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Abstract

In this paper, we propose some algorithms for the simulation of the distribution of certain diffusions
conditioned on a terminal point. We prove that the conditional distribution is absolutely continuous with
respect to the distribution of another diffusion which is easy for simulation, and the formula for the density
is given explicitly. An example of parameter estimation for a Duffing—Van der Pol oscillator is given as an
application.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to propose algorithms for the simulation of the distribution of a
diffusion

dxlzb(tixl)dt+0(tvxl)dwf’ X0 = U, OSISTs

conditioned on x7 = v, where b and o are given functions with appropriate dimensions, and w
is a standard Brownian motion.

From the point of view of application, this allows us to do posterior sampling when the
diffusion is observed at instants {¢{, ..., t,} C [0, T].

Let us recall that in the usual conditioning (see, e.g., [7]), the distribution of the diffusion x
conditioned on x7 = v is the same as that of another diffusion y satisfying

dy, = b(t, y)dt +o(t, y)dw,, yo=u, 0<t<T,
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where
l;(t, x) = b(t, x) + [o0™1(t, x)V,.(og p(z, x; T, v)),

and p(s, u; t, z) is the density of xls * However, this is not suitable for simulations because in
general, one does not know the transition density p.

We will prove that, in certain cases, the conditional distribution of the diffusion is absolutely
continuous with respect to the distribution of another diffusion which is easy for simulation, and
we give the explicit formula for the density. This leads to an efficient simulation algorithm.

Two different cases will be considered:

1. The matrix o (¢, x) depends only on ¢, and b has the form b(¢,x) = bo(t) + A(t)x +

o(t)by(t, x).

2. The matrix o (¢, x) is uniformly invertible.

We apply also our simulation algorithm to a problem of parameter estimation for a
Duffing—Van Der Pol oscillator. We give our simulation for illustration.

This paper is organized as follows: In Section 2, we recall a Girsanov theorem for unbounded

drift which is essential for our simulation algorithm. In Section 3, we consider Case 1, and in
Section 4, we consider Case 2. The last section is devoted to the application.

2. A Girsanov theorem for unbounded drifts

This section is devoted to give a slightly generalized Girsanov theorem which will be used in
the next section. We call a measurable function F(z, x) from R, x R? to R” locally Lipschitz
with respect to x, if for any R > 0, there exists a constant Cr > 0, such that, for any
(t,x,y) € Ry x R x RY with |x| < R, [y| <R,

|F(t,x) = F(t, y)| = Crlx —yl.

And on the metric space C ([0, T']; R™), we define the filtration {F;}; to be the natural filtration
of the coordinate process.

Theorem 1. Let b(t, x), h(t, x), o (t, x) be measurable functions from R4 x RY 1o R, R™, and
RE*™ which are locally Lipschitz with respect to x; consider the following stochastic differential
equations:

dx, = b(t, x,)dt + o (¢, x;)dwy, (D
dyr = (b(t, y;) + o (t, y)h(t, y;))dt + o (t, y)dws, yo = xo, )

on the finite interval [0, T]. We assume the existence of strong solution for each equation. We
assume in addition that h is bounded on compact sets. Then the Girsanov formula holds: for any
non-negative Borel function f(x, w) defined on C([0, T, R x C([0, T1; R™), one has

Ey[f(y, wh)] — Ex[f(X, w)efoT h*(t,xr)du)r—% fOT |h(f,X[)|2dt]’ (3)
Ex [f(x, U))] — Ey[f(ys wh)e, fOT h*(t,yr)dw,f% fOT |h(t,y,)\2dt]’ (4)

where wfl = w; + fot h(s, ys)ds, and h* stands for the transpose of h.
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Proof. We assume first that the positive supermartingale

t 1 t
M; = exp {/ h*(s, xg)dwg — 5/ |h(s,xs)|2ds}
0 0

is a martingale under P, which will be proved later. In this case w, = w; — fot h(s, xs)ds is a
Brownian motion under Mt Py, leading to a solution (x, w) of (2):

dx; = b(t, x;)dt + o (¢, x;)h(t, x;)dt + o (¢, x;)dwy;.

As b(t, x), h(t,x), o (t, x) are locally Lipschitz with respect to x, pathwise uniqueness holds
for (1) and (2). The standard Girsanov theorem implies that (3) holds.
We prove now that M, is a martingale. For any R > 0, consider the stopping time

tg=inf{t > 0:|x;| > R}AT.

Taking into consideration that % is locally bounded, we have, according to the Girsanov theorem
for bounded drift:

P)’lj:rR = MTRPX‘]‘—IR'
Hence
Ex[M7] > Ex[ley=1M7] = Ex[ley=1 My ] = Py[tr = T]

which converges to 1 as R — oo. It implies that Ex[Mr] = 1, and M is a martingale.
Finally, (4) follows in the same way. [

3. Case when ¢ is independent of x

We assume here that x; has the specific form
dx; = (o1h(t, x;) + Aixy 4+ by)dt + oydwy,  x9 = u, 5)

where o; and A; are time dependent deterministic matrices and A (%, x), b; are vector valued with
appropriate dimension.
For example the two-dimensional process (x, y) which satisfies the following SDE:

dxt = ytdt (6)
d)’t =b(taxl9 yt)dt+6dwf (7)

and which is the noisy version of X; = b(¢, x;, X;), see, e.g. [1].
We shall prove the following result:

Theorem 2. Assume that A;, by and o; are bounded measurable functions of t with values in
R4*d R gnd REX™, respectively. Assume also that h(t, x) is locally Lipschitz with respect to x
uniformly with respect to t with values in R™, and locally bounded; and the SDE (5) has a strong
solution. Moreover, we assume that o admits a measurable left inverse almost everywhere,1
denoted by o ; and that h, A, b and o™ are left continuous with respect to t. Then,

I This requires essentially that o*o is almost everywhere >0.
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(i) the covariance matrix Rs; of the Gaussian process & corresponding to (5) with h = 0 is
given by:

min(s,t)
Ry = Pv/ P,,_IUMU,:‘PM_*du Pt*’
0

where
dpP;

— =AP, Py=1d,
dr

and P = (P7Y*;
(ii) the distribution of the process

pe =& — Rir R (57 — v) ®)

is the same as the distribution of & conditioned on & = v (M stands for the left pseudo-
inverse® of M). For any non-negative measurable function f,

ELf()lxo = u, xp = v] = CELf(p)efo 1" t:p0(@r" dpi=o; (iprtbidn =3 [ . polPary
©))
where C is a constant depending on u, v and T.

Proof. (i) The formula for Ry; is classic and comes from & = P; fot PM_1 (b,du+o0,dw,) + P&,
see e.g. [6].

(ii) Let us first recall that if (Y, Z) is a Gaussian vector, the distribution of Y conditioned on
Z = zp coincides with the distribution of another Gaussian vector Y — Ryz R;Z(Z — z0), Where
R}Z is the left pseudo-inverse of Rzz; its covariance is Ryy — Ryz R;ZRZy. Taking Y as the
vector (&,,...,&,), and Z = &7, we observe that, defining the process p by (8), (ps, ..., py)
has the same distribution as that of (&, ..., &;) conditioned on é&7 = v. And the covariance of
pris Cyy = Ry — RsTR—Ti_TRTt-

Denote by p; the process (8); in particular for any non-negative measurable function ¢(-),
Elp&)] = f Elp(p¥)lur(dv) where ur is the distribution of &r. For any non-negative
measurable functions f and g,

ELf()g(en)] = ELf(€)g(Ep)e &= fy Iht.corary
= E[f() g(gT)efoT (1.6 (0," d& —o," (A& +bdn—1 J) Ih(g01%dry (10)
Given a sequence of partitions (A,),> of [0, T]:

Ap={tg <tf <--- <t =T}

with |A,| = maxo<j<k,—1 (ti”Jr | —t') — 0, and a continuous stochastic process X, we define:
ka—1
Su(X) = 3 W Xoy X, = Xip).
i=0
Then

E[1S:(§) = SmE)I A 1] = [Rd E[1S:(p") — Sm(P")| A Hpur (dv),

2p+ = (M*M)~ ! M* and the symmetric matrix is inverted by diagonalisation with 1/0 = 0.
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which implies that S,(p”) converges in probability P ® pr. Hence, we can define
fOT h*(t, p;’)a,+dp;’ as the limit (in probability P ® ur) of the sequence S, (p"). Obviously,
this limit is independent of the sequence of partitions (4,,),, which satisfies |4, | — 0.

Finally, defining the continuous function Oy (x) = N A x, x > 0, we have

E[On ([ (&)g(Ep)eS©—Jo 1™ @00 (A&tbdi—3 [y 1760 1Pdryg
v T px v v T v
B fR E[Oy (f (p")eS P =Jo HpDor Arpt+bodi=3 [y Ih.pDIPd g (4))] 07 (dv).
Taking the limit first in n and then in N, and returning to (10), we deduce:
E[f(x)g(er)] = / ELf (p)elo 1P @ dpi =i Aupitbodo=3 [y lhie.pDIdry
R4

x g()pr (dv)

which implies (9) and C is the value of the density of p7 with respect to the distribution of x7
atv. 0O

As the Brownian bridge, we have:

Proposition 3. Let us assume that M, = ftT P oo P*du is positive definite for any

t € [0, T'). Then the distribution of the process p is the same as that of q which is the solution to
the following linear SDE

dg, = Asqdt + b,dt + 007 P M (P (ELE] — ) — P (E[Er] — v)dt + oydwy,
(11)
with qo = u.
Proof. The matrix Q; = P; M, is the solution to Qt = (A; — oi0/ P[_*Mt_1 P[_I)Q,, implying
that the covariance of ¢; can be rewritten as follows: for s < ¢,

s S
QS/O 0, o0 0 *du QF = QS/O M P o0k P M du QF

= 0. (M -1y ') o
= PsMy(M;' — My M, P}
Py(Mo — My)(Id — My (Mo — M) P

= Cy.
On the other hand, from (8), the expectation p; of the process p; satisfies
d _ _ _ _
3 Pt~ Aipi = b = —0y07 P Pf Ry (Elér] = v).
Elementary algebra shows P}k R;} = —Qfl(R,T R;} — P P;l), hence
d

g P Ab = b = 007 PT*Q (Rir Ry — PPy ) (ElET] — v)

= 0,0, PT*Q N (El&] — pr — PPy (ElEr] — v)

which is the equation satisfied by E[g;]. The conclusion follows by noting that both p and g are
Gaussian processes. O
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Remark. M; is positive definite for any ¢ € [0, T') if and only if the pair of functions (A, o) is
controllable on [, T'] for any ¢ € [0, T). See, e.g. [6] for some discussions.

Example. Consider the two-dimensional stochastic differential equation defined by (6) and (7),
where o # 0. Let us assume that b is locally Lipschitz with respect to (x, y), and this equation
admits a strong solution (the strong solution exists if there exists a Lyapunov function, see,
e.g. [1]). Then we have:

E[f(x, )|(x0, yo) = u, (x7, y7) = V]

=CE I:f(p, q)éri2 fOT b(f»Pt‘(h)d(h*za% fOT b(t,l’z‘q,)zdtj| "

where (p, q) is the following bridge starting from (po, qo) = u:

pe)_ (z) _ ! (tGBT —=2t) —tT(T -0\ (zr —vi (13)
qt o Z[ T3 6(T —1) T3t —2T) zr—v2)’
t
with z,:ul—i—tuz—i—a/ weds,  Zy = up + owy;
0

or (p, q) can be chosen as:
dp: = qdt,

Pt — V] 2q; +v2
dg, = -6 -2 dr dwy. 14
qt ( (T—t)z T _; > + odw; (14)

4. o invertible, general b
4.1. Bounded drift

Let us consider the following SDEs:

dx, = b(t, x)dt + o (¢, x))dw;, xp =u, (15)
—v
dy, = b(t. y)dt — S—di +0(t. y)dwy, Yo =u. (16)

Remark. If » = 0, and 0 = Id, then x is a Brownian motion. It is well known (see, e.g. [6]) that
the law of the Brownian motion x conditioned on x7 = v is the same as that of the Brownian
bridge y satisfying the following SDE:

Yt — VU

dytz—T_tdt—l—dwt, Yo =U.

The form of SDE (16) is inspired by the above SDE in order to fit the simplest case: the Brownian
bridge case.

The objective of this section is to prove that the distribution of x (solution of (15)) conditioned
on x7 = v is absolutely continuous with respect to y (solution of (16)) with an explicit density.
We shall assume some regularity conditions on b and o here.
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Assumption 4.1. The functions b(z, x) and o(r,x) are C'2 with values in RY and R%*4
respectively; and the functions b, o, together with their derivatives, are bounded. Moreover, o is
invertible with a bounded inverse.

Let x** be the solution of (15) starting at s € [0, T']. Under Assumption 4.1, x is a strong
Markov process with positive transition density. For (s, u) € [0, T], we denote p(s, u; ¢, z) to
be the density of xf’“. Then there exist constants m, A, M, A > 0, such that the density function
p(s, u; t, 7) satisfies Aronson’s estimation [2]: for ¢ > s,

_d M _d _ Az—u?
m(t —s) ze = < p(s,u;t,z) < M@ —s) 2e =

We first study SDE (16).

Lemma 4. Let Assumption 4.1 hold. Then the SDE (16) admits a unique solution on [0, T).
Moreover, lim; 7 y; = v, a.s. and |y; — v|2 < C(T —t)loglog[(T — t)’1 +e], a.s., where C
is a positive random variable.

Proof. The fact that the SDE (16) admits a unique solution on [0, T') is classic. Applying Itd’s

formula to ¥—, we deduce easily the following:

— v u—"uv d !
yo—v +/ (T—s)*lb(s,ys)dwr/ (T — ) o (s, ys)dus.
T —1t T 0 0

For each i, {(fy (T — )" o (s, y)dwy)i. t = 0} = {Y9_; [o(T — )7 loy; (s, yo)dw!, t > 0}

is a continuous local martingale, and its quadratic variation process 7, = fot Z‘;ZI(T —

s)_zol%.(s,ys)ds satisfies ;;, — oo ast — T, and 7 < Tit for a constant ¢ >

0. Applying Dambis—Dubins—Schwarz’s theorem, for each i, there exists a standard one-
dimensional Brownian motion B', such that

t
(f (T —s)‘lo<s,ys)dws) =Bi(1), t>0.
A .

1

Taking into consideration of the law of the iterated logarithm for the Brownian motion B!, the
conclusion follows easily. O

Now we can state the main theorem of this section.

Theorem 5. Let Assumption 4.1 hold. Then
E[f()lxr =]
2 27 AcO)b (ydr + 57 (A ()3 + L AT 0n), (5
ij

~ce| fment- [ g

a7

where A(t,y) = (o(t, y)*)_la(t, y)_l, Yr = Yy — v, and (-, -) is the quadratic variation of
semimartingales.

Remark. From Lemma 4, the integral in (17) is well defined.
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Proof. Let f(x) be an F;-measurable non-negative function, t < T, then

—1 _ "
E[f(Y)] =FE |:f(x) exp! / (0 (xs)(xs U)) w,

T —s
1 t -1 _ 2
_ E/ G Folds 70 (’;f)(’“ ) ds”. (18)
0 — S
On the other hand, It6’s formula gives:
g o~ ) e =P 5 Ot = V)" A, x)dx, N lo =1t x) (xr — v)Ilzdt L 4-dr
T—1t T—1t (T —1)? T —t

Zd (A (2, x,), (xt —v )(x, —v))

n (xr — v)* (A, x;)) (x; — v)
T —1t T —1t
Combining the above equation with (18), we deduce that,

E[f(D]=CCE | f(x)exp

_ Ilo'til(xt)(xt - U)”2 + /t (x5 — U)*As(xs)bs(xs)ds
2(T —1) 0 T —s

ZdA (). (xf =) (] —v)))

1 / (x5 — v)*(dA; (xs))(xs—v)
2 Jo T —s T —s

where C > 0 is a constant, and C; = (T — t)_%.

Or equivalently,
ELf ()] = CCE | fyexp [ 1700 10 = 0)IF (19)
V)@t t P 2T —1) )
where
3 3 Zd AY (39). 715
/’ V5 As (35)bs () /f 53 (A (7)) ’
o =exp{— =~ ds — +
0 T —s 2 0 T—s T—s
(20)
Note that {¢;, t € [0, T]} is a well defined continuous process, thanks to Lemma 4.
Putting f = 11in (19), we deduce then:
-1 _ 2
Elf el _ E [f(x) exp [——”UO’X')( = }] o
El¢/] E [exp [ W}]
Assuming that f(x) takes the form f(x) = g(xs,..., %), 0 <ti <t <--- <ty < T,
g € Cp(RN9), and letting r — T, from the Lemmas 7 and 8 in the Appendix, we get:
ELf (»)er]

Elor] ELf()lxr = v].
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This completes the proof of the theorem. O

Remark. For practical implementation, it is useful to note that the second and third terms of the
integral in (17) are the limit of Y 3% (A(tx, y,) — A(tk—1. Yor_,)) T, ﬁ.

4.2. Unbounded drift

Let us now consider the following SDE:
dx;, = b(t, x;)dt + o (¢, x;)dw;, xo0=u, (22)
where the drift b can be unbounded. We assume instead

Assumption 4.2. The function o (¢, x) is C 1.2 with values in R¥*9; the function o together with
its derivatives are bounded; and o is invertible with a bounded inverse. The function b is locally
Lipschitz with respect to x and is locally bounded. Moreover, the SDE (22) admits a strong
solution.

Combining the Theorems 1 and 5, we are able to prove the following

Theorem 6. Let Assumption 4.2 hold, and y be the solution of

— v
dy, = —yTt — di +o(t, y)dw,  yo=u. (23)

Then,
- FAAG YT+ T dAT (1, ), 55
tj
2T —1)

E[f()lxr =v]=CE | f(y)exp{ — A

T 1 T
+ / (b*A)(t, y)dy — 5/ lo b1, yde ¢ |
0 0

where A(t,y) = o(t,y) *ol(t, y)_l, Vi = y+ — v, and {-,-) is the quadratic variation of
semimartingales.

Proof. Let x be the solution of:
dx; = o(t, x;)dwy, Xo =u. (24)
Then, from Theorem 1, for non-negative measurable functions f and g,
ELf (x)g(xr)] = ELf (F)g(Er)el @003 fy 1071050 gy

:/ E[f(f)efoT(b*A)(t,)E,)di,f% i \a*1b|2(z,f,)dz|fT = v]g(v)dv.
Rd
It remains to apply Theorem 5. O

Remark. If the drift » is bounded, both formulas in Theorems 5 and 6 are available.
Unfortunately, it is difficult to compare the efficiency of simulation when applying these two
formulas.
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5. Example: Parameter estimation for a Duffing—Van der Pol oscillator

Consider the Van der Pol process: [1]

dx; = y.dr
dy; = —y;dt + (04 — xlz)x,dt 4+ odw; = b(x;, y;)dt + odw;, o #O.

It is easy to check that the function V (x,y) = %x“ + y2 + 1 is a Lyapunov function for this
system. Hence, a strong solution exists (see, e.g. [5]) and Theorem 2 can be applied.

Assume that the process is observed at instants {t1, ..., #,} C [0, T]; the observation set is
thus Z = {(x4, yy), ..., (xz,, ¥1,)}. The statistical problem here is the estimation of . The
maximum likelihood estimate is:

6 = argmeax Py(2),

where Pg(Z) stands for the density of the distribution of Z in R?". There is no simple form
for this function; on the other hand the density pg(x, y) of the law of (x, y) with respect to the
law of the process corresponding to the equation with b = 0 (Girsanov formula (12)) is easily
derived:

T 1 T
o2 log p(x, ) = /0 b, vy, — 5 fo b(xs, yo)dt

T 1 T
= / (—yt+<9—x?>xt>dyt—5 / (=¥ + (0 — xP)x)dt.
0 0

As a consequence, the maximum likelihood estimation of 6, where the whole trajectory is
observed is easy. A standard approach for the computation of 6 is to use the EM algorithm
(see, e.g. [3]) where the full trajectory is considered as missing data. Let us explain informally in
a few words how it is derived: One can show that

6 = argmax Egllog po (x. y)|Z]. (25)

Indeed, for any 6,

Egllog po(x, y)|Z] — E4llog py(x, y)IZ] = Egllog(pe(x, y)/py(x, y)IZ]
< log E[po(x, y)/ps(x, y)IZ]
log Py(2)/ P3(2), (26)

A

since the “conditional expectation of the density is the density of the marginal”. The EM
algorithm consists in the computation of the solution to (25) as the limit of the sequence

~

641 = argmax E [log pa(x. y)|Z].

The proof of the convergence of this sequence to 6 is beyond the scope of this paper. In our
situation these expectations cannot be directly calculated but can be estimated through Monte
Carlo simulations, and we get the new sequence
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Fig. 1. 6 =0.02,n =5,6 = 1.98.

v

K
k k
Oj+1 = argmax ];IOg po(x", y%),
where (x¥, y¥) are independent realizations of the distribution of (x, y) conditioned on Z under
6;. Finally, according to the results of Section 3, we obtain the algorithm
K

041 = argmax > _log(po (P*. 4") po; (P, 4. 27)
k=1

where (p*, ¢*) are simulated according to (13) or (14). The maximization in (27) is immediate:

o pedgr + fy pilge+ pHdr);
(fo prds);

where (.); stands for the weighted mean over the K samples with weights pg; ( Pk, gb).

, (28)

0j+1

Remark. Instead of the EM algorithm, we could apply the Bayesian approach (see, e.g. [8])
which would lead to an analogous MCMC method.

We present now the results of three typical estimation runs with different parameters (we do
not pretend here to make any precise study of convergence). For these three experiments, we
chose

i—1

xo=(=1,0), T=10, =
0=2.

T, h=0.01, K=100, J =10, 6y=4,

n—1

h is the step in the Euler scheme used for calculating (28). We performed the estimation of
0 with two different values of o or n; the true trajectory is represented in plain style, the
observation points are @ and the conditionally simulated process is represented with dashed
style (see Figs. 1-3).
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Appendix

Lemma?7. Let 0 <t <th < ---

Fig.3. 6 =02,n=7,6 = 1.9.

<ty <T,and g € Cp (RN, Then, putting

-

e, x) 7 o — )|? }
2T —1) ’

1671
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1. E[g(-xtla-xtza .. xtN)Wt]
1m
t—T E[lp,]

Proof. Forany ¢ € (ty, T),

[g(-xtla xtzﬂ R xlN)|xT = U]. (29)

lo(t.2)~tz—v)|?

E[g(xtl’va ceey xlN)wt fRd QB (. 2) exp{ - Z(T—Zt) - ]dZ
1 2

Elyr] fRd b,(1, 2) exp[ lot.g) el ]dz

’

where
Do (t,2) = /Nd g1, . zn)pO,u;s ty, z1) -+ p(En, N3 8, 2)dzy - - - dz,
R

which is continuous thanks to Aronson’s estimation. Evidently, @1(¢, z) = p(0, u; ¢, 7).
Moreover, applying a simple change of variable z = v + (T — t)%z',

||o<t,z>—1<z—v>||2}d
V4
2(T —1)

(T—t)_%f (ﬁg(t,z)exp{—
Rd

1
lo(t, v+ (T —t)zz)—lz/nz}d ,
2

= / Po(t, v+ (T — t)%z/) exp {—
Rd

2
—>¢(Tv)/ { lo (T, )71/ }dz.

2
Hence,
im E[g(xll ) xtz’ vy xt[v)wl] _ dsg(T, U)
(—>T E[y] - O(T,v)’

from which we deduce (29) by the Bayes formula, since

¢g(T,v)=f g1, ..., zn)q(z1, ..., zy, v)dzy - - - dzy,
RNd
where ¢ is the density of (x;, ..., x;y, x7). O
Lemma 8.
lim Ef|g; — ¢r|] = 0.
t—T
We need the following two propositions to prove this lemma.
Proposition 9. (i) There exist two constants c1 > 0, ca > 0, such that
C1 S CIE[I/IY] S c2, Vt € [07 T)’
where
C,=(T—1)%.
(i1) There exists a constant c3 > 0, such that

Elp/] <c3, Vtel0,T).
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Proof. (i) We note that

lo(t, 2)~(z — v)|?
2T — 1)

CE[Y] =T — t)*% /eXp {— }p(O, u; t, z)dz.

We get easily the conclusion taking into consideration Aronson’s estimation after a change of
variable z = v + (T — )27/,
(ii) It follows from (19) and (i). O

Proposition 10. For any ¢ > 0, there exists an adapted bounded process o, such that

ed+1
2

dC,yy = dM; + o, (Cryr) (T — ) "de,  h =
where (M;)o<; <1 IS a martingale.

Proof. Set %, = x; — v, p; = |lo = (¢, x))i% ||, and A; = o ~*(t, x;)o ~ (¢, x;). We have

2 ~% 2 ~%
Di X[ Ardx; Di d X; (dA,)x, ,, i~ ,
d =2 dt dt d(A/,
T —1 T— Tttt —tz X
o (t, x)) " *dw, p? d 24 p p?
=24 L— dr Ldt Prraw ,
T —1 taoo2t T +r’T— top

where r, and r; are two adapted bounded processes. Hence we get:

2

dCy = —2 ! pf Pi
W = mcﬂ/ﬁdf—icﬂ/ﬁd T _ + Crlﬂr T

pr+p pi4p} dr
T—t (T —1)?

= th + C,I//,rt// <

where r/’ is an adapted bounded process. For any ¢ > 0, ¢ —e |x|k k=1,2,3,4,are all bounded
functlons then there exists a constant ¢, > 0 such that

e (Pitpe  pitpl) e
‘Nr—t T @-02)" JyT=1

Hence,

dCiye = dM; + (Coy)' (T — )~ "r{cedr,
where r;” is still an adapted bounded process. [
Let us now return to the proof of Lemma 8.
Proof. First, from Fatou’s lemma and Proposition 9,

Elpr] < liminf E[¢;] < c3.
t—>T

We choose #y € (0, T) which is close enough to T, and A large enough, and put

1 A
a:inf{to<t<T,Ctl//t§—}=inf t0<t<T,pl‘222(T—t)log—d
A (T —1)2
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Under the distribution of x , 0 < T a.s. However under the distribution of y, limy_, o0 = T,

a.s., taking into consideration of Lemma 4. We have, from (21),

Elgilow] _ ElVilo]
El¢:] E[Y:]
On the other hand, from Proposition 10 with a fixed ¢ € (0, 1/d),

dCyy = dM; + o, (Co) ' 5(T — 1) "ds,

1
< —E[CiY 1]
ci

ie.,
t
Covi = Cothg + My — My +/ oy (Cors) 5 (T — 5)~"ds.
(o2

Hence,
t

E[CYily] <A™} +5¢/ E[Cs¥rsly ] "5(T —s)7ds,  with & = sup ||| o-
t

fo
Therefore, E[C; ;15 ,] is bounded by u,, which is the solution of the following differential
equation,
du; = au, (T — 1) "ds, Uy, = AL
and this equation has an explicit solution:

v 1/e 1/e
ea
U = {m[(T—lo)l_h - (T—t)l_h]+A_8} < {CO(T—IO)I_h+A_E} ,

where cp > 0 is a constant. We get finally,
Elpili<o] N Elpi1s <]

Ele] El¢]
1
> 1= —(eo(T = 1) "+ ATHVE,
1

We note that {¢; ;<4 }; is a uniformly integrable family due to Novikov’s lemma, since we have

tAo 2 tAO
|ys — vl 1/ s —ol*
1 < Cex v dws — — _— dst,
t<oPt = P{/O T g 5% ™5 A T —s |2|s|

where for fixed A, C is a positive constant and v; is an adapted bounded process.
Taking the liminf;_, 7, we get,

Elorls=r]
lim sup Elg;] —

t—>T

1
1= —(eo(T = 1) " + A7)/,
1

Since 1,—7 converges to one a.s. as A — 00, we get

Eler]
lim sup E[g;] —

t—>T

>1 - —(Co(T ) =M.

It remains to let fo — T to get:

limsup E[¢:] < E[or].

t—T
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Hence,
lim E[¢;] = Elgr],
t—T
and we finish the proof by Scheffé’s lemma (see, e.g. [4]). O
References

[1] L. Arnold, Random Dynamical Systems, Springer, Berlin, 1998.

[2] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967)
890-896.

[3] G. Casella, C.P. Robert, Monte Carlo Statistical Methods, Springer, New York, 1999.

[4] C. Dellacherie, P.A. Meyer, Probabilités et Potentiels. Chapitre I a IV, Hermann, Paris, 1975.

[5] R.Z. Has’minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, 1980.

[6] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, 1991.

[7] T.J.Lyons, W.A. Zheng, On conditional diffusion processes, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 243-255.

[8] G.O. Roberts, O. Stramer, On inference for partially observed nonlinear diffusion models using the
Metropolis—Hastings algorithms, Biometrika 88 (2001) 603-621.



	Simulation of conditioned diffusion and application to parameter estimation
	Introduction
	A Girsanov theorem for unbounded drifts
	Case when  sigma is independent of  x 
	 sigma invertible, general  b 
	Bounded drift
	Unbounded drift

	Example: Parameter estimation for a Duffing--Van der Pol oscillator
	Acknowledgment
	References


