θ∗
0 − θ̂c

P→ 0, θ̂c → θc, and because A∗ P→ A is full rank,
one gets that θ∗

c

P→ θc. Therefore, since θc is M-nonsingular and refer-
ring to Definition 1, we get

argmin
θ∈M

‖�∗1/2(θ∗
0 − θ )‖ = argmin

g(θ)=0
‖�∗1/2(θ∗

0 − θ )‖,

with g continuously differentiable on θc and Jg(θc) full rank. By as-
sumption on g, at least for n large enough, θ∗

c satisfies the first-order
conditions, that are{

A∗(θ∗
0 − θ∗

c ) − Jg(θ∗
c )λ∗

n = 0

g(θ∗
c ) = 0

,

where λ∗
n is the Lagrange multiplier. Using a Taylor expansion of

g around θ̂c, we get g(θ∗
c ) = g(θ̂c) + Jg(θ̂c)T (θ∗

c − θ̂c) + oP (‖θ∗
c −

θ̂c‖), and with the previous equations we have(
A∗ Jg(θ∗

c )

Jg(θ̂c)T 0

)(
θ∗
c − θ̂c

λ∗
n

)
=

(
A∗(θ∗

0 − θ̂c)

oP (‖θ∗
c − θ̂c‖)

)
.

Now by Slutsky’s lemma, we get(
A Jg(θc)

Jg(θc)T 0

)(
n1/2(θ∗

c − θ̂c)

n1/2λ∗
n

)
= n1/2

(
A(θ∗

0 − θ̂c)

0

)
+ oP (1),

and the conclusion follows by multiplying on the left by the matrix(
A−1 − PA−1, A−1Jg(θc)(Jg(θc)T A−1Jg(θc))−1

)
with P = A−1Jg(θc)(Jg(θc)T A−1Jg(θc))−1Jg(θc)T . �
Proof of Theorem 2

The proof is divided in two parts each corresponding to the level and
the power of the test. Assume H0 and define Fn and F∞, respectively,
as the cdf of �̂ and the weak limit of Fn. Note that we can apply
Proposition 1 to get

n1/2

(
θ̂ − θ0

θ̂c − θ0

)
= n1/2

(
I

I − P

)
(θ̂ − θ0) + oP (1),

and Theorem 1 to get conditionally a.s.

n1/2

(
θ∗

0 − θ̂c

θ∗
c − θ̂c

)
= n1/2

(
I

I − P

)
(θ∗

0 − θ̂c) + oP (1).

with P detailed in the statement of Proposition 1. Using (9), (12), and
Slutsky’s theorem, we have

L∞(�∗|P̂ ) = L∞(�̂) a. s.

In other words, with probability 1, F̂ converges pointwise to F∞. As
in van der Vaart (1998) chap. 23, Lemma 3, consider � the set of
discontinuity of F −1

∞ . For every α ∈ (0, 1)\�, we have q̂(α) −→ q(α)
a.s. (see, e.g., van der Vaart 1998, chap. 21). Using Slutsky’s theorem,
we get L∞(�̂ − q̂(α)) = L∞(�̂ − q(α)), accordingly

P (�̂ ≤ q̂(α)) −→ F∞(q(α)) for all α ∈ (0, 1)\�.

Because F∞ is continuous F∞(q(α)) = α. Since F∞ is nondecreas-
ing, � is denumerable, since α �→ P (�̂ ≤ q̂(α)) is nondecreasing with
continuous limit, the convergence is uniform and so holds for every
α ∈ (0, 1). This concludes the proof for the level. It remains to show
that the power of the test goes to 1. Assume H1 and let α ∈ (0, 1), the
statistic �̂ goes to infinity in probability and it suffices to show that
with probability 1 the bootstrap quantile q̂(α) remains bounded. This
means exactly that conditionally a.s. the sequence �∗ is tight. Note that
conditionally a.s. we have

�∗ ≤ n‖A∗1/2(θ̂c − θ∗
0 )‖2 = �̃∗,

where �̃∗ converges in distribution by (11), and is therefore tight. �
Proof of Proposition 3

We have

�̂1 = ‖n1/2Q̂1M̂Q̂2‖2
F = ‖n1/2 vec(Q̂1M̂Q̂2)‖2.

By the Delta method and because H0 is realized, we can apply
convergence results about eigenprojectors to both matrices M̂T M̂ and
M̂M̂T to obtain the

√
n-convergence for Q̂1 and Q̂2. Then we write

n1/2Q̂1M̂Q̂2 = n1/2Q̂1(M̂ − M)Q̂2 + n1/2(Q̂1 − Q1)M(Q̂2 − Q2)

= n1/2Q1(M̂ − M)Q2 + OP (n−1/2),
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which suffices to obtained the first statement of the theorem. For
the second statement, the symmetric matrix (Q2 ⊗ Q1)�(Q2 ⊗ Q1)
is estimated consistently by (Q̂2 ⊗ Q̂1)�̂(Q̂2 ⊗ Q̂1) and so are its
eigenvalues. �
Proof of Proposition 5

We can notice that
√

nQ̂1M̂Q̂2 has the same asymptotic law
than

√
nQ1(M̂ − M)Q2 whose asymptotic variance is consis-

tently estimated by [(Q̂2 ⊗ Q̂1)�̂(Q̂2 ⊗ Q̂1)]+ (see the proof of
Proposition 3). �
Proof of Proposition 8

Recall that K̂i = (Xi − X)(�i − �), K∗
i = wi(K̂i − K̂), and define

Ki = (Xi − E[X])(�i − E[�]). First note that, by Slutsky’s theorem,√
n K∗ has the same asymptotic law than n−1/2

∑n
i=1 wi(K̂i − E[K]).

Then we can develop

n−1/2
n∑

i=1

wi(K̂i − E[K])

= n−1/2
n∑

i=1

wi((Xi − E[X])(�i − �)T − E[K])

+ (E[X] − X)n−1/2
n∑

i=1

wi(�i − �)T

= n−1/2
n∑

i=1

wi(Ki−E[K]) + n−1/2
n∑

i=1

wi(Xi − E[X])(E[�] − �)T

+ (E[X] − X)n−1/2
n∑

i=1

wi(�i − �)T .

Checking a Lindeberg condition as below to ensure the weak conver-
gence of n−1/2

∑n
i=1 wi(Xi − E[X]) and n−1/2

∑n
i=1 wi(�i − �)T , and

using the Slutsky’s theorem we get conditionally a.s.

n1/2 K∗ = n−1/2
n∑

i=1

wi(Ki − E[K]) + OP (n−1/2).

We can apply the multidimensional version of the Lindeberg’s central
limit theorem (see, e.g., Bhattacharya and Rao 1976, Corollary 18.2),
provided that

1

n

n∑
i=1

E[‖V̂ −1/2wiξi‖21{‖V̂ −1/2wiξi‖>νn1/2}|P̂ ]
a.s.−→ 0,

where ξi = vec(Ki − E[K]) and V̂ = 1
n

∑n
i=1(ξi − ξ )(ξi − ξ )T . The

above convergence is a consequence of the Lebesgue domination the-
orem, which ensures that each term of the sum goes to 0, afterward
we can conclude by the Cesaro’s lemma. Thus, we have proved that
conditionally a.s.

n−1/2V̂ −1/2
n∑

i=1

wiξi
d−→ N (0, I ),

and it remains to note that V̂
a.s.→ V the variance of the limit in law

of
√

n(Ĉ − C) provided that K has a finite order 2 moment. For the
second convergence, we note that conditionally a.s.

V ∗ − V̂ = 1

n

n∑
i=1

(
w2

i − 1
)
ξiξ

T
i + oP (1),

then by noting vi a coordinate of ξiξ
T
i , we calculate

E

⎡⎣(
n−1

n∑
i=1

(
w2

i − 1
)
vi

)2
⎤⎦ = n−2E

[(
w2

i − 1
)2] n∑

i=1

v2
i ,

which goes to 0 a.s. provided that K has a finite order 4 moment.
We conclude by using the Markov inequality to get that V ∗ P→ V̂

conditionally a.s. �
[Received January 2013. Revised September 2013.]
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