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A Note on Uniform Observability

Bernard Delyon

Abstract—We prove in this note that the classical inequality
+ relating the variance of the Kalman filter estimate,

the observability matrix, and the controllability matrix is not true. This
inequality is the cornerstone of the asymptotic stability theory of the
Kalman filter for time-varying systems. We provide another inequality of
the same type.

Index Terms—Kalman filter, time-varying, uniform observability.

I. INTRODUCTION

We consider the following system:

_xt =Atxt + vt

_yt =Ctxt + wt

E
vsv

T

t vsw
T

t

wsv
T

t wsw
T

t

=
Qt Rt

RT

t St
�(t� s):

with an initial value with Gaussian distributionx0 � N (x̂0; P0). The
corresponding Kalman filter is

_̂xt =Atx̂t + PtC
T

t +Rt S
�1

t ( _yt � Ctx̂t)

_Pt =AtPt + PtA
T

t +Qt

� PtC
T

t +Rt S
�1

t CtPt +R
T

t :

The matrix Pt is the variance of the estimation error̂xt � xt.
BoundingPt is, for obvious reasons, an important issue. In [2, p.
359], R. E. Kalman considers the case whereRt = 0 and states the
following lemma (we setWt = CT

t S
�1

t Ct).
Lemma 1 (CaseRt = 0): Let Pt; Ot; Ct be the solutions to

_Pt =AtPt + PtA
T

t +Qt � PtWtPt P0 = P
T

0 � 0

_Ot =�OtAt �A
T

t Ot +Wt O0 = 0

_Ct =AtCt + CtA
T

t +Qt C0 = 0
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then

Pt � O
�1
t + Ct

as soon asO�1
t exists.

This lemma is more explicitly stated and “proved” in [1, p. 234, 243].
The flaw in the proof is apparent in the last correlation inequality at the
end of [1, p. 234].

We show here in Section II that this lemma is untrue and prove in
Section III the following modified version of it.

Lemma 2 (CaseRt = 0): LetAt; Qt; Wt be arbitrary square ma-
trices with same dimensions, piecewise continuous w.r.t.t, such thatQt

andWt are symmetric andWt is nonnegative for allt. LetPt; Ot; Dt

be the solutions to
_Pt =AtPt + PtA

T

t +Qt � PtWtPt P0 = P
T

0 � 0

_Ot =�OtAt � A
T

t Ot +Wt O0 = 0 (1)

_Dt =�DtAt �A
T

t Dt +OtQtOt D0 = 0 (2)

then

Pt � O
�1
t +O�1

t DtO
�1
t (3)

as soon asO�1
t exists. Furthermore, one has

Ot �
t

0

e
2�(t�s)kWsk ds � = sup

0�s�t
kAsk

Dt �
t

0

e
2�(t�s)kOsk

2kQskds:

Some classical comments, which are shared by both lemmas, are in
order.

2) The important point here is that the bound is independent ofP0.
This allows indeed to get bounds forPt; t � 0, by considering
the system on a finite-time interval(t� �; t):
Pt remains bounded if for allt the solutions to (1) and (2)

over(t� �; t) with initial conditionOt�� = Dt�� = 0 satisfy
kO�1

t + O�1
t DtO

�1
t k < C.

3) A bound onDt is easily obtained assuming boundedness ofAt

and integrability ofkWtk+kQtk over finite intervals. The main
condition is the invertibility ofOt.

4) The caseRt 6= 0 is actually covered via simple changes inAt

andQt.
5) SinceP�1

t satisfies
_P�1
t = �P�1

t At �A
T

t P
�1
t +Wt � P

�1
t QtP

�1
t

another application of this theorem leads to a lower bound onPt
based on the invertibility of the controllability matrixCt.

6) The solution to the equation forP�1
t with initial valueP�1

0 = 0
is smaller thanOt; this implies that in the limitP0 ! 1, one
hasPt � O�1

t . This is why the termO�1
t cannot be avoided.

II. COUNTEREXAMPLE

This example is made withAt = 0. Consider

Pt =
1 0

0
1

t+ 1

Qt =
1 1

1 1

Wt =
1 t+ 1

t+ 1 (t+ 1)2 + 1

then we have

PtWtPt =
1 1

1 1 + (t+ 1)�2
= Qt � _Pt:
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Hence,Pt is the solution to the equation. On the other hand

Ct = tQ0 =
t t

t t

and

Ot = t
1 t=2 + 1

t=2 + 1 t2=3 + t+ 2

O�1
t =

1

t

1

t2=12 + 1

t2=3 + t+ 2 �t=2� 1

�t=2� 1 1
:

Takex = (1; �1)T . We havexT Ctx = 0 andxTO�1
t x converges to

zero, butxTPtx converges to 1. Hence, there exists a timeT such that
PT � O

�1
T

+ CT is untrue.

III. PROOF OFLEMMA 2

Proof: In order to limit the number of terms in the forthcoming
equations, we first reduce the proof to the caseAt = 0. We consider
the transition matrix

_�t = At�t �0 = I

and set

~Pt =��1
t Pt�

�T

t

~Ot =�T

t Ot�t

~Dt =�T

t Dt�t

~Qt =��1
t Qt�

�T

t

~Wt =�T

t Wt�t:

Notice that~Pt is the estimation variance of the state~xt = ��1
t xt, and

more generally, the tilded quantities correspond to the untilded ones, up
to a time-varying change of coordinates in the state space. One easily
obtains

_~P t = ~Qt � ~Pt ~Wt
~Pt ~P0 = P0

_~Ot = ~Wt
~O0 = 0

_~Dt = ~Ot
~Qt

~Ot
~D0 = 0

and (3) rewrites

~Pt � ~O�1
t + ~O�1

t
~Dt

~O�1
t :

We shall prove the equivalent inequality

~Ot
~Pt ~Ot � ~Ot + ~Dt: (4)

The derivative of the left-hand side is
d

dt
~Ot

~Pt ~Ot = ~Wt
~Pt ~Ot + ~Ot

~Qt � ~Pt ~Wt
~Pt ~Ot + ~Ot

~Pt ~Wt

= ~Ot
~Qt

~Ot � I � ~Ot
~Pt ~Wt I � ~Pt ~Ot + ~Wt

= _~Ot +
_~Dt � I � ~Ot

~Pt ~Wt I � ~Pt ~Ot

which implies (4) by integration. For the bound onOt, notice that

Ot = ��Tt ~Ot�
�1
t =

t

0

��Tt ��Ts Ws�
�1
s ��1

t ds:

Since the matrixMt = ��1
s ��1

t satisfies (s is fixed) _Mt =
�MtAt; Ms = I , one has

kMtk = I �
t

s

MuAu du � 1 + �
t

s

kMuk du

and by Gronwall’s lemmakMtk � e�(t�s). Hence

kOtk �
t

0

e2�(t�s)kWskds:

The bound onDt is now immediate since this matrix satisfies the same
equation asOt, with only a change onWt.
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Time Maximum Disturbance Design for Stable Linear
Systems: A Model Predictive Scheme

K. H. You and E. B. Lee

Abstract—It is known that the most stressful bounded (time maximum)
disturbance for stabilized linear systems is of bang-bang type. This
bang-bang disturbance can often be implemented with a switch set of
current states for second-order systems. The isochrones, as the level sets,
determine the value of the disturbance index in a state space setting. In
this note, we suggest an efficient way to construct the time maximum
disturbance from the information of isochronal wave front using it in a
model predictive scheme. This overcomes the shortcomings of the original
switch set which are constructed through time backward computation and
only available for first and second-order systems. Simulation results show
how the isochrones evolve and can be utilized in synthesizing the time
maximum disturbance for linear systems of second and then higher order.
For third-order systems, the associated -gain of the time maximizing
disturbance is found.

Index Terms—Bang-bang, isochrones, -gain model predictive distur-
bance, time maximum disturbance.

I. INTRODUCTION

Testing robustness of stable systems by using a degradation index
(measure of disturbance severity) is being developed. The index
could be one of time, of fuel, or a general quadratic criterion. When
the severity index to be maximized is the time distance from the
equilibrium point (delay tactic), it is now known that the disturbance
is of bang-bang type and can be implemented with a switch curve
for second-order systems [4]. The switch curve is a useful method of
storing the information concerning the optimal disturbance selection,
and it can often be given in closed analytic form for the second-order
systems [5].

A further fact is that for the damped harmonic oscillator given as a
linear second-order system, the limit of the reachable sets boundaries
from the origin whenT ! 1 is a maximum limit cycle when using
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