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Abstract

In this paper, we propose some algorithms for the simulation of the distribution of certain diffusions
conditioned on a terminal point. We prove that the conditional distribution is absolutely continuous with
respect to the distribution of another diffusion which is easy for simulation, and the formula for the density
is given explicitly. An example of parameter estimation for a Duffing–Van der Pol oscillator is given as an
application.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to propose algorithms for the simulation of the distribution of a
diffusion

dxt = b(t, xt )dt + σ(t, xt )dwt , x0 = u, 0 ≤ t ≤ T,

conditioned on xT = v, where b and σ are given functions with appropriate dimensions, and w
is a standard Brownian motion.

From the point of view of application, this allows us to do posterior sampling when the
diffusion is observed at instants {t1, . . . , tn} ⊂ [0, T ].

Let us recall that in the usual conditioning (see, e.g., [7]), the distribution of the diffusion x
conditioned on xT = v is the same as that of another diffusion y satisfying

dyt = b̃(t, yt )dt + σ(t, yt )dwt , y0 = u, 0 ≤ t ≤ T,
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where

b̃(t, x) = b(t, x)+ [σσ ∗
](t, x)∇x (log p(t, x; T, v)),

and p(s, u; t, z) is the density of x s,u
t . However, this is not suitable for simulations because in

general, one does not know the transition density p.
We will prove that, in certain cases, the conditional distribution of the diffusion is absolutely

continuous with respect to the distribution of another diffusion which is easy for simulation, and
we give the explicit formula for the density. This leads to an efficient simulation algorithm.

Two different cases will be considered:

1. The matrix σ(t, x) depends only on t , and b has the form b(t, x) = b0(t) + A(t)x +

σ(t)b1(t, x).
2. The matrix σ(t, x) is uniformly invertible.

We apply also our simulation algorithm to a problem of parameter estimation for a
Duffing–Van Der Pol oscillator. We give our simulation for illustration.

This paper is organized as follows: In Section 2, we recall a Girsanov theorem for unbounded
drift which is essential for our simulation algorithm. In Section 3, we consider Case 1, and in
Section 4, we consider Case 2. The last section is devoted to the application.

2. A Girsanov theorem for unbounded drifts

This section is devoted to give a slightly generalized Girsanov theorem which will be used in
the next section. We call a measurable function F(t, x) from R+ × Rd to Rn locally Lipschitz
with respect to x , if for any R > 0, there exists a constant CR > 0, such that, for any
(t, x, y) ∈ R+ × Rd

× Rd with |x | ≤ R, |y| ≤ R,

|F(t, x)− F(t, y)| ≤ CR |x − y|.

And on the metric space C([0, T ]; Rm), we define the filtration {Ft }t to be the natural filtration
of the coordinate process.

Theorem 1. Let b(t, x), h(t, x), σ(t, x) be measurable functions from R+ × Rd to Rd , Rm , and
Rd×m which are locally Lipschitz with respect to x; consider the following stochastic differential
equations:

dxt = b(t, xt )dt + σ(t, xt )dwt , (1)

dyt = (b(t, yt )+ σ(t, yt )h(t, yt ))dt + σ(t, yt )dwt , y0 = x0, (2)

on the finite interval [0, T ]. We assume the existence of strong solution for each equation. We
assume in addition that h is bounded on compact sets. Then the Girsanov formula holds: for any
non-negative Borel function f (x, w) defined on C([0, T ]; Rd)× C([0, T ]; Rm), one has

Ey[ f (y, wh)] = Ex [ f (x, w)e
∫ T

0 h∗(t,xt )dwt −
1
2

∫ T
0 |h(t,xt )|

2dt
], (3)

Ex [ f (x, w)] = Ey[ f (y, wh)e−
∫ T

0 h∗(t,yt )dwt −
1
2

∫ T
0 |h(t,yt )|

2dt
], (4)

where wh
t = wt +

∫ t
0 h(s, ys)ds, and h∗ stands for the transpose of h.
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Proof. We assume first that the positive supermartingale

Mt = exp
{∫ t

0
h∗(s, xs)dws −

1
2

∫ t

0
|h(s, xs)|

2ds

}
is a martingale under Px which will be proved later. In this case w̃t = wt −

∫ t
0 h(s, xs)ds is a

Brownian motion under MT Px , leading to a solution (x, w̃) of (2):

dxt = b(t, xt )dt + σ(t, xt )h(t, xt )dt + σ(t, xt )dw̃t .

As b(t, x), h(t, x), σ (t, x) are locally Lipschitz with respect to x , pathwise uniqueness holds
for (1) and (2). The standard Girsanov theorem implies that (3) holds.

We prove now that Mt is a martingale. For any R > 0, consider the stopping time

τR = inf{t ≥ 0 : |xt | ≥ R} ∧ T .

Taking into consideration that h is locally bounded, we have, according to the Girsanov theorem
for bounded drift:

Py|FτR
= MτR Px |FτR

.

Hence

Ex [MT ] ≥ Ex [1τR=T MT ] = Ex [1τR=T MτR ] = Py[τR = T ]

which converges to 1 as R → ∞. It implies that Ex [MT ] = 1, and M is a martingale.
Finally, (4) follows in the same way. �

3. Case when σ is independent of x

We assume here that xt has the specific form

dxt = (σt h(t, xt )+ At xt + bt )dt + σt dwt , x0 = u, (5)

where σt and At are time dependent deterministic matrices and h(t, x), bt are vector valued with
appropriate dimension.

For example the two-dimensional process (x, y) which satisfies the following SDE:

dxt = yt dt (6)

dyt = b(t, xt , yt )dt + σdwt (7)

and which is the noisy version of ẍt = b(t, xt , ẋt ), see, e.g. [1].
We shall prove the following result:

Theorem 2. Assume that At , bt and σt are bounded measurable functions of t with values in
Rd×d , Rd and Rd×m , respectively. Assume also that h(t, x) is locally Lipschitz with respect to x
uniformly with respect to t with values in Rm , and locally bounded; and the SDE (5) has a strong
solution. Moreover, we assume that σ admits a measurable left inverse almost everywhere,1

denoted by σ+; and that h, A, b and σ+ are left continuous with respect to t . Then,

1 This requires essentially that σ∗σ is almost everywhere >0.
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(i) the covariance matrix Rst of the Gaussian process ξt corresponding to (5) with h = 0 is
given by:

Rst = Ps

∫ min(s,t)

0
P−1

u σuσ
∗
u P−∗

u du P∗
t ,

where
dPt

dt
= At Pt , P0 = I d,

and P−∗
u = (P−1

u )∗;
(ii) the distribution of the process

pt = ξt − RtT R+

T T (ξT − v) (8)

is the same as the distribution of ξ conditioned on ξT = v (M+ stands for the left pseudo-
inverse2 of M). For any non-negative measurable function f ,

E[ f (x)|x0 = u, xT = v] = C E[ f (p)e
∫ T

0 h∗(t,pt )(σ
+
t dpt −σ

+
t (At pt +bt )dt)− 1

2

∫ T
0 ‖h(t,pt )‖

2dt
],

(9)

where C is a constant depending on u, v and T .

Proof. (i) The formula for Rst is classic and comes from ξt = Pt
∫ t

0 P−1
u (budu +σudwu)+ Ptξ0,

see e.g. [6].
(ii) Let us first recall that if (Y, Z) is a Gaussian vector, the distribution of Y conditioned on

Z = z0 coincides with the distribution of another Gaussian vector Y − RY Z R+

Z Z (Z − z0), where
R+

Z Z is the left pseudo-inverse of RZ Z ; its covariance is RY Y − RY Z R+

Z Z RZY . Taking Y as the
vector (ξt1 , . . . , ξtk ), and Z = ξT , we observe that, defining the process p by (8), (pt1 , . . . , ptk )

has the same distribution as that of (ξt1 , . . . , ξtk ) conditioned on ξT = v. And the covariance of
pt is Cst = Rst − RsT R+

T T RT t .
Denote by pvt the process (8); in particular for any non-negative measurable function ϕ(·),

E[ϕ(ξ)] =
∫

E[ϕ(pv)]µT (dv) where µT is the distribution of ξT . For any non-negative
measurable functions f and g,

E[ f (x)g(xT )] = E[ f (ξ)g(ξT )e
∫ T

0 h∗(t,ξt )dwt −
1
2

∫ T
0 ‖h(t,ξt )‖

2dt
]

= E[ f (ξ)g(ξT )e
∫ T

0 h∗(t,ξt )(σ
+
t dξt −σ

+
t (At ξt +bt )dt)− 1

2

∫ T
0 ‖h(t,ξt )‖

2dt
]. (10)

Given a sequence of partitions (∆n)n≥1 of [0, T ]:

∆n = {tn
0 < tn

1 < · · · < tn
kn

= T }

with |∆n| = max0≤i≤kn−1(tn
i+1 − tn

i ) → 0, and a continuous stochastic process X , we define:

Sn(X) =

kn−1∑
i=0

h∗(tn
i , X tn

i
)σ+

tn
i
(X tn

i+1
− X tn

i
).

Then

E[|Sn(ξ)− Sm(ξ)| ∧ 1] =

∫
Rd

E[|Sn(p
v)− Sm(p

v)| ∧ 1]µT (dv),

2 M+
= (M∗M)−1 M∗ and the symmetric matrix is inverted by diagonalisation with 1/0 = 0.
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which implies that Sn(pv) converges in probability P ⊗ µT . Hence, we can define∫ T
0 h∗(t, pvt )σ

+
t dpvt as the limit (in probability P ⊗ µT ) of the sequence Sn(pv). Obviously,

this limit is independent of the sequence of partitions (∆n)n which satisfies |∆n| → 0.
Finally, defining the continuous function ΘN (x) = N ∧ x, x ≥ 0, we have

E[ΘN ( f (ξ)g(ξT )eSn(ξ)−
∫ T

0 h∗(t,ξt )σ
+
t (At ξt +bt )dt− 1

2

∫ T
0 ‖h(t,ξt )‖

2dt )]

=

∫
Rd

E[ΘN ( f (pv)eSn(pv)−
∫ T

0 h∗(t,pvt )σ
+
t (At pvt +bt )dt− 1

2

∫ T
0 ‖h(t,pvt )‖

2dt g(v))]µT (dv).

Taking the limit first in n and then in N , and returning to (10), we deduce:

E[ f (x)g(xT )] =

∫
Rd

E[ f (pv)e
∫ T

0 h∗(t,pvt )(σ
+
t dpvt −σ+

t (At pvt +bt )dt)− 1
2

∫ T
0 ‖h(t,pvt )‖

2dt
]

× g(v)µT (dv)

which implies (9) and C is the value of the density of µT with respect to the distribution of xT
at v. �

As the Brownian bridge, we have:

Proposition 3. Let us assume that Mt =
∫ T

t P−1
u σuσ

∗
u P−∗

u du is positive definite for any
t ∈ [0, T ). Then the distribution of the process p is the same as that of q which is the solution to
the following linear SDE

dqt = At qt dt + bt dt + σtσ
∗
t P−∗

t M−1
t (P−1

t (E[ξt ] − qt )− P−1
T (E[ξT ] − v))dt + σt dwt ,

(11)

with q0 = u.

Proof. The matrix Qt = Pt Mt is the solution to Q̇t = (At − σtσ
∗
t P−∗

t M−1
t P−1

t )Qt , implying
that the covariance of qt can be rewritten as follows: for s < t ,

Qs

∫ s

0
Q−1

u σuσ
∗
u Q−∗

u du Q∗
t = Qs

∫ s

0
M−1

u P−1
u σuσ

∗
u P−∗

u M−1
u du Q∗

t

= Qs

(
M−1

s − M−1
0

)
Q∗

t

= Ps Ms(M
−1
s − M−1

0 )Mt P∗
t

= Ps(M0 − Ms)(I d − M−1
0 (M0 − Mt ))P

∗
t

= Cst .

On the other hand, from (8), the expectation p̄t of the process pt satisfies

d
dt

p̄t − At p̄t − bt = −σtσ
∗
t P−∗

t P∗

T R−1
T T (E[ξT ] − v).

Elementary algebra shows P∗

T R−1
T T = −Q−1

t (RtT R−1
T T − Pt P−1

T ), hence

d
dt

p̄t − At p̄t − bt = σtσ
∗
t P−∗

t Q−1
t (RtT R−1

T T − Pt P−1
T )(E[ξT ] − v)

= σtσ
∗
t P−∗

t Q−1
t (E[ξt ] − p̄t − Pt P−1

T (E[ξT ] − v))

which is the equation satisfied by E[qt ]. The conclusion follows by noting that both p and q are
Gaussian processes. �
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Remark. Mt is positive definite for any t ∈ [0, T ) if and only if the pair of functions (A, σ ) is
controllable on [t, T ] for any t ∈ [0, T ). See, e.g. [6] for some discussions.

Example. Consider the two-dimensional stochastic differential equation defined by (6) and (7),
where σ 6= 0. Let us assume that b is locally Lipschitz with respect to (x, y), and this equation
admits a strong solution (the strong solution exists if there exists a Lyapunov function, see,
e.g. [1]). Then we have:

E[ f (x, y)|(x0, y0) = u, (xT , yT ) = v]

= C E

[
f (p, q)eσ

−2 ∫ T
0 b(t,pt ,qt )dqt −

1
2σ2

∫ T
0 b(t,pt ,qt )

2dt
]

(12)

where (p, q) is the following bridge starting from (p0, q0) = u:(
pt
qt

)
=

(
zt
żt

)
−

t

T 3

(
t (3T − 2t) −tT (T − t)
6(T − t) T (3t − 2T )

) (
zT − v1
żT − v2

)
, (13)

with zt = u1 + tu2 + σ

∫ t

0
wsds, żt = u2 + σwt ;

or (p, q) can be chosen as:

dpt = qt dt,

dqt =

(
−6

pt − v1

(T − t)2
− 2

2qt + v2

T − t

)
dt + σdwt . (14)

4. σ invertible, general b

4.1. Bounded drift

Let us consider the following SDEs:

dxt = b(t, xt )dt + σ(t, xt )dwt , x0 = u, (15)

dyt = b(t, yt )dt −
yt − v

T − t
dt + σ(t, yt )dwt , y0 = u. (16)

Remark. If b = 0, and σ = I d , then x is a Brownian motion. It is well known (see, e.g. [6]) that
the law of the Brownian motion x conditioned on xT = v is the same as that of the Brownian
bridge y satisfying the following SDE:

dyt = −
yt − v

T − t
dt + dwt , y0 = u.

The form of SDE (16) is inspired by the above SDE in order to fit the simplest case: the Brownian
bridge case.

The objective of this section is to prove that the distribution of x (solution of (15)) conditioned
on xT = v is absolutely continuous with respect to y (solution of (16)) with an explicit density.
We shall assume some regularity conditions on b and σ here.
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Assumption 4.1. The functions b(t, x) and σ(t, x) are C1,2 with values in Rd and Rd×d

respectively; and the functions b, σ , together with their derivatives, are bounded. Moreover, σ is
invertible with a bounded inverse.

Let x s,u be the solution of (15) starting at s ∈ [0, T ]. Under Assumption 4.1, x is a strong
Markov process with positive transition density. For (s, u) ∈ [0, T ], we denote p(s, u; t, z) to
be the density of x s,u

t . Then there exist constants m, λ,M,Λ > 0, such that the density function
p(s, u; t, z) satisfies Aronson’s estimation [2]: for t > s,

m(t − s)−
d
2 e−

λ|z−u|
2

t−s ≤ p(s, u; t, z) ≤ M(t − s)−
d
2 e−

Λ|z−u|
2

t−s .

We first study SDE (16).

Lemma 4. Let Assumption 4.1 hold. Then the SDE (16) admits a unique solution on [0, T ).
Moreover, limt→T yt = v, a.s. and |yt − v|2 ≤ C(T − t) log log[(T − t)−1

+ e], a.s., where C
is a positive random variable.

Proof. The fact that the SDE (16) admits a unique solution on [0, T ) is classic. Applying Itô’s
formula to yt −v

T −t , we deduce easily the following:

yt − v

T − t
=

u − v

T
+

∫ t

0
(T − s)−1b(s, ys)ds +

∫ t

0
(T − s)−1σ(s, ys)dws .

For each i , {(
∫ t

0 (T − s)−1σ(s, ys)dws)i , t ≥ 0} = {
∑d

j=1

∫ t
0 (T − s)−1σi j (s, ys)dw

j
s , t ≥ 0}

is a continuous local martingale, and its quadratic variation process τt =
∫ t

0

∑d
j=1(T −

s)−2σ 2
i j (s, ys)ds satisfies τt → ∞ as t → T , and τt ≤

c
T −t for a constant c >

0. Applying Dambis–Dubins–Schwarz’s theorem, for each i , there exists a standard one-
dimensional Brownian motion Bi , such that(∫ t

0
(T − s)−1σ(s, ys)dws

)
i
= Bi (τt ), t ≥ 0.

Taking into consideration of the law of the iterated logarithm for the Brownian motion Bi , the
conclusion follows easily. �

Now we can state the main theorem of this section.

Theorem 5. Let Assumption 4.1 hold. Then

E[ f (x)|xT = v]

= C E

 f (y) exp

−

∫ T

0

2ỹ∗
t At (yt )bt (yt )dt + ỹ∗

t (dAt (yt ))ỹt +
∑
i j

d〈Ai j
t (yt ), ỹi

t ỹ j
t 〉

2(T − t)



(17)

where A(t, y) = (σ (t, y)∗)−1σ(t, y)−1, ỹt = yt − v, and 〈·, ·〉 is the quadratic variation of
semimartingales.

Remark. From Lemma 4, the integral in (17) is well defined.
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Proof. Let f (x) be an Ft -measurable non-negative function, t < T , then

E[ f (y)] = E

[
f (x) exp

{
−

∫ t

0

(σ−1
s (xs)(xs − v))∗

T − s
dws

−
1
2

∫ t

0

∥∥∥∥σ−1
s (xs)(xs − v)

T − s

∥∥∥∥2

ds

}]
. (18)

On the other hand, Itô’s formula gives:

d
‖σ−1(t, xt )(xt − v)‖2

T − t
= 2

(xt − v)∗ A(t, xt )dxt

T − t
+

‖σ−1(t, xt )(xt − v)‖2

(T − t)2
dt +

d · dt

T − t

+
(xt − v)∗(dA(t, xt ))(xt − v)

T − t
+

∑
i j

d〈Ai j (t, xt ), (x i
t − vi )(x j

t − v j )〉

T − t
.

Combining the above equation with (18), we deduce that,

E[ f (y)] = CCt E

 f (x) exp

−
‖σ−1

t (xt )(xt − v)‖2

2(T − t)
+

∫ t

0

(xs − v)∗ As(xs)bs(xs)

T − s
ds

+
1
2

∫ t

0

(xs − v)∗(dAs(xs))(xs − v)

T − s
+

∑
i j

d〈Ai j
s (xs), (x i

s − vi )(x j
s − v j )〉

T − s


 ,

where C > 0 is a constant, and Ct = (T − t)−
d
2 .

Or equivalently,

E[ f (y)ϕt ] = CCt E

[
f (x) exp

{
−

‖σ(t, xt )
−1(xt − v)‖2

2(T − t)

}]
, (19)

where

ϕt = exp

−

∫ t

0

ỹ∗
s As(ys)bs(ys)

T − s
ds −

1
2

∫ t

0

ỹ∗
s (dAs(ys))ỹs

T − s
+

∑
i j

d〈Ai j
s (ys), ỹi

s ỹ j
s 〉

T − s

 .
(20)

Note that {ϕt , t ∈ [0, T ]} is a well defined continuous process, thanks to Lemma 4.
Putting f = 1 in (19), we deduce then:

E[ f (y)ϕt ]

E[ϕt ]
=

E
[

f (x) exp
{
−

‖σ(t,xt )
−1(xt −v)‖

2

2(T −t)

}]
E

[
exp

{
−

‖σ(t,xt )−1(xt −v)‖2

2(T −t)

}] . (21)

Assuming that f (x) takes the form f (x) = g(xt1 , . . . , xtN ), 0 < t1 < t2 < · · · < tN < T ,
g ∈ Cb(RNd), and letting t → T , from the Lemmas 7 and 8 in the Appendix, we get:

E[ f (y)ϕT ]

E[ϕT ]
= E[ f (x)|xT = v].
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This completes the proof of the theorem. �

Remark. For practical implementation, it is useful to note that the second and third terms of the
integral in (17) are the limit of

∑
ỹ∗

tk (A(tk, ytk )− A(tk−1, ytk−1))ỹtk
1

2(T −tk )
.

4.2. Unbounded drift

Let us now consider the following SDE:

dxt = b(t, xt )dt + σ(t, xt )dwt , x0 = u, (22)

where the drift b can be unbounded. We assume instead

Assumption 4.2. The function σ(t, x) is C1,2 with values in Rd×d ; the function σ together with
its derivatives are bounded; and σ is invertible with a bounded inverse. The function b is locally
Lipschitz with respect to x and is locally bounded. Moreover, the SDE (22) admits a strong
solution.

Combining the Theorems 1 and 5, we are able to prove the following

Theorem 6. Let Assumption 4.2 hold, and y be the solution of

dyt = −
yt − v

T − t
dt + σ(t, yt )dwt , y0 = u. (23)

Then,

E[ f (x)|xT = v] = C E

 f (y) exp

−

∫ T

0

ỹ∗
t (dA(t, yt ))ỹt +

∑
i j

d〈Ai j (t, yt ), ỹi
t ỹ j

t 〉

2(T − t)

+

∫ T

0
(b∗ A)(t, yt )dyt −

1
2

∫ T

0
|σ−1b|

2(t, yt )dt


 ,

where A(t, y) = σ(t, y)−∗σ(t, y)−1, ỹt = yt − v, and 〈·, ·〉 is the quadratic variation of
semimartingales.

Proof. Let x̄ be the solution of:

dx̄t = σ(t, x̄t )dwt , x̄0 = u. (24)

Then, from Theorem 1, for non-negative measurable functions f and g,

E[ f (x)g(xT )] = E[ f (x̄)g(x̄T )e
∫ T

0 (b
∗ A)(t,x̄t )dx̄t −

1
2

∫ T
0 |σ−1b|

2(t,x̄t )dt]

=

∫
Rd

E[ f (x̄)e
∫ T

0 (b
∗ A)(t,x̄t )dx̄t −

1
2

∫ T
0 |σ−1b|

2(t,x̄t )dt
|x̄T = v]g(v)dv.

It remains to apply Theorem 5. �

Remark. If the drift b is bounded, both formulas in Theorems 5 and 6 are available.
Unfortunately, it is difficult to compare the efficiency of simulation when applying these two
formulas.
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5. Example: Parameter estimation for a Duffing–Van der Pol oscillator

Consider the Van der Pol process: [1]

dxt = yt dt

dyt = −yt dt + (θ∗ − x2
t )xt dt + σdwt = b(xt , yt )dt + σdwt , σ 6= 0.

It is easy to check that the function V (x, y) =
1
2 x4

+ y2
+ 1 is a Lyapunov function for this

system. Hence, a strong solution exists (see, e.g. [5]) and Theorem 2 can be applied.

Assume that the process is observed at instants {t1, . . . , tn} ⊂ [0, T ]; the observation set is
thus Z = {(xt1 , yt1), . . . , (xtn , ytn )}. The statistical problem here is the estimation of θ∗. The
maximum likelihood estimate is:

θ̂ = arg max
θ

Pθ (Z),

where Pθ (Z) stands for the density of the distribution of Z in R2n . There is no simple form
for this function; on the other hand the density pθ (x, y) of the law of (x, y) with respect to the
law of the process corresponding to the equation with b = 0 (Girsanov formula (12)) is easily
derived:

σ 2 log pθ (x, y) =

∫ T

0
b(xt , yt )dyt −

1
2

∫ T

0
b(xt , yt )

2dt

=

∫ T

0
(−yt + (θ − x2

t )xt )dyt −
1
2

∫ T

0
(−yt + (θ − x2

t )xt )
2dt.

As a consequence, the maximum likelihood estimation of θ∗ where the whole trajectory is
observed is easy. A standard approach for the computation of θ̂ is to use the EM algorithm
(see, e.g. [3]) where the full trajectory is considered as missing data. Let us explain informally in
a few words how it is derived: One can show that

θ̂ = arg max
θ

E
θ̂
[log pθ (x, y)|Z ]. (25)

Indeed, for any θ ,

E
θ̂
[log pθ (x, y)|Z ] − E

θ̂
[log p

θ̂
(x, y)|Z ] = E

θ̂
[log(pθ (x, y)/p

θ̂
(x, y))|Z ]

≤ log E
θ̂
[pθ (x, y)/p

θ̂
(x, y)|Z ]

= log Pθ (Z)/P
θ̂
(Z), (26)

since the “conditional expectation of the density is the density of the marginal”. The EM
algorithm consists in the computation of the solution to (25) as the limit of the sequence

θ̂ j+1 = arg max
θ

E
θ̂ j

[log pθ (x, y)|Z ].

The proof of the convergence of this sequence to θ̂ is beyond the scope of this paper. In our
situation these expectations cannot be directly calculated but can be estimated through Monte
Carlo simulations, and we get the new sequence
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Fig. 1. σ = 0.02, n = 5, θ̂ = 1.98.

θ̌ j+1 = arg max
θ

K∑
k=1

log pθ (x
k, yk),

where (xk, yk) are independent realizations of the distribution of (x, y) conditioned on Z under
θ̌ j . Finally, according to the results of Section 3, we obtain the algorithm

θ j+1 = arg max
θ

K∑
k=1

log(pθ (pk, qk))pθ j (p
k, qk), (27)

where (pk, qk) are simulated according to (13) or (14). The maximization in (27) is immediate:

θ j+1 =
〈
∫ T

0 pt dqt +
∫ T

0 pt (qt + p3
t )dt〉 j

〈
∫ T

0 p2
t dt〉 j

, (28)

where 〈.〉 j stands for the weighted mean over the K samples with weights pθ j (p
k, qk).

Remark. Instead of the EM algorithm, we could apply the Bayesian approach (see, e.g. [8])
which would lead to an analogous MCMC method.

We present now the results of three typical estimation runs with different parameters (we do
not pretend here to make any precise study of convergence). For these three experiments, we
chose

x0 = (−1, 0), T = 10, ti =
i − 1
n − 1

T, h = 0.01, K = 100, J = 10, θ0 = 4,

θ = 2.

h is the step in the Euler scheme used for calculating (28). We performed the estimation of
θ with two different values of σ or n; the true trajectory is represented in plain style, the
observation points are ⊕ and the conditionally simulated process is represented with dashed
style (see Figs. 1–3).
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Fig. 2. σ = 0.02, n = 7, θ̂ = 1.993.

Fig. 3. σ = 0.2, n = 7, θ̂ = 1.9.
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Appendix

Lemma 7. Let 0 < t1 < t2 < · · · < tN < T , and g ∈ Cb(RNd). Then, putting

ψt = exp
{
−

‖σ(t, xt )
−1(xt − v)‖2

2(T − t)

}
,
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lim
t→T

E[g(xt1 , xt2 , . . . , xtN )ψt ]

E[ψt ]
= E[g(xt1 , xt2 , . . . , xtN )|xT = v]. (29)

Proof. For any t ∈ (tN , T ),

E[g(xt1 , xt2 , . . . , xtN )ψt ]

E[ψt ]
=

∫
Rd Φg(t, z) exp

{
−

‖σ(t,z)−1(z−v)‖2

2(T −t)

}
dz∫

Rd Φ1(t, z) exp
{
−

‖σ(t,z)−1(z−v)‖2

2(T −t)

}
dz
,

where

Φg(t, z) =

∫
RNd

g(z1, . . . , zN )p(0, u; t1, z1) · · · p(tN , zN ; t, z)dz1 · · · dzN ,

which is continuous thanks to Aronson’s estimation. Evidently, Φ1(t, z) = p(0, u; t, z).

Moreover, applying a simple change of variable z = v + (T − t)
1
2 z′,

(T − t)−
d
2

∫
Rd

Φg(t, z) exp
{
−

‖σ(t, z)−1(z − v)‖2

2(T − t)

}
dz

=

∫
Rd

Φg(t, v + (T − t)
1
2 z′) exp

{
−

‖σ(t, v + (T − t)
1
2 z′)−1z′

‖
2

2

}
dz′

→ Φg(T, v)
∫
Rd

exp
{
−

‖σ(T, v)−1z′
‖

2

2

}
dz′.

Hence,

lim
t→T

E[g(xt1 , xt2 , . . . , xtN )ψt ]

E[ψt ]
=

Φg(T, v)

Φ1(T, v)
,

from which we deduce (29) by the Bayes formula, since

Φg(T, v) =

∫
RNd

g(z1, . . . , zN )q(z1, . . . , zN , v)dz1 · · · dzN ,

where q is the density of (xt1 , . . . , xtN , xT ). �

Lemma 8.

lim
t→T

E[|ϕt − ϕT |] = 0.

We need the following two propositions to prove this lemma.

Proposition 9. (i) There exist two constants c1 > 0, c2 > 0, such that

c1 ≤ Ct E[ψt ] ≤ c2,∀t ∈ [0, T ),

where

Ct = (T − t)−
d
2 .

(ii) There exists a constant c3 > 0, such that

E[ϕt ] ≤ c3, ∀t ∈ [0, T ).
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Proof. (i) We note that

CtE[ψt ] = (T − t)−
d
2

∫
exp

{
−

‖σ(t, z)−1(z − v)‖2

2(T − t)

}
p(0, u; t, z)dz.

We get easily the conclusion taking into consideration Aronson’s estimation after a change of

variable z = v + (T − t)
1
2 z′.

(ii) It follows from (19) and (i). �

Proposition 10. For any ε > 0, there exists an adapted bounded process αt such that

dCtψt = dMt + αt (Ctψt )
1−ε(T − t)−hdt, h =

εd + 1
2

where (Mt )0≤t<T is a martingale.

Proof. Set x̃t = xt − v, pt = ‖σ−1(t, xt )x̃t‖, and At = σ−∗(t, xt )σ
−1(t, xt ). We have

d
p2

t

T − t
= 2

x̃∗
t At dxt

T − t
+

p2
t

(T − t)2
dt +

d
T − t

dt +
x̃∗

t (dAt )x̃t

T − t
+

1
T − t

∑
i, j

d〈Ai j
t , x̃ i

t x̃ j
t 〉

= 2
x̃∗

t σ(t, xt )
−∗dwt

T − t
+

p2
t

(T − t)2
dt +

d
T − t

dt + rt
p2

t + pt

T − t
dt +

p2
t

T − t
r ′

t dwt ,

where rt and r ′
t are two adapted bounded processes. Hence we get:

dCtψt =
d

2(T − t)
Ctψt dt −

1
2

Ctψt d
(

p2
t

T − t

)
+

1
8

Ctψt d
〈

p2
t

T − t

〉
= dMt + Ctψtr

′′
t

(
p2

t + pt

T − t
+

p4
t + p3

t

(T − t)2

)
dt,

where r ′′
t is an adapted bounded process. For any ε > 0, e−ε x2

2 |x |
k, k = 1, 2, 3, 4, are all bounded

functions, then there exists a constant cε > 0 such that

ψεt

(
p2

t + pt

T − t
+

p4
t + p3

t

(T − t)2

)
≤

cε
√

T − t
.

Hence,

dCtψt = dMt + (Ctψt )
1−ε(T − t)−hr ′′′

t cεdt,

where r ′′′
t is still an adapted bounded process. �

Let us now return to the proof of Lemma 8.

Proof. First, from Fatou’s lemma and Proposition 9,

E[ϕT ] ≤ lim inf
t→T

E[ϕt ] ≤ c3.

We choose t0 ∈ (0, T ) which is close enough to T , and A large enough, and put

σ = inf
{

t0 < t < T,Ctψt ≤
1
A

}
= inf

{
t0 < t < T, p2

t ≥ 2(T − t) log
A

(T − t)
d
2

}
.
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Under the distribution of x., σ < T a.s. However under the distribution of y., limA→+∞ σ = T ,
a.s., taking into consideration of Lemma 4. We have, from (21),

E[ϕt 1σ<t ]

E[ϕt ]
=

E[ψt 1σ<t ]

E[ψt ]
≤

1
c1

E[Ctψt 1σ<t ].

On the other hand, from Proposition 10 with a fixed ε ∈ (0, 1/d),

dCtψt = dMt + αt (Ctψt )
1−ε(T − t)−hdt,

i.e.,

Ctψt = Cσψσ + Mt − Mσ +

∫ t

σ

αs(Csψs)
1−ε(T − s)−hds.

Hence,

E[Ctψt 1σ<t ] ≤ A−1
+ ᾱ

∫ t

t0
E[Csψs1σ<s]

1−ε(T − s)−hds, with ᾱ = sup
t

‖αt‖∞.

Therefore, E[Ctψt 1σ<t ] is bounded by ut , which is the solution of the following differential
equation,

dut = ᾱu1−ε
t (T − t)−hdt, ut0 = A−1

;

and this equation has an explicit solution:

ut =

{
εᾱ

1 − h
[(T − t0)

1−h
− (T − t)1−h

] + A−ε

}1/ε

≤

{
c0(T − t0)

1−h
+ A−ε

}1/ε
,

where c0 > 0 is a constant. We get finally,

E[ϕt 1t≤σ ]

E[ϕt ]
= 1 −

E[ϕt 1σ<t ]

E[ϕt ]

≥ 1 −
1
c1
(c0(T − t0)

1−h
+ A−ε)1/ε.

We note that {ϕt 1t≤σ }t is a uniformly integrable family due to Novikov’s lemma, since we have

1t≤σϕt ≤ C exp
{∫ t∧σ

0

|ys − v|2

T − s
vsdws −

1
2

∫ t∧σ

0

|ys − v|4

|T − s|2
|vs |

2ds

}
,

where for fixed A, C is a positive constant and vt is an adapted bounded process.
Taking the lim inft→T , we get,

E[ϕT 1σ=T ]

lim sup
t→T

E[ϕt ]
≥ 1 −

1
c1
(c0(T − t0)

1−h
+ A−ε)1/ε.

Since 1σ=T converges to one a.s. as A → ∞, we get

E[ϕT ]

lim sup
t→T

E[ϕt ]
≥ 1 −

1
c1
(c0(T − t0)

1−h)1/ε.

It remains to let t0 → T to get:

lim sup
t→T

E[ϕt ] ≤ E[ϕT ].
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Hence,

lim
t→T

E[ϕt ] = E[ϕT ],

and we finish the proof by Scheffé’s lemma (see, e.g. [4]). �
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