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a b s t r a c t

This paper studies a general family of methods for sufficient dimension reduction (SDR)
called the test function (TF), based on the introduction of a nonlinear transformation of
the response. By considering order 1 and 2 conditional moments of the predictors given
the response, we distinguish two classes of methods. The optimal members of each class
are calculated with respect to the asymptotic mean squared error between the central
subspace (CS) and its estimate. Moreover the theoretical background of TF is developed
under weaker conditions than the existingmethods. Accordingly, simulations confirm that
the resulting methods are highly accurate.
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1. Introduction

Dimension reduction in regression aims at improving poor convergence rates derived from the nonparametric estimation
of the regression function in large dimension. It attempts to provide methods that challenge the curse of dimensionality by
reducing the number of predictors. A specific dimension reduction framework, called the sufficient dimension reduction has
drawn attention in the last few years. Let Y be a random variable and X a p-dimensional random vector. To reduce the
number of predictors, it is proposed to replace X by a number smaller than p of linear combinations of the predictors. The
new covariate vector has the form PX , where P can be chosen as an orthogonal projector on a subspace E of Rp. Clearly,
this kind of methods relies on an alchemy between the dimension of E, which needs to be as small as possible, and the
conservation of the information carried by X about Y through the projection on E. In the SDR literature, mainly two kind
of spaces have been studied. First a dimension reduction subspace (DRS) [16] is defined by the conditional independence
property

Y ⊥⊥ X | PcX, (1)

where Pc is the orthogonal projector on a DRS. In words, it means that knowing PcX , there is no more information carried
by X about Y . It is possible to show that (1) is equivalent to

P(Y ∈ A | X) = P(Y ∈ A | PcX) a.s., (2)

for any measurable set A, or there exists a noise e and a function f such that Y has the representation

Y = f (PcX, e) with e ⊥⊥ X .
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Moreover under some additional conditions (see for instance [7]), the intersection of all the DRS is itself a DRS. Consequently,
there exists a unique DRS with minimum dimension and we call it the central subspace (CS). In this article the CS is noted Ec .
Secondly, another space called amean dimension reduction subspace (MDRS) has been defined in [8] with the property

E[Y |X] = E[Y |PmX] a.s., (3)

where Pm is the orthogonal projector on a MDRS. Clearly, the existence of a MDRS requires a weaker assumption than the
existence of a DRS and therefore it seems to be more appropriate to the context of regression. Because of the equivalent
formulation of Eq. (3),

Y ⊥⊥ E[Y |X] | PmX,

the definition of a MDRS imposes that all the dependence between Y and its regression function on X is carried by PmX . If
the intersection of all the MDRS is itself a MDRS, then it is called the central mean subspace (CMS) [8]. In the following the
CMS is noted Em. Finally, notice that because a DRS is a MDRS, the CS contains the CMS.

There exist many methods for estimating the CS and the CMS and these methods can be divided into two groups, those
who require some assumptions on the distribution of the covariates and those who do not. The second group includes
structure adaptive method (SAM) [15],minimum average variance estimation (MAVE) [21], structural adaptation via maximum
minimization (SAMM) [6]. Thosemethods are free from conditions on the predictors but require a nonparametric estimation
of the regression function E[Y |X = x]. More recently, the central solution space (CSS) [18] has also been introduced to
alleviate some commonassumptions on the distribution of the predictors. In this articlewe are concerned onlywithmethods
of the first group. They are presented in the following paragraph.

For the sake of clarity, from now onwework in terms of standardized covariate Z = Σ−
1
2 (X −E[X])withΣ = var(X) is

a full rank matrix. Hence we define the standardized CS asΣ
1
2 Ec . Since there is no ambiguity, we still note it Ec and we still

denote by Pc the orthogonal projector on this subspace. Define d as the dimension of Ec . For any matrixM , we note span(M)
the space generated by the column vectors of M , and vec(M) the vector of columns of M . The usual Kronecker product will
be noted ⊗ and we denote by Z (k) the k-th component of the vector Z .

All themethods of the first group derive from the principle of inverse regression: instead of studying the regression curve
which implies high dimensional estimation problems, the study is based on the inverse regression curve E[Z |Y = y] or the
inverse variance curve var(Z |Y = y). We will respectively refer to the orders 1 and 2 approaches. To infer about the CS,
order 1 methods require that

Assumption 1 (Linearity Condition).

QcE[Z |PcZ] = 0 a.s.,

where Qc = I − Pc . Under the linearity condition and the existence of the CS, it follows that E[Z |Y ] ∈ Ec a.s. and then if we
divide the range of Y into H slices I(h), we have for every h,

mh = E[Z |Y ∈ I(h)] ∈ Ec, (4)

and clearly, the space generated by some estimators of themh’s estimates the CS, or more precisely a subspace of the CS. To
obtain a basis of this subspace, [16] proposed a principal component analysis and this led to an eigendecomposition of the
matrixMSIR =


h

phmhmT
h , (5)

where ph = P(Y ∈ I(h)). Many methods relying on the inverse regression curve such as sliced inverse regression (SIR) [16]
have been developed. Other ways to estimate the inverse regression curve are investigated in kernel inverse regression
(KIR) [24] and parametric inverse regression (PIR) [2]. Instead of a principal component analysis, the minimization of a
discrepancy function is studied in inverse regression estimator (IRE) [9] to obtain a basis of the CS. In [23], some polynomial
transformations of the response are considered to estimate some subspaces of the CS. For a complete background about
order 1 methods, we refer to [9].

By considering regression models like Y = |Z (1)| + e, with Z having a symmetric distribution and e ⊥⊥ Z , some authors
(for instance [16]) noticed that sometimes, E[Z |Y ] = 0 a.s. and refer to the SIR pathology when it occurs. Order 2 methods
have been introduced to handle such a situation. In addition to the linearity condition order 2 methods require that

Assumption 2 (Constant Conditional Variance (CCV)).

var(Z |PcZ) = Qc a.s.,

then under the linearity condition, CCV and the existence of the CS, it follows that span(var(Z |Y ) − I) ∈ Ec a.s. and by
considering a slicing of the response, we have

span(vh − I) ⊂ Ec, (6)
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where vh = var(Z |Y ∈ I(h)). Since the spaces generated by the matrices (vh − I)’s are included in the CS, sliced average
variance estimation (SAVE) in [10] proposed to make an eigendecomposition of the matrixMSAVE =


h

ph(vh − I)2,

to derive a basis of the CS. Another combination of matrices based on the inverse variance curve is sliced inverse regression-
II (SIR-II) [16]. More recently, contour regression (CR) [20], and directional regression (DR) [19] investigate a new kind of
estimator based on empirical directions. Besides, methods for estimating the CMS also require Assumptions 1 and 2. They
include principal Hessian direction (pHd) [17], and iterative Hessian transformation (IHT) [8]. In order to clear the failure of
certain methods when facing pathological models and to keep their efficiency in other cases, some combinations of the
previous methods as SIR and SIR-II, SIR and pHd or SIR and SAVE have been studied in [14,22].

As we have just highlighted, Assumptions 1 and 2 are needed to respectively characterize the CS with the inverse regres-
sion curve and the inverse variance curve. A first point is that the linearity condition and CCV assumed together are really
close to an assumption of normality on the predictors. Moreover for each quoted method, these assumptions guarantee
only that the estimated CS is asymptotically included in the true CS. A crucial point in SDR and a recent new challenge is to
propose some methods that allow a comprehensive estimation of the CS under mild conditions. Recent researches are con-
cerned with this problem, [20,19] proposed a new set of assumptions that guarantees the exhaustiveness of the estimation,
i.e. the whole CS is estimated.

In this paper, we propose a general point of view about SDR by introducing the test function method (TF). The original
basic idea of TF is to investigate the dependence between Z and Y by introducing nonlinear transformations of Y , and
inferring about the CS through their covariances with Z or ZZT . Actually, an important difference between TF and other
methods is that neither the inverse regression curve and nor the inverse variance curve are estimated as it is suggested by
Eqs. (4) and (6). In this paper, these two curves are some working tools but the inference about the CS is obtained through
some covariances. More precisely, the CS is obtained either by an inspection of the range of

E[Zψ(Y )],

when ψ varies in a well chosen finite family of function or either by an eigendecomposition of

E[ZZTψ(Y )],

where ψ is a well chosen function. Hence two kinds of methods can be distinguished, the order 1 test function methods
(TF1) and the order 2 test function methods (TF2). Notice that MSIR is an estimate of E[ZE[Z |Y ]

T
], hence SIR may be seen as

a particular case of TF1. For similar reasons, TF1 also extends results of [23] who considered polynomial transformations.
Besides, the results regarding TF2 are somewhat more interesting because just a single transformation ψ : R → R is
sufficient to have an accurate estimate. As a consequence, there are few connections between TF2 and the order 2 existing
methods, for instance SAVE and DR involve transformations of the form E[ZZTA(Y )] where A(Y ) is a matrix.

This paper has two principal objectives: to provide a general theoretical study of TF1 and TF2 linkedwith the background
of the existing methods, and to derive the optimal members of each methodology through an asymptotic variance
minimization. The optimal members are respectively called order 1 optimal function (OF1) and order 2 optimal function
(OF2), they correspond to two distinguish methods for the estimation of the CS. As a result, a significant improvement in
accuracy is targeted by OF1 and OF2.We show that TF allows to relax some hypotheses commonly assumed in the literature,
especially we alleviate the CCV hypothesis for TF2. Moreover for bothmethodology TF1 and TF2, we providemild conditions
ensuring an exhaustive characterization of the CS. The present work is divided into the three following principal parts:
• Existence of the CS and the CMS
• Exhaustiveness of TF
• Optimality for TF.

More precisely, it is organized as follows. In Section 2, we propose some new conditions ensuring the existence of the CS
and the CMS. Section 3 is devoted to TF1: we present some conditions that guarantee the exhaustiveness of the method and
then we calculate the optimal transformation of the response for TF1 to minimize the estimation error. By following the
same path, we study TF2 in Section 4. Accordingly, we propose two plug-in methods derived from the minimization of the
mean squared error: OF1 and OF2. The estimation of the dimension of the CS is addressed in Section 5. Finally, in Section 6
we compare both methods to existing ones through simulations.

2. Existence of the central subspace and the central mean subspace

Conditions on the uniqueness of subspaces that allow a dimension reduction are investigated in this section. This problem
has drawn attention early in the literature but it seems not to be the case anymore. As a consequence of the definition of the
CS (resp. CMS), its existence is equivalent to the uniqueness of aDRS (resp.MDRS)withminimal dimension. In [7, Proposition
6.4 p. 108], it is shown that the existence of the CS can be obtained by constraining the distribution of X to have a convex
density support. Moreover, in [8], the existence of the CMS is ensured under the same condition than the CS. We prove in
Theorem 1 below that the convexity assumption can be significantly weakened.
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Theorem 1. Under (1), if X has a density such that the Lebesgue measure of the boundary of its support is equal to 0, then the CS
and the CMS exist.

The proof is postponed to Appendix A. Since TF is only concerned about the CS estimation, we assume from now on its
existence.

3. Order 1 test function

A way to introduce TF1 is to consider some relevant facts about the SIR estimation. As explained in the Introduction, SIR
consists of estimating the matrix

MSIR = E

ZE[Z |Y ]

T  ,
whose column space is included in the CS. To make that possible, a slicing approximation of the conditional expectation
E[Z |Y ] is conducted and it leads to MSIR of Eq. (5). Because ph > 0, it is clear that

span(MSIR) = span

E[Z1{Y∈I(h)}], h = 1, . . . ,H


,

and it follows that SIR estimates a subspace spanned by the covariances between Z and a family of Y -measurable
functions. The first goal of TF1 is to extend SIR to some other families of functions ΨH , in order to estimate Ec with
span (E[Zψ(Y )], ψ ∈ ΨH). Besides, notice thatMSIR = E


Z

φ1(Y ), . . . , φp(Y )


,

with φk(y) =


h αk,h1{y∈I(h)} and αk,h = E[Z (k)|Y ∈ I(h)]. It follows that

span

E[Z1{Y∈I(h)}], h = 1, . . . ,H


= span (E[Zφk(Y )], k = 1, . . . , p) ,

and clearly SIR synthesizes the information contained in a set of H vectors into a set of p vectors. Although each of these
spaces are equal, it is not the case for their respective estimators with finite sample. Accordingly, another issue for TF1 is to
choose the p functions φk’s in order to minimize the variance of the estimation.

The following theorem is not new at all. Yet, it makes a simple link between TF1 and the CS. We introduce the function
space Lp(r(ω)) defined as

Lp(r(ω)) = {ψ : R → R; E[|ψ(Y )|pr(ω)] < +∞},

where r : R → R+ is a measurable function and ω a random variable.

Theorem 2. Assume that Z satisfies Assumption 1 and has a finite first moment. Then, for every measurable function ψ ∈

L1(∥Z∥), we have

E[Zψ(Y )] ∈ Ec .

The linearity condition is often equated with an assumption of sphericity on the distribution of the predictors. It is well
known that if Z is spherical then it satisfies the linearity condition but the converse is false. Actually, linearity condition and
sphericity are not so closely related: in [12], it is shown that a random variable Z is spherical if and only if E[QZ |PZ] = 0 for
every rank 1 projector P and Q = I − P . Clearly, at this stage, the sphericity seems to be a too large restriction to obtain the
linearity condition. However unlike the sphericity, since we do not know Pc , the linearity condition could not be checked
on the data. For instance, an assumption close to the linearity condition is to ask the distribution of Z to be invariant by the
orthogonal symmetry to the space Ec , i.e. Z

d
=(2Pc − I)Z . Then for any measurable function f ,

E[QcZf (PcZ)] = −E[QcZf (PcZ)],

which implies the linearity condition. Recalling that sphericity means invariance in distribution by every orthogonal
transformation, we have just shown that an invariance in distribution by a particular one suffices to get the linearity
condition. Moreover, the assumption of sphericity suffers from the fact that if we add to Z some independent components,
the resulting vector is no longer spherical whereas the linearity condition is still satisfied.

3.1. Exhaustiveness for TF1

As a consequence of Theorem 2, spaces generated by (E[Zψ1], . . . ,E[ZψH ]) are included in Ec . Our goal is to obtain the
converse inclusion. Because TF1 is an extension of SIR, this one has a central place in the following argumentation. We start
by giving a necessary and sufficient condition for covering the entire CS with SIR. Then under the same condition we extend
SIR to a new class of methods.

Assumption 3 (Order 1 Coverage Condition). For every nonzero vector η ∈ Ec , E[ηTZ |Y ] has a nonzero variance.
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The previous assumption is clearly equivalent to span(MSIR) = Ec . Moreover, it is always true that for H large enough
span(MSIR) = span(MSIR). Then we have the equivalent form

span(MSIR) = Ec
which was called the coverage condition in [9]. Nevertheless we use the former to make a link with some assumptions
developed in [19] (see belowAssumption 5 formore details). The aim is to shed light on some coverage-type result replacing
the conditional expectation E[Z |Y ] inMSIR by some known and finite family of functions. Particularly, the previous equation
provides such a result but only for the family of indicator functions.

Theorem 3. Assume that Z and Y satisfy Assumptions 1 and 3. Assume also that Z has a finite second moment. If Ψ is a total
countable family in the space L1(∥Z∥), then one can extract a finite subset ΨH of Ψ such that

span (E[Zψ(Y )], ψ ∈ ΨH) = Ec .

Remark 1. According to Theorem B.2, quoted in Appendix B, we can apply Theorem 3 with any family of functions that
separates the points, for example polynomials, complex exponentials or indicators. Especially for polynomials, we extend a
result stated in [23, Proposition 4], whose purpose is that Ec can be covered with the family ΨH = {Y h, h = 1, . . . ,H} if H
goes to infinity.

To make possible a simple use of this theorem we need to recall this result. If u = (u1, . . . , uH) is a family of vectors in
Rp, then span(uuT ) = span(u). Thus, if we denote by ψ1, . . . , ψH some elements of a family that separates the points, then
the CS can be obtained by making an eigendecomposition of the order 1 test function matrix associated with the functions
ψ1, . . . , ψH defined as

MTF1 =

H
h=1

E[Zψh(Y )]E[Zψh(Y )]T .

Especially, under the conditions of Theorem 3, the eigenvectors associated with a nonzero eigenvalue of MTF1 generate
Ec . Moreover, as pointed out before, for H large enough span(MSIR) = span(MSIR). A proof of this result is cleared up by
Theorem 3. By applying it with the family of indicator functions, it gives that

span

E[Z1{Y∈I(h)}], h = 1, . . . ,H


= span(MSIR) = span(MSIR) = Ec,

for H is sufficiently large. Moreover, SIR can be understood as a particular TF1. Expression (5) implies that

MSIR =

H
h=1

p−1
h E[Z1{Y∈I(h)}]E[Z1{Y∈I(h)}]

T ,

then, SIR is equivalent to TF1 realized with the weighted family of indicator functions

1{Y∈I(h)}

√
ph


. Besides, for any family of

functions, the space spanned byMTF1 is invariant by positive weighting of the functions. Nevertheless with a finite sample, it
is no longer the case for the estimated space and intuitively it seems that such a weighting could influence the convergence
rate and improve the accuracy of TF1. The choice of the weights for the family of indicators is debated is Section 3.2.

3.2. Optimality for TF1: OF1

In this section, we develop a plug-in method based on the minimization of the variance estimation in the case of the
family of indicator functions for ΨH . Theorem 3 and Remark 1 imply that the whole subspace Ec can be covered by the
family of vectors {E[Z1{Y∈I(h)}], h = 1, . . . ,H} for a suitable partition I(h). To provide a basis of Ec , it suffices to extract d
orthogonal vectors living in this space. This procedure is realized by SIR. Nevertheless, the issue here is somewhat more
complicated, we want to find d orthogonal vectors that have the smallest asymptotic mean squared error for the estimation
of Ec . Let (Z1, Y1), . . . , (Zn, Yn), with Zi = Σ−1/2(Xi − E[X]), be an i.i.d. sample from model (1). To measure the estimation
error, we define the quantity

MSE = E

∥Pc −Pc∥2

F


, (7)

where ∥ · ∥F stands for the Frobenius norm andPc is derived from the family of vectorη = (η1, . . . ,ηd) defined as

ηk =
1
n

n
i=1

Ziψk(Yi), with ψk(Y ) = (1{Y∈I(1)}, . . . ,1{Y∈I(H)})αk = 1T
Yαk,

and αk ∈ RH . Besides, we introduce η = (η1, . . . , ηd) with ηk = E[Zψk(Y )]. Consequently, we aim at minimizing MSE
according to the family (ψk)1≤k≤d, or equivalently according to the matrix α = (α1, . . . , αd) ∈ RH×d. Moreover, since we
have

MSE = E[d −d] + 2E[tr(QcPc)], (8)
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andwe suppose that d is known, theminimization ofMSE relies only on theminimization of the second term in the previous
equality. Hence, this naturally leads to the minimization problem

min
α

lim
n→+∞

nE[tr(QcPc)],
under the constraint of orthogonality of the family (ηk)1≤k≤d. For the sake of clarity, we prefer to minimize the expectation
of the limit in distribution, instead of the limit of the expectation when n goes to infinity, of the sequence n tr(QcPc). To set
out clearly the next proposition, let us introduce some notations. Define the matrices C ∈ Rp×H , D ∈ RH×H , such that

C = (C1, . . . , CH) with Ch = E[Z1{Y∈I(h)}],

D = diaghdh with dh =

E[∥QcZ∥

21{Y∈I(h)}]

,

and

G = D−
1
2 CTCD−

1
2 .

The matrix G is the Grammatrix of the vector family (Ch/
√
dh)1≤h≤H , Theorem 3 and Remark 1 ensure that its rank is equal

to d. Besides, G is diagonalizable and so we define V = (V1, V2) ∈ Rp×(d+(p−d)) such that

V TGV =


D0 0
0 0


,

where D0 ∈ Rd×d.

Proposition 4. If Z has a finite second order moment, then the random variable n tr(QcPc) has a limit in law Wα as n → +∞.
The minimization problem

min
α

E [Wα] u.c. ηTη = Id,

has a unique solution, up to orthogonal transformations, given by

α = D−
1
2 V1D

−
1
2

0 .

To make a link with other methods and facilitate the programming of OF1, let us express the solution in another way.
Instead of expressing the solution in terms of weights αk’s assigned to the indicator functions, we express it in terms of
the vectors ηk’s associated with these weights. Since the set of functions associated with OF1 is invariant by orthogonal

transformations, we choose α = D−
1
2 V1D

−
1
2

0 to simplify the next calculation. We have

D−
1
2 CTCD−

1
2 V1 = V1D0,

multiplying by CD−
1
2 on the left and by D

−
1
2

0 on the right, this gives

CD−1CTCD−
1
2 V1D

−
1
2

0 = CD−
1
2 V1D

−
1
2

0 D0.

Defining the particular order 1 test function matrix MOF1 = CD−1CT , and noticing that η = CD−
1
2 V1D

−
1
2

0 , the previous
equation is equivalent toMOF1η = ηD0.

Thus, since MOF1 has the same rank as G, we have shown that the vectors ηk’s deriving from the optimal weighted family, are
the eigenvectors of MOF1 associatedwith the nonzero eigenvalues. Besides, it is easy to verify that the previous development
is still true when each quantity is replaced by its estimate. Therefore, OF1 relies on the eigendecomposition of an estimator
of the matrix MOF1, whereas SIR is obtained through an eigendecomposition of the matrix MSIR. To compare both methods,
we write their expressions as follows

MSIR =

H
h=1

ChCT
h

ph
, MOF1 =

H
h=1

ChCT
h

dh
. (9)

Hence, SIR andOF1 are closely related because bothmethods try to obtain the space generated by the Ch’s through some PCA.
This information seems to be collected more rapidly with OF1 because it minimizes the criterion (7), and as a consequence
the convergence rate would be better. This idea is supported by the expression of MOF1 in which bad slices are less weighted.
While MSIR →

H→+∞

MSIR, MOF1 converges to

MOF1 = E

Z

E[Z |Y ]

E[∥QcZ∥2|Y ]


.

As a consequence, OF1 requires the knowledge of Qc . Therefore we set out a plug-in method to compute Qc .
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OF1 algorithm:

(0) Standardization of X into Z . InitializeQc = I .
(1) Compute

dh =
1
n

n
i=1

∥QcZi∥21{Yi∈I(h)}, Ch =
1
n

n
i=1

Zi1{Yi∈I(h)}

and M =

H
h=1

ChCT
hdh .

(2) Extractη = (η1, . . . ,ηd): the d eigenvectors of M with largest eigenvalues.
(3) Qc = I −ηηT .
Steps 1–3 are repeated until convergence is achieved and thenη is the estimated basis of the standardized CS derived from
OF1. The estimated directions of the CS areΣ−

1
2η. At the end of the paper, OF1 is compared to SIR through some simulations.

Naturally the previous development can be carried out with some other total family of functions than indicators, say
ΨH = (ψ1, . . . , ψH). The calculation is quite similar, assuming that each ψh belong to L2(∥Z∥

2), the optimization leads to
an analogous solution than previously replacing MOF1 by the matrix CDΨHC

T , with DΨH = E[∥QcZ∥
2ΨHΨ

T
H ].

4. Order 2 test function

Basically, TF2 relies on the same approach as TF1 with the difference that it involves higher conditional moments of
Z knowing Y . Indeed, we are interested in the space generated by the column vectors of the matrix E[ZZTψ(Y )] where ψ
denotes ameasurable function. The following issues are addressed: we first investigate the exhaustiveness of TF2, especially
we propose some conditions on ψ that guarantee a comprehensive estimate of the CS, then we look for optimality by
introducing OF2.

Let us start with a known fact often presented as the SIR pathology. Consider the regression model

Y = g(Z (1), Z (2), e), (10)

where e ⊥⊥ Z ∈ Rp and g is symmetric with respect to its first coordinate. Assume also that (Z (1), Z (2)) d
=(−Z (1), Z (2)).

Then thanks to the linearity condition we have QcE[Zψ(Y )] = 0 whereas the previous considerations clearly imply
that E[Z (1)ψ(Y )] = E[−Z (1)ψ(Y )]. Therefore for any measurable function ψ , we have that E[Zψ(Y )] = E[(0, Z (2),
0, . . . , 0)Tψ(Y )] and consequently the first direction (1, 0, . . . , 0)T cannot be reached by any method based on the inverse
regression curve. Clearly, TF1 is sensitive to the SIR pathology. Facing this difficulty, an idea developed first in [16,10] is to
explore some higher conditional moments of Z given Y . Thusmethods as SIR-II, SAVE, CR, or DR are interested in some prop-
erties of thematrixE[ZZT

|Y ]. It is also the case for TF2. Neverthelesswedonot follow the samepath as other order 2methods,
especially regarding the assumptions required to explore this second order moment. Order 2 methods usually assume that
Z has a spherical distribution or at least satisfies the linearity condition, and secondly that var(Z |PcZ) is constant, i.e. CCV.
In [1, Proposition B.1], stated in Appendix B, shows how strong are the last two assumptions. Accordingly, the assumptions
required for order 2methods are really close to the assumption of normality on the distribution of the predictors. TF2 works
under weaker conditions. Actually, the CCV condition is no longer needed and we substitute it with the following one.

Assumption 4 (Diagonal Conditional Variance (DCV)).

var(Z |PcZ) = λ∗

ωQc a.s.,

with λ∗
ω a real random variable.

To facilitate future proofs and to clear up such a condition we provide an equivalent form in the following lemma.

Lemma 5. Assume that Z has a finite second moment. Then the following assertions are equivalent,

(1) for any orthogonal transformation H such that HPc = Pc , we have

var(Z |PcZ) = var(HZ |PcZ),

(2) there exists λ∗
ω a real random variable such that var(Z |PcZ) = λ∗

ωQc .

Moreover, under the linearity condition, we have λ∗
ω =

1
p−dE


∥QcZ∥

2
|PcZ


.
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Remark 2. Proposition B.1 indicates that coupling CCV and the spherical assumption is equivalent to the normality
assumption for Z , which is quite restrictive. In our framework, since sphericity implies DCV, we alleviate this strong link
between order 2 methods and the Gaussian assumption. Indeed, if Z is spherical, then its distribution is invariant by any
orthogonal transformation, and we have for any measurable function f and for any orthogonal matrix H ,

E[ZZT f (PcZ)] = E[HZZTHT f (PcHZ)].

In particular, the previous equation is true for any H which leaves invariant vectors of Ec and we obtain (1) of Lemma 5
which is equivalent to DCV. Thus, we have just proved that the spherical assumption implies DCV.

The following theorem is the analogous of Theorem 2 for TF2. We define

Mψ = E[ZZTψ(Y )] and λ∗

ψ =
1

p − d
E

∥QcZ∥

2ψ(Y )

.

Theorem 6. Assume that Z satisfies Assumptions 1 and 4 and has a finite second moment. Then, for every measurable function
ψ ∈ L1(∥Z∥

2), we have

span(Mψ − λ∗

ψ I) ⊂ Ec .

In practice, because λ∗

ψ is unknown, it seems difficult to use Theorem 6. Nevertheless, we do not need to know this
particular eigenvalue, this issue is addressed in Remark 3. Besides, a consequence of Theorem 6 is that E⊥

c is included in the
eigenspace of the matrix Mψ associated with the eigenvalue λ∗

ψ . Therefore, if all the other eigenvalues are different from
λ∗

ψ , the eigenspace associated with λ∗

ψ is equal to E⊥
c . If this is true, the inclusion in Theorem 6 becomes an equality, i.e. all

the directions of Ec could be recovered. This idea has a central place in the next section where this eigenvalue problem is
addressed.

4.1. Exhaustiveness for TF2

An important tool in this section is the eigendecomposition of the matrix Mψ , therefore we try to be more clear in
introducing the following notations. Let λψ and λY be two functions Rp

→ R respectively defined by

λψ (η) = E[(ηTZ)2ψ(Y )] and λY (η) = E[(ηTZ)2|Y ],

for every η ∈ Rp. Notice that if η is a unit eigenvector of Mψ (resp. E[ZZT
|Y ]), then λψ (η) (resp. λY (η)) is equal to the

eigenvalue of the matrix Mψ (resp. E[ZZT
|Y ]) associated with η. However, recalling that E⊥

c is included in an eigenspace of
Mψ and E[ZZT

|Y ], the functions λψ and λY are both constant on the centered spheres of E⊥
c . Their respective values on the

unit sphere of E⊥
c are noted λ∗

ψ and λ∗

Y .

Definition. Let ψ be a measurable function, we call ψ-space the vector space of Rp

Eψ = span(Mψ − λ∗

ψ ) = span

η ∈ B(0, 1) ⊂ Rp,Mψη = λ∗

ψη
⊥
.

Theorem6 indicates that anyψ-space is included in Ec . However, there is no guarantee of the existence of aψ-space equal to
Ec . We follow the same path as for TF1, i.e. we consider some transformations of Y belonging to a dense family. Nevertheless,
the results are quite different becausewe provide the existence of a single functionψ such that Eψ = Ec . A unique additional
assumption is needed.

Assumption 5 (Order 2 Coverage Condition).

∀η ∈ Ec, ∥η∥ = 1 P


E

(ηTZ)2|Y


= E


∥QcZ∥

2

p − d

 Y < 1.

Assumption 5 reflects some similarities with other work such as [20,19]. As highlighted in Remark 2, our set of
assumptions is weaker than their because DCV has replaced CCV. To match their context, assume that CCV is satisfied.
Then, Assumption 5 becomes ‘‘E[(ηTZ)2|Y ] is nondegenerate’’, i.e. is not a constant almost surely. Otherwise, TF1 allows an
exhaustive estimation of the CS provided that E[(ηTZ)|Y ] is nondegenerate. Thus the exhaustiveness condition of TF is the
union of the two previous, i.e.

E[(ηTZ)2|Y ] or E[(ηTZ)|Y ] is nondegenerate,

which is the same than the one proposed for DR in [19]. Accordingly, TF evolves in a more general context given by DCV but
the assumptions ensuring its exhaustiveness are similar. These assumptions can be understood as theoretical ones because
they are difficult to check in practice.
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Theorem 7. Assume that Z and Y satisfy Assumptions 1, 4 and 5. Assume also that Z has a finite second moment, then if Ψ is a
total countable family in the space L1(∥Z∥

2), there exists ψ a finite linear combination of functions in Ψ such that

Eψ = Ec .

Theorem 7 highlights some relevant facts about TF2. In addition to providing the existence of a ψ-space equal to Ec , it
gives some information about the functionψ to be used. Indeed, TheoremB.2 indicates that the relevant families of functions
for TF2 are those that separate the points. Hence, as for TF1, this suggests the use of TF2 with any of these families. For each
such family, there exists a function ψ such that Eψ = Ec , yet it does not provide an explicit form of such a ψ . Hence, we set
out the following corollary which is the counterpart of Theorem 3 for TF2.

Corollary 8. Assume that Z and Y satisfy Assumptions 1, 4 and 5. Assume also that Z has a finite second moment then, if Ψ is a
total countable family in the space L1(∥Z∥

2), we have

⊕
ΨH

Eψ = Ec,

where ΨH is a finite subset of Ψ .

4.2. Optimality for TF2: OF2

For TF1weneeded at least d functions to recover the CS entirely. For this reason, itwas convenient to develop a framework
with weighted indicators because it led to a matrix optimization problem. In other words we fixed the class of functions for
TF1 to solve a finite dimensional optimization problem. Actually, for TF2 we follow a different path: we choose to optimize
over all the measurable functions thanks to Gâteaux derivatives.

We have already highlighted that the eigenvectors of the matrix Mψ can be decomposed into two blocks: the ones
associated with the eigenvalue λ∗

ψ and the others which necessarily belong to Ec . Theorem 7 goes further by arguing
that for some ψ , the eigenvectors associated with different eigenvalues than λ∗

ψ generate Ec . Therefore, Pc can be derived
from this set of eigenvectors. A natural way to proceed is to estimate each quantity by its empirical version. Recall that
(Z1, Y1), . . . , (Zn, Yn), with Zi = Σ−1/2(Xi − E[X]), is an i.i.d. sample from model (1). We define

Mψ =
1
n

n
i=1

ZiZT
i ψ(Yi)

and the functionλψ : Rp
→ R asλψ (η) = ηTMψη for every η ∈ Rp. Since d is assumed to be known, we define the projectorPc =ηψηTψ whereηψ ∈ Rp×d are the d eigenvectors of Mψ associated with the eigenvalues the farthest from λ∗

ψ . Because of

the symmetry of thematrixMψ andMψ , the convergenceMψ
P

→Mψ implies the convergence in probability of the associated
eigenvalues (see [13] for some details). As a consequence, one can express the projectors with the Riesz formula. Let C be a
contour of the complex plan which encloses the eigenvalues different from λ∗

ψ . We prefer to work with Pc and its estimatorPc expressed as

Pc =


C

(Iz − Mψ )
−1dz and Pc =


C

(Iz − Mψ )
−1dz.

Because of Eq. (8), we minimize MSE through the quantity E[tr(QcPc)]. As we did for OF1, we first calculate the limit in law
of the random variable n tr(QcPc), as n goes to infinity and then we derive its expectation. The next proposition is dedicated
to this calculation.

Proposition 9. Let ψ ∈ L2(∥Z∥
4) such that Eψ = Ec . Then n tr(QcPc) has a limit in law Wψ and

E[Wψ ] = tr

E

ZZT

∥QcZ∥
2ψ(Y )2


Pc(PcMψ − Iλ∗

ψ )
−2 .

The above proposition provides the expression of the quantity to minimize with respect to the function ψ . The next
lines are attached to find a minimizer of E[Wψ ]. This informal calculation leads to a fixed point equation whose solution is
expected to be a global minimum of E[Wψ ]. Thanks to Proposition 9 the quantity to minimize can be written as

E[Wψ ] = tr(E[ZZTPc∥QcZ∥
2ψ(Y )2](PcMψ − Iλ∗

ψ )
−2),

or introducing the notations A = ZZTPc∥QcZ∥
2 and B = PcZZT

−
∥QcZ∥

2

p−d I ,

E[Wψ ] = tr

E[Aψ(Y )2] E[Bψ(Y )]−2 .
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Thus we are looking for ψ such that

∂

∂t
E[Wψ+tδ]


t=0

= 0,

for every bounded measurable function δ, or equivalently,

E

2 tr


AδψE[Bψ]

−2
− tr


E[Aψ2

]E[Bψ]
−1

{BδE[Bψ]
−1

+ E[Bψ]
−1Bδ}E[Bψ]

−1
= 0,

where δ andψ stand for δ(Y ) andψ(Y ). Define the functions A(Y ) = E[A|Y ] and B(Y ) = E[B|Y ]. Since the previous equation
is true for any Y -measurable random variable δ(Y ), we obtain

2 tr

A(Y )ψ(Y )E[Bψ]

−2
− tr


E[Aψ2

]E[Bψ]
−1

{B(Y )E[Bψ]
−1

+ E[Bψ]
−1B(Y )}E[Bψ]

−1
= 0 a.s.,

which leads to the implicit equation

ψ(y) =
tr

E[Bψ]

−1E[Aψ2
]E[Bψ]

−1
{E[Bψ]

−1B(y)+ B(y)E[Bψ]
−1

}


2 tr(A(y)E[Bψ]−2)
.

Since Pc = ηψη
T
ψ , we have

E[Bψ]
−1ηψ = ηψDψ ,

where Dψ = diagk(λψ (ηk)− λ∗

ψ )
−1 and ηk is the k-th column vector of ηψ . Besides, a simple use of the linearity condition

provides that E[ηTZZT
|Y ] = E[ηTZZTPc |Y ] for every η ∈ Ec . Consequently, we have

ηTψB(y) = ηTψB(y)Pc

and then, we obtain

ψ(y) =
tr

DψAψDψ {DψB(y)+B(y)Dψ }


2 tr

A(y)D2
ψ

 ,

where

Aψ = E

ηTψZZ

Tηψ∥QcZ∥
2ψ(Y )2


, A(y) = ηTψA(y)ηψ , B(y) = ηTψB(y)ηψ ,

are d×dmatrices. Using the symmetry of thematrices Aψ andB(y), and somewell-known properties of the trace, we obtain

ψ(y) =
tr

DψAψDψB(y)Dψ
tr
A(y)D2

ψ

 . (11)

A solution of Eq. (11) is noted ψOF2, it is an optimal function inside the TF2 framework with respect to criterion (7). Hence,
we define the OF2 matrix as

MOF2 = E[ZZTψOF2(Y )].

To calculateψOF2, we propose an iteration of the fixed point Eq. (11). Before we state a more accurate algorithm to compute
OF2, in particular to estimate the matrixMOF2, we need to approximate ψOF2. Indeed, sinceA andB are unknown functions,
one can use a slicing approximation and define ψOF2 as a solution of

ψ(y) =


h

tr

DψAψDψBhDψ


tr
AhD2

ψ

 1{y∈I(h)},

whereAh = E[A(Y )1{y∈I(h)}] andBh = E[B(Y )1{y∈I(h)}]. Now we set out the OF2 method based on the family of indicator
functions. The following algorithm describes the iterations needed to implement our method. For a better understanding,
we based the algorithm on the weights αh’s instead of the function ψ(y) =


h αh1{y∈I(h)}. BesidesAψ andDψ are notedA

andD, and we will need

Mh = E[ZZT1{Y∈I(h)}] and λh = E


∥QcZ∥
2

p − d
1{Y∈I(h)}


.
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OF2 algorithm:

(0) Standardization of X into Z . Compute

Mh =
1
n

n
i=1

ZiZT
i 1{Yi∈I(h)}, λh = median(λ ∈ spectrum(Mh)),

and initializeαh
d
= U[0, 1] for every h = 1, . . . ,H .

(1) Identify1 the eigenvectorsη = (η1, . . . ,ηd) ∈ Ec of M =


hαhMh.
(2) DeriveD = diagk(λψ (ηk)−λ∗ψ )−1 with ψ(y) =


hαh1{y∈I(h)},Qc = I −ηηT and

A =


h

αhηTAhη, withAh =
1
n

n
i=1

ZiZT
i ∥QcZi∥21{Yi∈I(h)}.

(3) Compute

αh =
tr
D2AD (ηTMhη −λhI)

tr
ηTAhηD2

 .

Repeat the last three steps until the convergence is achieved. The resulting function ψOF2 is an estimate of the function
ψOF2. Finally the set of vectorsη forms an estimated basis of the standardized CS. The space generated by Σ−

1
2η provides

an estimate of Ec by OF2.

Remark 3. An important practical issue for TF2 and in particular for OF2 is the way we identify the eigenvectors of Mψ that
converge to some vectors of Ec or equivalently the way we identify their associated eigenvalues. This intervenes at each
iteration of our algorithm to estimate Dψ and ηψ . Although λ∗

ψ is unknown, the theoretical background of TF2 advocates
for an identification process based on the eigenvalues. Indeed, as it is pointed out by Theorem 6, the eigenvalues of Mψ

associated with eigenvectors included in E⊥
c are equal. We built an algorithm based on this fact but it was not sufficiently

robust to small samples. We thus prefer to develop another one which takes into account the eigenvectors of Mψ . Let η
be an eigenvector of Mψ , the identification process is based on a measure of the dependence between ηTZ and Y . More
precisely, we consider the Pearson’s chi-squared statistic of the test of independence between ηTZ and Y . Therefore, for
each eigenvector we divide the range of ηTZ into H slices noted J(h) and we calculate

S(η) =


h,h′


phh′ − phh′

h phh′
h′
2

phh′
h phh′

h′

where ph,h′ =
1
n

n
i=1 1{Yi∈I(h)}1{(ηT Zi)∈J(h′)} and ·

h is the mean over h. Then the d eigenvectors of Mψ having the highest
values of S are identified as converging in Ec . As a consequence, at step 2 of the OF2 algorithm, the λψ (ηk)’s are the
eigenvalues of M associated with the eigenvectorsηk’s with the d highest values of S, λ∗ψ is the median over the other
eigenvalues. In Section 6, we performed OF2 with this algorithm.

5. Estimation of the dimension

All along the article, the dimension of the CS was assumed to be known. Its estimation is a crucial point in SDR since it
corresponds to the number of explicative variables we keep in the regression. Clearly if the dimension is underestimated,
then we loose some information about the response, and on the contrary we cannot get the suitable nonparametric
convergence rates for the estimation of the regression function. We raise this issue for TF1 and TF2. The estimation of d
can be reasonably conducted after the estimation of the matrix of interest, say M , in the following way. As we pointed out
before, under some conditions, one can get

span(M) = Ec,

and clearly, the estimation of d amounts to estimate the rank of M . Actually, to estimate the rank of such matrix, one can
use the hypothesis testing methodology proposed by Li [16] whose null hypothesis is

H0 : d = m against H1 : d > m,

1 See Remark 3 for some details about this point.
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where d stands for the true dimension. Then we start by testing d = 0 against d > 0 which can be seen as a test for the
existence of a DRS. If it is rejected we go a step furtherm := m+ 1 until the first acceptance. If d = m is accepted, thenm is
an estimate of the dimension of Ec . The usual statistic employed in SDR is

Λ = n
p−m
k=1

λ2k
where (λ1, . . . ,λp) are the singular values of an estimator of M arranged in ascending order. Roughly speaking, the
statistic goes to infinity under H1 because at least one of the eigenvalues goes to a positive constant. Under H0 and some
mild conditions Λ converges in law. This is the issue raised by Theorem 1 in [4], stated in Appendix B as Theorem B.3.
Thanks to this theorem, most of the SDR methods can provide an estimate of the dimension of Ec . For SIR, becauseMSIR = C diagh(p

−1
h )C

T , it is preferable to apply Theorem B.3 directly with the matrix diagh(ph)−1/2C , then we define ΛSIR

as Λ with M = C diagh(p
−1/2
h ). Because of the unknown asymptotic distribution of Λ under H0 in general, it is interesting

to study the behavior of the statistic Λ under some usual SDR assumptions in order to take advantage of the substantial
simplifications they involve. For instance, [3] show that under the linearity condition and CCV, ΛSIR is asymptotically chi-
squared. Hence in the following, we provide the asymptotic distribution ofΛ in a general TF1 context without specifying the
family of functionΨH = (ψ1, . . . , ψH)

T . Moreover our study involves both sets of assumptions: CCV and DCV (see Remark 2
for details about such assumptions). We use a parametrization quite similar to that of Section 3.2 by defining the matrix

Mα = Cα(Cα)T ,

with α ∈ RH×H could be unknown, C = (C1, . . . , CH), and Ch = E[Zψh(Y )]. Define also U0 and V0 as the respective basis of
the left and right singular spaces of the matrix Cα associated with the singular value 0. Assume that (X1, Y1), . . . , (Xn, Yn)
is an i.i.d. sample from model (1) and defineZi = Σ−1/2(Xi − X),

with · the empirical mean. Then we can define the estimatorMα =Cα(Cα)T ,
whereC = (C1, . . . ,CH),Ch =

1
n

n
i=1
Ziψh(Yi), andα ∈ RH×H is an estimator ofα. The next theorem studies the asymptotic

distribution of

ΛTF1 = n
p−m
k=1

λ2k,
where (λ1, . . . ,λp) are the singular values ofCα arranged in ascending order.

Theorem 10. Under H0, assume that Z satisfies Assumptions 1 and 4 (resp. 1 and 2) and has a finite second moment, then if
ψh ∈ L2(∥Z∥

2) and
√
n(Cα − Cα) has an asymptotic Gaussian distribution, we have

ΛTF1
d

−→

H−d
k=1

ωkξk,

where the ξk’s are i.i.d. chi-squared variables with p − d degrees of freedom and the ωk’s are the eigenvalues of the matrix
V T
0 α

T∆αV0 where

∆ = E

(p − d)−1

∥QcZ∥
2(ΨH(Y )− E[ΨH(Y )])(ΨH(Y )− E[ΨH(Y )])T


(resp.∆ = var(ΨH(Y ))).

The above theorem is a general statement about the estimation of the dimension of Ec for TF1. Notice that the framework
employed contains SIR and OF1 as special cases. We highlight in the following some relevant applications. Under CCV,
considering the indicator functions and taking α = diaghp

−1
h , we obtain the same result as [3, Corollary 1], regarding MSIR.

Besides, it is easy to show that CCV implies that dh = ph(p − d), then if α = diaghd
−1
h , we provide the asymptotic law ofΛTF1 for OF1, i.e.ΛOF1

d
−→(p − d)−1χ2

(p−d)(H−d−1).

The above convergence highlights that, as SIR, OF1 provides a pivotal test for the considered statistic under CCV.
In general the asymptotic distribution of ΛTF1 is no longer chi-squared and the weights ωk’s need to be estimated.

Theorem 10 emphasizes a pivotal version of such a test for any family of functions thanks to a good specification of the
matrix α. For clarity assume that∆ is a full rank matrix, one can take α = ∆−1/2 in Theorem 10 under DCV or CCV. We get
for bothΛTF1

d
−→χ2

(p−d)(H−d),
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where α can be respectively estimated by

1
n(p − d)

n
i=1

∥QcZi∥2(ΨH(Yi)− ΨH)(ΨH(Yi)− ΨH)
T and

1
n

n
i=1

(ΨH(Yi)− ΨH)(ΨH(Yi)− ΨH)
T ,

whereQc is estimated from the considered TF1 method. Taking advantage of the SDR context, this kind of approach goes in
the sense of the Wald-type pivotal statistic studied for instance in [4].

Using the same approach, it is possible to obtain the asymptotic distribution of such a statistic for TF2. Nevertheless, such
matrices are not positive and then the test needs to be based on the sumof squares of the eigenvalues ofMTF2. In this case, the
eigenvaluesωk’s in TheoremB.3 aremore complicated than for TF1 even ifwe assumeDCV or CCV. As a consequence it seems
less attractive to follow the same path as previously. However one could follow [4, Theorem 1], to provide a consistent test,
assuming sufficient finite moments for Z in order to ensure the convergence ofΛ on the one hand, and in order to estimate
consistently the weights ωk’s on the other hand.

6. Simulations

In this section, we evaluate OF1, OF2 and some other SDRmethods through different regressionmodels.We first compare
OF1 with SIR and IRE and then, we compare OF2 to some order 2 methods through pathological models for order 1 methods
(see Example 10). To measure the performance of a method we evaluate the estimation error with the following distance:
for two subspace E1 and E2, if P1 and P2 are their respective orthogonal projectors, the distance between E1 and E2 is

Dist(E1, E2) = ∥P1 − P2∥F . (12)

In the following study, each method is evaluated for a single model. Each boxplot is based on 100 runs of the considered
model. All along the simulation study, in order to appreciate the real intrinsic quality of each method, we assume that the
variance and the mean of the predictors are known. As a consequence we do not take into account the bias introduced by
poor estimates of the variance and the mean. Besides, we compare the distance (12) between the estimated standardized
directions and the standardized CS.

For eachmethod,when the response is continuous,we discretize its range intoH slices, each containing the samenumber
of observations. BothmethodsOF1 andOF2 require the iteration of the so calledOF1 andOF2 algorithms (see Sections 3.2 and
4.2). In each case, the number of iterations equals 5. Finally, this simulation study is organized according to four examples
that combine different distributions for the predictors.

6.1. OF1 and order 1 methods

The order 1 methods we computed include SIR and IRE. Let us consider the case where the predictors have a Gaussian
distribution. Clearly PcZ and QcZ are two independent random vectors and then E[∥QcZ∥

2
|Y ] = E[E[∥QcZ∥

2
|PcZ]|Y ] =

p − d. Therefore span(MOF1) = span(MSIR) and OF1 is similar to SIR. Simulations made in this case highlight the similarity
between the selected methods and are not presented here. Besides, to reach a point of view developed in the simulation
study of [9], we are interested in the link between the variations of var(Z |Y ) and the performance of the presentedmethods.
Clearly, according to Eq. (9), the variations of the random variable E[∥QcZ∥

2
|Y ] emphasize the differences between SIR

and OF1. Indeed if this one is a constant, then dh = E[∥QcZ∥
21{Y∈I(h)}] = (p − d)ph and OF1 is the same method as SIR.

Consequently, SIR estimates are near optimal with respect to criterion (7) when the variations of E[∥QcZ∥
2
|Y ] are near 0.

Besides, if this random variable is nonconstant then also the dh’s and the differences between bothmethods are emphasized.
Moreover, the random variables E[∥QcZ∥

2
|Y ] and var(Z |Y ) are strongly linked, and as it was the case to distinguish IRE from

SIR, the variations of var(Z |Y ) play an important role to differentiate OF1 from SIR. Consequently, to point out the differences
between these methods, we generate non-Gaussian predictors in the following two examples.

Example 1. Let N1 ∈ Rp, N2 ∈ Rp be two independent standard Gaussian vectors, let ϵ be a Bernoulli random variable with
mean 1/2. The predictor vector X = (X (1), . . . , X (p)) is generated as a Gaussian mixture through the equation

X = (µ1 + σ1N1)ϵ + N2(1 − ϵ),

and it would be interesting to consider different values of σ1 ∈ R and µ1 ∈ Rp. We introduce the following models

Model I: Y = tanh(X (1)/3)+ 0.1e

Model II: Y = X (2)|1 + X (1)/3| + e

where e d
= N (0, 1). For Model I, an interesting parametrization is

µ1 = (a, 0, . . . , 0)T ,

and then we can consider different values for a and σ1. Such a distribution for the predictors induces two regimes. To
highlight differences between both regimes respectively determined by ϵ = 1 and ϵ = 0, one can take the parameter a
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Fig. 1. Plot of the distance error for OF1, SIR and IRE in Example 1.

far from 0 and σ1 ≠ 1, say a = 6 and σ1 = 0.5. Clearly the Ch’s corresponding to small Y , have more chances to come
from the second regime ϵ = 0, which induces a poor estimate for such Ch’s. On the contrary, the other Ch’s tend to be well
estimated. In this case the error of the SIR method is to uniformly weight these slices whereas OF1 does not. To be more
comprehensive, we compute the methods with different parametrizations. The boxplots and the averages of the distance
(12) between the standardized CS and its estimates over 100 simulated samples are given in Fig. 1. With the samemodel, in
this figure, we also provide a graph to describe the effect of an increase of p.

For Model II, Ec has dimension 2 and then is more difficult to estimate. We consider

µ1 = (6, 2, . . . , 0)T ,

and essentially, Model II provides similar graphs and interpretations as Model I. As a result, we analyze through this model
the impact of an increase of n. The corresponding graph has been included in Fig. 1.

For each model and in all the parameter configurations, OF1 performs better than SIR. Between OF1 and IRE, the
conclusion is quite a lot more mitigated. The chosen configurations reflect different kinds of difficulties. The situation
presented in the first graph reflects a too small sample number n = 100 with respect to p = 10 to provide a good
estimate. When (µ1, σ1) = (0, 1), the predictors are normally distributed and there are no significant differences between
the methods. By increasing µ1 and reducing σ1, we move away from the Gaussian assumption and OF1 is the only one to
improve its accuracy. Indeed, OF1 performs better than SIR and IRE around 86% of the time when (µ1, σ1) = (6, 0.5) and
100% of the time when (µ1, σ1) = (6, 0.1). Besides, the second graph shows that OF1 is more robust to a high dimensional
set-up. The most sensitive method to the increase of p is IRE because it requires the estimation of a large matrix. Finally, the
last graph emphasizes that IRE is the most accurate when n is large.

Example 2. This example is interesting because it includes logistic models in the SDR framework. It is inspired from [9],
Model A.We generalize their model by introducing some noise as described in the following. Let ϵ be a real random variable
uniformly distributed on {1, 2, 3}, and let N1 ∈ Rp, N2 ∈ Rp, N3 ∈ Rp be independent Gaussian vectors with respective
moments (µ11, σ 2

1 I), (µ21, σ 2
2 I) and (µ31, σ 2

3 I) where 1 = (1, . . . , 1)T . The vector X is generated as a Gaussian mixture
through the equation

X = N11{ϵ=1} + N21{ϵ=2} + N31{ϵ=3},

and Y with the proportional-odds model defined by

Model III: Y =

3
j=1

j1{πj−1≤U≤πj},

with U d
= U([0, 1]) and the cumulative probability functions

π0 = 0, π1 =
exp(θ1 − 1TX)

1 + exp(θ1 − 1TX)
, π2 =

exp(θ2 − 1TX)
1 + exp(θ2 − 1TX)

, π3 = 1.

First note that Model III implies that Y = f (1TX,U) and as a consequence the CS exists for this kind of models. In our case,
the CS is generated by the vector 1 and the CS is equal to the standardized CS. For clarity, we prefer to work with the mean
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Fig. 2. Plot of the distance error for OF1 and SIR in Example 2.

and the standard error of the predictors divided respectively by p and
√
p so that the mean and the standard error of 1TX

do not depend on p. Working with the new scaled parameters, we fixµ2 = 5,µ3 = 8, σ2 = 0.5, and σ3 = 0.5. Then we can
specify the cumulative probability functions by taking θ1 = 3.5 and θ2 = 6.5, so that it is realistic with respect to themeans
µ2 and µ3. To visualize such a model, one could draw in the same plot the cumulative probability functions π1, π2 − π1,
and 1− π2, and the density of 1TX . Each state of the response tends to correspond to some regime of the Gaussian mixture.
The parameter H is fixed to 3, the number of states of the response. In Fig. 2, we test the accuracy of OF1, SIR and IRE facing
Model III for different configurations of the parameters µ1 and σ1. The dimension p and the sample number n have been
taken to provide neither a simple situation, nor a too difficult one.

In Fig. 2, the presented graph starts by a model with a lot of noise. The second and third situation reflects respectively a
shift of the mean µ1 and a shift of the variance σ1. In each case, this reduces the noise and the estimation of the CS is more
accurate for all the methods. Again when some estimatedCh’s have a small variance, OF1 manages to take advantage of the
situation.

6.2. OF2 and order 2 methods

Wecompare severalwell-known order 2 dimension reductionmethodswith OF2. Order 2methodswe computed include
SAVE, pHd, SIR-II and DR. For the considered models, pHd does not work as well as the others. Therefore we focus on a
comparison between SAVE, DR, SIR-II and OF2. We computed the OF2 algorithm detailed in Section 4.2 and the simulations
wemade truly argued in favor of its convergence: after 5 iterations the resultingmatrix is nearly stable. Itwas also interesting
to compare criterion (12) between the first iteration matrix and the final one. The difference between both was highly
significant. Another important point is that OF2 is not as close to DR, SAVE and SIR-II as OF1 is close to SIR. The following
simulations highlight this fact and we expect to have a large scope by providing many kinds of models with different
parameter settings. We begin this section by providing the results obtained with Gaussian predictors.

Example 3. We consider the three following regression models

Model IV: Y = tanh


|X (1)|
2


+ 0.1e

Model V: Y = 0.4(X (1))2 +


|X (2)| + 0.2e

Model VI: Y = 1.5X (1)X (2) e

with e d
= N (0, 1) and X d

= N (0, Ip). The standardized CS and the CS of thesemodels are equal. ForModel IV, the CS is spanned
by (1, 0, . . . , 0), whereas inModel V and VI, it is a two dimensional subspace generated by (1, 0, . . . , 0) and (0, 1, 0, . . . , 0).
We consider different parameter configurations forwhich every presentedmethod is in a convenient situation.We compute
SAVE, DR, SIR-II and OF2 with (n, p,H) equal to (100, 6, 5), (500, 10, 5) and (1000, 20, 10). For each configuration, 100
simulated random samples have been generated and the resulting boxplots with their averages are presented in Fig. 3.

For all the selected models, OF2 performs better than all other methods. The most significant improvement happens for
Model IV in which our method performs better than the others around 99% of the time in the setting (100, 5, 6). When n
increased, OF2 was never worse than the others. Note that for n = 100, 500, the average error of OF2 is two times smaller
than the average error of DR, SAVE or SIR-II. For n = 1000 this factor goes to three. The results of the simulations for



F. Portier, B. Delyon / Journal of Multivariate Analysis 115 (2013) 84–107 99

Fig. 3. Plot of the distance error for OF2, DR, SAVE and SIR-II in Example 3.

Model V are really close to Model IV. Model VI is a more complicated one for each method, we have to wait n = 500 to
notice substantial differences in the distribution of the criterion. In every model, as n increases the improvement of OF2
is substantial. As a consequence and according to the plots in Fig. 1 it seems clear that the asymptotic distribution of the
distance error of OF2 has a smaller mean and variance than the other methods. Besides, for the selected models SAVE, DR
and SIR-II perform in a similar way and are asymptotically equivalent.

Example 4. To conclude we present the results obtained with non-Gaussian but spherical predictors. Define X = ρU with
U a uniformly distributed vector on the unit sphere ofRp, independent of ρ, a real random variable. Clearly, X has a spherical
distribution. Moreover, by taking

ρ = ϵ |10 + 0.5N1| + (1 − ϵ)|30 + 0.5N2|,

withN1
d
= N (0, 1),N2

d
= N (0, 1) and ϵ d

= B( 12 ), the distribution of X is far from a normal distribution.We study againModel
VI but also the following ones,

Model VII: Y = |X (1)| +


X (2)

4

2

+ 0.5e

Model VIb: Y = X (1)X (2) e

where e d
= N (0, 1). Model VI has beenmodified to reduce the signal to noise ratio. The directions to estimate, the parameter

configurations and the number of simulated random samples are the same as in the Gaussian case studied previously.
Boxplots with their associated averages are presented in Fig. 4.

A general remark regarding Fig. 4 is that the transition from normal to spherical predictors went well for OF2 comparing
to other methods. Model IV still reflects the most important improvement of OF2. When n is large, it performs around eight
times better than the others. In Model VIb, the accuracy of OF2 deteriorates by changing the distribution of the predictors
from Gaussian into spherical. Finally, Model VII provides a standard new situation where the improvement of OF2 is highly
significant.

In the development of OF2, Model VI was of particular interest. Whether predictors are normal or spherical, OF2 is highly
sensitive to the identification of the CS directions. For n = 100 the mean is less than the median, and it is no longer the case
for n larger than 100. This marked change in the boxplots is explained by the presence of small outliers in the first situation
and large outliers in the second one. Indeed as n is getting larger, OF2 performs better but however the mean is shifted by
the presence of outliers that reflects uncommon difficult situations. This results from the eigenvector identification process
described in Remark 3. Clearly OF2 relies on thewaywe identify eigenvectors ofMψ that belong to Ec . Tomake that possible,
a test of independence between the response and the projected predictors is conducted. Outliers of model VI for n equal to
500 and 1000 are the consequence of a bad eigenvector choice realized by this test.When n is sufficiently large this no longer
occurs. When the OF2 algorithm is iterated more than 5 times, it happens only very few times.

7. Concluding remarks

The article introduces the basis of a newmethodology for SDR. The introduction of some transformations of the response
and the optimization with respect to these transformations were the original ideas of this work and have led us to some
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Fig. 4. Plot of the distance error for OF2, SAVE and DR in Example 4.

new methods of investigation in SDR. A surprising point was the high degree of similarity between SIR and OF1. As the
simulations pointed out, it could be better to use OF1 when the intra-slice variance is nonconstant. IRE also behaves well in
such situations but it has some problems when p is large because of the estimation of a large matrix. Our main contribution
relates to order 2 methods, in particular we propose a new class of methods, TF2, that no longer needs the CCV assumption.
Moreover, the simulation study sheds light on the high accuracy of OF2 over other order 2 methods. However, one can
propose some lines of research that could improve the TF framework.

Regarding the estimation of the dimension, some prospects can be found in the Pearson’s chi-squared statistic used in
the OF2 algorithm (see Remark 3) to select the eigenvectors that belong to the CS. Clearly, this approach tries to take full
advantage of the regression context offered by SDR. Work along this line to estimate the dimension of the CS is in progress
and up until now simulations in this sense have provided good results.

Besides, both optimizations OF1 and OF2 do not take into account the estimation error on the variance and the mean of
the predictors in the asymptotic decomposition of the criterion (7). This optimization leads tomore complicated results that
should be validated by simulations.

Finally, in many cases the regression function has different kinds of components, in particular there can be some patho-
logical components for order 1 methods (see Eq. (10)). To handle such cases, one can calculate

M = αM1 + (1 − α)M2,

where M1 and M2 are matrices of two different SDR methods. A spectral decomposition of M gives a hybrid estimate of the
CS. Such ideas were recommended by Gannoun and Saracco [14] and Ye and Weiss [22] proposed a bootstrap method to
select the parameter α. This includes the combinations of SIR and SAVE, SIR and pHd, SIR and SIR-II. Besides, it is commonly
known that

MSAVE = E[var(Z |Y )2] + MSIR − I,

and that

MDR = E[E[(ZZT
|Y ] − I)

2
] + M2

SIR + tr(MSIR)MSIR,

making SAVE and DR some combinations of SIR and order 2 methods. Therefore SAVE and DR do not only involve order 2
moments of Z , unlike TF2.Moreover TF1 only involves order 1moments of Z . As a consequence, it seemsmore realistic to de-
velop hybrid methods based on TF1 and TF2. Especially, the choice of the parameter α could be realized by the optimization
of a well chosen criterion as has been done independently to derive OF1 and OF2.

Appendix A. Proofs of the stated results

Proof of Theorem 1. The standardization of the predictors does not change the presentation of this result, hencewe present
it for X . The proof is divided into three principal parts: we first give a lemma about the intersection of two MDRS, then we
apply it to prove the statement of the theorem about the CMS, finally using this last result we conclude the proof for the
CS. �
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Lemma 11. If the restriction of X to the ball of Rp with radius r and center x0 has a strictly positive density, then the intersection
of two MDRS is a MDRS on this ball, i.e.

(E[Y |X] − E[Y |RX])1{X∈B(x0,r)} = 0 a.s.,

where R denotes the orthogonal projector onto their intersection.

Proof. We first make the proof for a ball centered at 0, and then we apply it to X − x0. Let E and E ′ be two MDRS, P and P ′

their respective orthogonal projectors, and R the orthogonal projector onto E ∩ E ′. Using the definition of a MDRS,

E[Y |X] = E[Y |PX] = E[Y |P ′X] a.s.

Let g(PX) and h(P ′X) denote the last two random variables in the preceding equation. Using that X has a strictly positive
density on the unit sphere, we can write

g(Px) = h(P ′x) a.e. on B(0, r). (13)

Let ε > 0, and ϕk be a unit approximation with compact support B(0, ε), we define the function fk : B(0, r) → R such that

fk(x) = (g ◦ P) ∗ ϕk (x).

Then, we have for all x,

fk(x) =


g(P(x − y))ϕk(y)dy = fk(Px).

Moreover, for all x ∈ B(0, r − ε), since in the above integral x − y ∈ B(0, r), using (13) we derive

fk(x) = (h ◦ P ′) ∗ ϕk (x),

and similarly we obtain fk(x) = fk(P ′x). Since fk(x) = fk(Px) = fk(P ′x), a simple iteration process provides for all
x ∈ B(0, r − ε),

fk(x) = fk((PP ′)nx).

Since fk is a continuous function and limn→+∞(PP ′)n = R, we have

fk(x) = fk(Rx), x ∈ B(0, r − ε).

To conclude, the unit approximation theorem gives us the convergence

fk ◦ R
L1

−→ g ◦ P.

Thus, from fk(RX) we can derive a subsequence fnk(RX) that converges almost surely to g(PX), proving that E[Y |X] is a
function of RX . This completes the first part of the proof.

Now suppose that X has a strictly positive density onto the ball of radius r and center x0. DefineX = X − x0, it is clear
that a MDRS for X is also a MDRS forX and conversely. Then, sinceX is centered in 0, the intersection of two MDRS is still a
MDRS forX and obviously for X . �

Existence of the CMS. Denote by F ⊂ Rp the support of the density of X . A first step consists of showing that its interior F̊ can
be covered by a countable number of balls included in F̊ . Secondly, we apply Lemma 11 to each of this balls to obtain that
the intersection of two MDRS on F̊ is a MDRS on F̊ . Finally, the uniqueness is shown.

Let x ∈ F̊ , then there exists r > 0 such that B(x, r) ⊂ F̊ . It is possible to find a ball, with rational center and radius,
included in B(x, r) and containing x. Thus any x of F̊ is contained in a ball with center and radius rational that is included in
F̊ . In other words, the set A formed by all the balls B(xq, rq) ⊂ F̊ , with xq and rq rationals, covers F̊ . Therefore, by applying
Lemma 11, we have for all B(xq, rq) ∈ A,

|E[Y |X] − E[Y |RX]|1{X∈B(xq,rq)} = 0 a.s.,

since A is a countable set,
(xq,rq)∈A

|E[Y |X] − E[Y |RX]|1{X∈B(xq,rq)} = 0 a.s.,

then,

|E[Y |X] − E[Y |RX]|


(xq,rq)∈A

1{X∈B(xq,rq)} = 0 a.s.

By assumption P(X ∈ F̊) = 1, then the right-hand side is almost surely strictly positive, and thus

E[Y |X] = E[Y |RX] a.s.
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Consequently, the intersection of two MDRS is a MDRS. To complete the proof, assume that two MDRS have minimum
dimension. Their intersection has at least minimum dimension because it is a MDRS. So they are equal.
Existence of the CS.Using similar arguments about the dimension of vector spaces, we only need to show that the intersection
of two DRS is a DRS. Let E and E ′ be two DRS. By Eqs. (2) and (3), E and E ′ are also MDRS for the random variables 1Y∈A and
X . We have just showed that the intersection of two MDRS is a MDRS. Then for all measurable sets A, E ∩ E ′ is a MDRS for
1Y∈A and X . Equivalently, E ∩ E ′ is a DRS. �

Proof of Theorem 3. Assumption 3 implies that {E[ZE[Z (k)|Y ]], k = 1, . . . , p} generates Ec . First, let us show that any
vector of this family can be approximated by E[Zφ(Y )], where φ is a linear combination of functions in Ψ . Let ε > 0 and
k ∈ {1, . . . , p}, since Ψ is a total family in L1(∥Z∥), there exists φk a finite linear combination of functions in Ψ such that

E

∥Z∥ |φk(Y )− E[Z (k)|Y ]|


≤ ε,

besides, we have

∥E[Zφk(Y )] − E[ZE[Z (k)|Y ]]∥ ≤ E

∥Z∥

φk(Y )− E[Z (k)|Y ]
 ,

and therefore,

∥E[Zφk(Y )] − E[ZE[Z (k)|Y ]]∥ ≤ ε. (14)

Here an important point is that E[Zφk(Y )] ∈ Ec , it implies that

span (E[Zφk(Y )], k = 1, . . . , p) ⊂ span(MSIR). (15)

Moreover, (14) and the continuity of the determinant involve that the rank of the set of vectors E[Zφk(Y )]’s is equal to d if
ε is small enough. Then, instead of an inclusion (15) becomes an equality and we complete the proof by recalling that each
φk is a linear combination of a finite number of functions in Ψ . �

Proof of Proposition 4. We first calculate the expectation of the limit in law of the sequence n tr(QcPc) and then we solve
the optimization problem. Since

n tr(QcPc) = n tr(ηTQcη (ηTη)−1) = tr(
√
n(ηT − ηT )Qc

√
n(η − η)(ηTη)−1).

Slutsky’s theorem and the continuity of the operator tr(·) provide that n tr(QcPc) converges to tr(δTQcδ) in distribution,
where δ ∈ Rp×d is the limit in law of the sequence

√
n(η − η), i.e. a normal vector with mean 0 (we can get ride of the

quantity (ηTη)−1 because of the constraint andηTη P
→ ηTη). Thus it remains to calculate the expectation of this limit, notice

that

E [Wα] = E

tr(δTQcδ)


=

d
k=1

tr

QcE[δkδ

T
k ]

,

where δk stands for the limit in law of the sequence
√
n(ηk −ηk). Finally, since its variance is equal to var(Zψk(Y )) and using

the linearity condition, we find that

E [Wα] =

d
k=1

E

∥QcZ∥

2ψk(Y )2

.

Now let us formulate the minimization problem with respect to the matrix α. Using that the I(h) are pairwise disjoint, we
have

E [Wα] =

d
k=1

αT
k E[∥QcZ∥

21Y1T
Y ]αk = tr(αTDα),

and also,

ηTη = αTCTCα = (D
1
2 α)TGD

1
2 α.

From both previous equations, we set out the equivalent minimization problem

min
α

tr

αTDα


u.c. (D

1
2 α)TGD

1
2 α = Id,

then, from the variable change U = V TD
1
2 α we derive

min
U

tr(UTU) u.c. UT

D0 0
0 0


U = Id.
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By writing UT
= (UT

1 ,U
T
2 )we notice that there is no constraint on U2, which implies that U2 = 0. Consequently, it remains

to solve

min
U1

tr(U1UT
1 ) u.c. U1UT

1 = D−1
0 ,

where U1 ∈ Rd×d, and where the quantity to minimize is fixed by the constraint. Then, a solution is U1 = D
−

1
2

0 H where H is
any orthogonal matrix. Hence, the solution of the minimization problem is

α = D−
1
2 VU = D−

1
2 V1D

−
1
2

0 H. �

Proof of Lemma 5. Let us begin in the easiest way : (2)⇒ (1). Let H be any orthonormal matrix as described in (1). Because
HQcHT

= I − HPcHT
= Qc , by multiplying (2) on the left side by H and on the right side by HT , we find that

var(HZ |PcZ) = λ∗

ωQc = var(Z |PcZ).

The other way is based on a good choice of the matrix H . Let γ be a unit vector of E⊥
c , and define H = I − 2γ γ T . Clearly, H

is symmetric and satisfies to the requirement of (1). So that, we have

var(Z |PcZ) = (I − 2γ γ T )var(Z |PcZ)(I − 2γ γ T ),

developing the right hand side, it follows that

var(Z |PcZ)γ γ T
= 2var(γ TZ |PcZ)γ γ T

− γ γ Tvar(Z |PcZ),

and finally, multiplying by γ on the right, we find

var(Z |PcZ)γ = var(γ TZ |PcZ)γ . (16)

Therefore, any γ ∈ E⊥
c is an eigenvector of the matrix var(Z |PcZ) and thus, E⊥

c is included in an eigenspace of this matrix.
Denote by λ∗

ω the eigenvalue associated with E⊥
c . Since the columns of Qc are vectors of E⊥

c , we have

var(Z |PcZ)Qc = λ∗

ωQc,

which implies that

var(Z |PcZ) = var(QcZ |PcZ) = λ∗

ωQc,

and (1) ⇒ (2) is completed.
The value of λ∗

ω can be given by Eq. (16). Under the linearity condition we have for every unit vector γ ∈ E⊥
c ,

λ∗

ω = var(γ TZ |PcZ) = E[(γ TZ)2|PcZ],

and hence it suffices to take γ =
1

√
p−d

p−d
k=1 γk where (γ1, . . . , γp−d) is an orthonormal basis of E⊥

c , to obtain

λ∗

ω =
1

p − d
E

∥QcZ∥

2
|PcZ


. �

Proof of Theorem 6. Tomake a complete proof,weneed to show that all the vectors in E⊥
c are eigenvectors of the symmetric

matrix Mψ − λ∗

ψ I associated with the eigenvalue 0. The existence of the CS ensures that

Mψ − λ∗

ψ I = E[(E[ZZT
|PcZ] − λ∗

ωI)ψ(Y )],

besides, thanks to the linearity condition and DCV, we have

E[ZZT
|PcZ] = λ∗

ωQc + PcZZTPc .

Thus, for any γ ∈ E⊥
c we have (Mψ − λ∗

ψ I)γ = 0 and the proof is completed. �

Proof of Theorem 7. Theproof relies on LemmasB.4 andB.5. Both are results about vector spaces of non-invertiblematrices.
For clarity and since it does not deal directly with the subject of the paper, we state and prove these lemmas in Appendix B.

Let Ψ be a total countable family in L1(∥Z∥
2), Theorem 6 indicates that E⊥

c ⊂ E⊥

ψ for anyψ ∈ Ψ . Then it suffices to show
that there exists ψ a finite linear combination of functions in Ψ such that dim(Eψ ) = rank(Mψ − λ∗

ψ I) = d. In the basis
(P1, P2), where P1 and P2 are respectively bases of Ec and E⊥

c , the matrixMψ − λ∗

ψ I can be written as
Nψ 0
0 0


,
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with Nψ = PT
1 (Mψ − λ∗

ψ )P1. Notice that the space

M =


Nψ , ψ =


h

αhψh


,

is a vector space of symmetric matrices with dimension d × d. In the basis (P1, P2), Assumption 5 becomes

∀η ∈ Rd, P(ηTNYη = 0) < 1,

with NY = PT
1 (MY − λ∗

Y )P1. Clearly, this implies that

∀η ∈ Rd, ∃ψ, ηTNψη ≠ 0, (17)

and because Ψ is a total family in L1(∥Z∥
2), the function ψ in the previous equation could be a finite linear combination

of functions in Ψ and then Nψ ∈ M. Thus to conclude the proof, one can notice that given a vector subspace M ⊂ Rd×d

of symmetric matrices, if (17) holds, then there exists an invertible matrix in M. This assertion is true because it is the
contrapositive of the statement of Lemma B.5. �

Proof of Corollary 8. From Theorem 7 we have Eψ = Ec where ψ =
H

h=1 αhψh. Hence, we need to show that Eψ ⊂ ⊕Eψh
since the other inclusion is trivial. Suppose that there exists η ∈ Eψ with norm 1 such that η ⊥ ⊕Eψh . Then by definition,
for every h = 1, . . . ,H , we have

Mψhη = λ∗

ψh
η,

and we can obtain

Mψη =

H
h=1

αhλ
∗

ψh
η = λ∗

ψη,

which is impossible because η ∈ Eψ . �

Proof of Proposition 9. We have

QcPc = Qc(Pc − Pc)

= Qc


C

(Iz − Mψ )
−1

− (Iz − Mψ )
−1dz

= Qc


C

(Iz − Mψ )
−1(Mψ − Mψ )(Iz − Mψ )

−1dz,

and then, we can obtain

QcPc = Qc


C

(Iz − Mψ )
−1(Mψ − Mψ )(Iz − Mψ )

−1dz

+Qc


C

(Iz − Mψ )
−1(Mψ − Mψ )(Iz − Mψ )

−1(Mψ − Mψ )(Iz − Mψ )
−1dz.

Consider the trace of the first term in the above equation, since Qc and (Iz − Mψ )
−1 commute we have

tr

Qc


C

(Iz − Mψ )
−1(Mψ − Mψ )(Iz − Mψ )

−1dz


= tr

(Mψ − Mψ )


C

Qc(Iz − Mψ )
−2dz


.

Besides, it is clear that

Qc(Iz − Mψ )
−1

=
Qc

(z − λ∗

ψ )
, (18)

and recalling that λ∗

ψ is outside C, we have


C
1

(z−λ∗
ψ )

−2 dz = 0 and we get

tr

QcPc = tr


Qc


C

(Iz − Mψ )
−1(Mψ − Mψ )(Iz − Mψ )

−1(Mψ − Mψ )(Iz − Mψ )
−1dz


.

Denote by∆ the limit in law of
√
n(Mψ −Mψ ), since M goes toM in probability, Slutsky’s Theorem implies the convergence

n tr(QcPc) d
−→Wψ with

Wψ = tr

Qc


C

(Iz − Mψ )
−1∆(Iz − Mψ )

−1∆(Iz − Mψ )
−1dz


.
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Now we use Eq. (18) to obtain

Wψ = tr


Qc∆


C

(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dz∆Qc


, (19)

where the above integral can be calculated in the following way. Splitting it into two terms and using (18), we have
C

(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dz =


C

Pc(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dz +


C

Qc(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dz

=


C

Pc(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dz + Qc


C

1
(z − λ∗

ψ )
3
dz.

It is not difficult to show that the last term in the previous equation equals 0. Regarding the first term, since for every
k ∈ {1, . . . , d} we have

Pc


C

(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dzηk = ηk


C

(z − λψ (ηk))
−1

(z − λ∗

ψ )
2

dz =
ηk

(λψ (ηk)− λ∗

ψ )
2

= Pc(PcMψ − Iλ∗

ψ )
−2ηk,

and since all the vectors in E⊥
c belong to the kernel of this matrix, we get

Pc


C

(Iz − Mψ )
−1

(z − λ∗

ψ )
2

dz = Pc(PcMψ − Iλ∗

ψ )
−2.

Injecting it in (19), we obtain

Wψ = tr

∆Qc∆Pc(PcMψ − Iλ∗

ψ )
−2 ,

and it remains to calculate its expectation. The linearity condition implies that QcMψPc = 0, and we have

E[∆Qc∆Pc] = lim
n→+∞

nE
MψQcMψPc


= E[ZZTPc∥QcZ∥

2ψ(Y )2],

which completes the proof. �

Proof of Theorem 10. The proof involves a result in [4], stated in Appendix B as Theorem B.3.
By applying Theorem B.3 to the matrixCα, one can notice that the asymptotic distribution of ΛTF1 depends only on the

variance of the asymptotic law of
√
n vec(UT

0 (
Cα − Cα)V0).

LetW be a random vector following this distribution. By the linearity condition, we have

UT
0 (
Cα − Cα)V0 = UT

0
CαV0 = UT

0
Σ−1/2(Σ−

1
2C − Σ−

1
2 C)αV0.

Since CαV0 = 0,α P
→α and Σ P

→Σ , by Slutsky’s theoremW has the same law as the asymptotic distribution of
√
n vec(UT

0Σ
−1/2Σ−

1
2CαV0).

By the linearity condition U0Σ
−1/2Xi = U0Σ

−1/2(Xi − E[X]) = U0Zi, and one can obtain

UT
0Σ

−1/2Σ−
1
2CαV0 = UT

0 (ZΨ
T
H (Y )− Z Ψ T

H (Y ))αV0.

We notice that
√
n(ZΨ T

H (Y )− Z Ψ T
H (Y )) =

√
n

Z(Ψ T

H (Y )− E[Ψ T
H (Y )])


+ oP(1),

and we provide the decomposition
√
nvec(UT

0 (
Cα − Cα)V0) = (V T

0 α
T

⊗ UT
0 )

√
n vec


ZΦ(Y )


+ oP(1),

with the notationΦ(Y ) = ΨH(Y )− E[ΨH(Y )]. By the central limit theorem, we get

1
√
n

n
i=1

vec(ZiΦ(Yi)
T )

d
−→ N (0, var(Φ(Y )⊗ Z)) .

Clearly, using the linearity condition we have

var(W ) = (V T
0 α

T
⊗ I)E[Φ(Y )Φ(Y )T ⊗ (UT

0 ZZ
TU0)](αV0 ⊗ I).
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Under DCV one can get

E[Φ(Y )Φ(Y )T ⊗ (UT
0 ZZ

TU0)] = E[(p − d)−1
∥QcZ∥

2Φ(Y )Φ(Y )T ⊗ Ip−d],

under CCV one can obtain

E[Φ(Y )Φ(Y )T ⊗ (UT
0 ZZ

TU0)] = E[Φ(Y )Φ(Y )T ⊗ Ip−d],

and the conclusion follows. �

Appendix B. Few results

Proposition B.1 ([1, Theorem 4.1.4, p. 48]). Let Z be a random vector of Rp (p ≥ 2) with a finite second order moment. If Z is
spherical and if var(Z |PZ) = const for some orthogonal projector P, then Z is normal and conversely.

Theorem B.2 ([5]). Let p ∈ [0,+∞[, µ a Borel probability measure on [0, 1], and fn : [0, 1] → R a family of bounded
measurable functions that separates the points:

∀x, y ∈ [0, 1], x ≠ y, ∃n ∈ N such that fn(x) ≠ fn(y).

Then the algebra spanned by the functions fn’s and the constants is dense in Lp([0, 1], µ).

Theorem B.3 ([4]). Assume rank(M) = d and that
√
n vec(M − M)

d
→ N (0,Γ ). Then

Λ d
−→

s
k=1

ωkX2
k ,

where the Xk’s are independent standard normal randomvariables and theωk’s are the ordered eigenvalues of (V T
⊗UT )Γ (V⊗U),

with s = min(rank(Γ ), (p− d)(H − d)) and U and V are respectively basis of the left and right singular spaces of M associated
with the singular value 0.

The following lemma deals with vector space structure and rank-deficient matrices. We refer to [11, Proposition 3], for
a more general approach. In particular, this lemma implies Lemma B.5 which has a central place in the proof of Theorem 7.

Lemma B.4. Let M, N ∈ Rd×d and α0 > 0. If rank(N + αM) ≤ rank(N) for all α ≤ α0, then we have

M ker(N) ⊂ Im(N).

Proof. Denote by Pα the characteristic polynomial ofN+αM and define rα = rank(N+αM) and kα = dim(ker(N+αM)) =

d−rα . Because of the continuity of the determinant, the coefficients of Pα converge to the coefficients of P0, then Pα converges
uniformly to P0 on every compact. By the definition of k0, P0 is such that

P0(x) = xk0Q0(x) with Q0(0) ≠ 0.

Now we use the uniform convergence. For α small enough we have P (k0)α (0) ≠ 0, and this gives the upper bound kα ≤ k0.
Using the assumption we obtain k0 = kα . Therefore, for some α0, we have

Qα(0) ≠ 0, α ≤ α0.

Clearly, there exists a contourC such that none of the nonzero eigenvalues ofN+αM belong toC, α ≤ α0. Using the residue
theorem, we can express the orthogonal projectorsΠ0 andΠα on the kernel of the matrices N and N + αM as follows,

Π0 =


C

(N − zI)−1dz, and Πα =


C

(N + αM − zI)−1dz,

and one can get

Π0 −Πα = α


C

(N − zI)−1M(N + αM − zI)−1dz.

Because as α goes to 0, none of the eigenvalues of N and N + αM crosses C, the integral converges and then we derive that
limα→0Πα = Π0. Besides, we have

(N + αM)Πα = 0, and NΠ0 = 0,

then we get N(Π0 −Πα) = αMΠα , and we obtain

Im(MΠα) ⊂ Im(N).

We conclude the proof using the continuity ofΠα . �
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Lemma B.5. Let M ⊂ Rd×d be a vector space of non-invertible symmetric matrices. We have

∃u ∈ Rd,∀M ∈ M, uTMu = 0.

Proof. Since M is a vector space, we can apply Lemma B.4 with N a matrix of maximal rank in M and anyM ∈ M. Then, for
every u ∈ ker(N), there exists y ∈ Rd such that

Mu = Ny.

Because N is symmetric, by multiplying the left-hand side by uT , we obtain uTMu = 0. �
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