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Abstract

We consider the problem of nonparametric prediction for a multi-dimensional functional autoregres-
sion yt = f(yt−1, ..., yt−d) + et on the basis of N observations of yt. In the case when the unknown
nonlinear function f belongs to the Barron class, we propose an estimation algorithm which provides
approximations of f with expected L2 accuracy O(N1/4 ln1/4 N). We also show that this approximation
rate cannot be significantly improved.

The proposed algorithms are ”computationally efficient” – the total number of elementary computa-
tions necessary to complete the estimate grows polynomially with N .

1 Introduction

We address the following prediction problem: we are interested to predict the future value yN+1 of
nonlinear autoregressive process (yt) given N observations

yt = f(yt−1, ..., yt−d) + et, y = (y0, ..., y−d+1)T ∈ IRd, t = 1, 2, ..., N, (1)

Here f(x) : IRd → IR is a bounded Borel real-valued function of d real variables), et ∈ IR are independent
and identically distributed gaussian random variables such that

E{e1} = 0, E{e2
1} = σ2

e <∞. (2)

By analogy with the corresponding parametric model we call the above system a non-parametric autore-
gression or a functional autoregression of dimension d (NAR(d)). Again, as in the case of parametric
autoregression, we measure the quality of an estimate ŷN+1 of yN+1 by its squared L2-error:

E(ŷN+1 − yN+1)2. (3)

Let us denote Yt = (yt, ..., yt−d+1)T . Due to the independence of eN+1 of the totality (y, ..., yN ) for any
N ≥ 1, one can easily see that this error coincides with

σ2
e + E(ŷN+1 − f(YN ))2.

Thus our initial objective – to minimize (3) with respect to ŷN+1– can be reformulated as follows: find

a (y, ..., yN )-measurable function f̂(·) which minimizes

E(f̂(y, ..., yN )− f(YN ))2. (4)

For the sake of simplicity we put the dependence on previous observations in the index and use the
notation f̂N (YN ) rather than f̂(y, ..., yN ). We can now call f̂N (·) the estimate of f .
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1.1 Barron’s class

As we shall see below the problem of minimizing (4) is fairly close to that of estimating a regression
function f from the model

yt = f(xt) + et, t = 1, ..., N (5)

where xt are independent and identically distributed with some distribution µ. The majority of the
known estimates of multivariate regression functions, see [4] and references therein, are aimed to restore
smooth signals. It is well known that in this case the rates of convergence degrade rather fast when the
dimensionality d of f increases1 and become exceedingly slow when d approaches lnN .

There are basically two ways to overcome the indicated difficulty (known as the “curse of dimension-
ality”): either to accept that a huge amount of data is necessary or to strengthen restrictions on the
function class in order to bound its “effective dimension”. One such class which allows to reduce the
“effective dimension” has been recently introduced by A. Barron [1] and can formalized as follows:

Definition 1 F consists of functions f which are the Fourier transform

f(x) =

∫
IRd

f̂(ω) exp{iωTx}dω (6)

of a finite complex-valued measure (a function from the centered at the origin L1-ball of the radius L <∞):∫
IRd
|f̂(ω)|dω ≤ L <∞. (7)

The interest of this definition is explained by the approximation result, proved in [1]. When refor-
mulated for our purposes it can be stated as follows: for any positive integer n and for any probability
distribution µ on IRd there exists an n-tuple (ω1, ..., ωn) and coefficients λ1, ..., λn,

∑n

k=1
|λk| ≤ L, such

that the combination

fn(x) =

n∑
k=1

λk exp{iωTk x}

satisfies ∫
|f(x)− fn(x)|2µ(dx) ≤ L2/n. (8)

Although this proposition states that the quality of a “simple” approximation of a function f from the
class given by (6) and (7) admits a bound (8) independent of the dimension d, this is an existence
result only. Indeed, it is unclear how to recover the frequencies ωk and the weights λk when the available
information on f is given by reasonably many observations (1). The following solution of this problem
was proposed in [6] to solve the regression problem (5): in order to use the indicated existence theorem
we can act as follows: let Ω be a “fine” grid in the space of frequencies; we consider the functional system
fk(x) = L exp{iωTk x}, ωk ∈ Ω with the cardinality M , and use observations (1) to solve the following
optimization problem:

minimize

∫
(f(x)−

M∑
k=1

λkfk(x))2µ(dx)

under constraint that λ = (λ1, ..., λM )T belongs to the ‖ · ‖1-ball Λ:

Λ = {{λω}ω∈Ω |
∑
ω∈Ω

|λω| ≤ 1}. (9)

Surprisingly enough, this approach, under minor additional assumptions on f , allows to provide com-
putationally efficient procedures to recover f with basically the same quality as that stated in Barron’s

1For example, the rate is O(N−1/(2+d)) for Lipschitz continuous functions f .
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existence theorem. What we are up to do now is to show that the same technique gives optimal results
in the nonparametric prediction problem above.

The paper is organized as follows: in Section 2 we present an algorithm of stochastic approximation
type for estimation of multi-dimensional parameter under constraint (9). This algorithm then is used
in Section 3 to estimate a nonlinear autoregressive model from observations (1). We also provide a
minimax lower bound for the estimation problem in question which shows that the proposed estimate is
optimal up to a multiplicative constant.

2 Stochastic approximation algorithm

In this section we present a robust algorithm to estimate a multi-dimensional regression parameter under
convex constraints. This algorithm will be used in the estimation procedure in the next section, however,
it is of interest by itself.

We consider the following regression model

yt = φtλ
∗ + et + bt, t = 1, ... , (10)

where φt ∈ IRM and yt ∈ IR are the observable regressors and outputs respectively, et and bt are
unobservable disturbances; we suppose that ‖λ∗‖1 ≤ 1.

Note that as M � N we cannot use the least squares algorithm because the matrix ΦN =
∑N

i=1
φiφ

T
i

is ill-conditioned since rank(ΦN ) ≤ N . For the same reason the “standard” stochastic approximation
procedure

λt = ΠΛ(λt−1 + γt(yt − λTt−1φt)φt)

(here ΠΛ(·) stands for the projector onto the set Λ = {λ : ‖λ‖1 ≤ 1}) with stepsizes γt = O(t−1)
is completely inappropriate here (the Hessian matrix Φ = limt→∞ φtφ

T
t is extremely ill-conditioned).

However, one can use the robust version of this algorithm (cf. [7]) with the gain γt = O(t−1/2) with the
estimate λ̄N obtained by the averaging:

λ̄N =
1

N

N−1∑
t=0

λt.

The prediction error of the latter algorithm attains

E[φTN (λ∗ − λ̄N )]2 = O(N−1/2) (11)

for and does not depend on the conditional number of Φ. However, the constant factor in the right-hand
side of (11) is proportional to the “l2-level” of noise E‖etφt‖22 which is O(M).

The method we use here is the non-Eucludian stochastic approximation procedure associated with
the L1-norm. It has been first introduced in [7] and is referred to as mirror-descent algorithm.

Let q = 2 lnM and γt, t = 1, ..., N be a positive sequence (we give the precise definition of this
sequence below). We set W (z) = ‖z‖2q/2. In order to obtain the estimate λ̄t of the parameter λ∗ given t
observations (10) we use the following mirror-descent algorithm (cf. [7]):

wt = zt−1 + γt(yt − λTt−1φt)φt, z0 ∈ IRM , ‖z0‖q ≤ 1;

zt =

{
wt, for ‖wt‖q ≤ 1,

‖wt‖−1
q wt, for ‖wt‖q > 1;

λt = ∇W (zt);

λ̄t =
1

m

t−1∑
i=t−m

λi, with m =
[
t

2

]
. (12)

Let Ft = σ(z0, φ1, e1, b1, ..., φt, et, bt). We consider the following assumptions:
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Assumption 1. ‖λ∗‖1 ≤ 1.

Assumption 2. For any t, and some κ > 1 and L,K, ε, σe <∞ the following holds :

E(e2
t |Ft−1, φt, bt) ≤ σ2

e ,

E|bt|2 ≤ ε2

‖φt‖∞ ≤ L,
E(et|Ft−1, φt, bt) = 0.

Assumption 3. Furthermore, we require that the limit

Φ = lim
t→∞

Eφtφ
T
t

exists and for for some K <∞, ρ > 0 and any m ≥ 1

‖Eφt+mφt+m − Φ|Ft‖∞ ≤ KL2(1− ρ)m−1.

Note that Assumption 3 holds for the process (φt), t = 1, ... which satisfies an exponential φ−mixing
condition. For instance, it holds true when φt = φ(Yt) and (Yt), t = 1, ... is a Doeblin Markov chain (cf.
[2], Section 5.5).

Theorem 1 Suppose that Assumptions 1 – 3 hold and the gain coefficient is

γi =
(√

3ei ln(M)(9Kρ−1 + 1)L(eL+ σe + ε)
)−1

, i = 1, ..., N. (13)

Then for any M ≥ 2 and N ≥ 2

E[φTN (λ̄N − λ∗)2] ≤ 12

γNN
+

60L2 ln(KN + 1)

Nρ(1− ρ)2
+

45KL2

Nρ
+ eεL. (14)

3 Main result

We return now to the basic estimation problem (4). We define the following functional class FdN (L∗, ν):

Definition 2 Let L∗ and ν be positive reals and d and N be positive integers. We associate with the tuple
(L∗, ν, d,N) the class FdN (L∗, ν) comprised of all functions f : IRd → IR which are Fourier transforms of
finite Borel complex-valued measures on IRd:

f(x) =

∫
exp(iωTx)F̂ (dω),

such that ∫
|F̂ (dω)| ≤ L∗∫

|ω|>ρ
|F̂ (dω)| ≤ ρ−1Nν ∀ρ > 0

Note that the classes in question grow as N grows up.
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The problem is to recover the unknown function f : IRd → IR, given N observations yt = f(Yt−1)+et
of of the function (cf. (1)). We assume that we know in advance the parameters L∗, ν of the class
FdN (L∗, ν), as well as σ2

e from (2).
The idea of the algorithm below can be summarized as follows. We fix a large enough ball Wρ in

the space of frequencies, so that f can be properly approximated by the Fourier transform of a measure
with the support contained in Wρ. On Wρ we define a fine ε-net Ω = {ωi} of cardinality M∗ = O(Nα)
for some α <∞. Next we denote

φ(x) = {
√

2L∗ cos(ωTx),
√

2L∗ sin(ωTx)}ω∈Ω, φt = φ(Yt) (15)

and find the approximation λ̂ of λ∗ from the observations

yt = φTt λ
∗ + bt + et

on the set Λ = {λ ∈ IRM : ‖λ‖1 ≤ 1}. Due to Barron’s approximation result we know that there exists
λ∗ ∈ Λ such that the quantity

Eb2t =

∫
(φ(x)Tλ∗ − f(x))µt(dx),

where µt stands for the distribution of Yt, is small.

The algorithm which implements the above idea is as follows:

Algorithm 3.1 1. Given N, d, L∗, ν and σe, we set

η =

√
d ln[NνL∗(L∗ + σe)

√
d]

N
(σe + L∗), ρ(η) =

Nν

η
, ε =

η

2L∗
√
d(L∗ + σe)

. (16)

2. We define an ε-net Ω = {ωk}M
∗

k=1 on the ball

Wρ(η) = {ω ∈ IRd : |ω| ≤ ρ(η)}

with ε given by (16). The cardinality M∗ of the net is assumed to satisfy the inequality

M∗ ≤ (1 + 2ε−1ρ(η))d (17)

(such a net for sure exists).

3. Let M = 2M∗, Λ = {λ ∈ IRM : ‖λ‖1 ≤ 1} and

fλ(x) =

M∗∑
k=1

[λ2k−1

√
2L∗ cos(ωTk x) + λ2k

√
2L∗ sin(ωTk x)].

Then we set φt as in (15) and use the stochastic approximation algorithm described in the previous

section to obtain the estimate λ̂ of λ∗ ∈ Λ from the observations

yt = φTt λ
∗ + et, t = 1, ..., N.

The convergence rate of the resulting estimate

f̂N (x) =

M∗∑
k=1

[λ̂2k−1

√
2L∗ cos(ωTk x) + λ̂2k

√
2L∗ sin(ωTk x)]

of f is given by the following

Theorem 2 Let f ∈ FdN (L∗, ν), (2) be satisfied and the gain γi, i = 1, ..., N be chosen as

γi =
1

√
ei lnM(2π)1/4 exp( (L∗+σe/2)2

4σ2
e

)L∗(eL∗ + σe)
.

Then for all large enough N

E(f̂N (YN )− f(YN ))2 ≤ κ

√
lnN

N
L∗(σe + L∗)d

√
ν(2π)d/4 exp

(
d(L∗ + σe/2)2

4σ2
e

)
, (18)

where κ is an absolute constant.
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Comments:

1. If σe � L∗, the constant in (18) which reflects the dependence on L∗ and σe becomes really
large due to the exponent term exp((L∗)2/2σ2

e). This multiplier comes out of the estimate of the

“forgetting factor” ρ =
√

2π exp(− (L∗+σe/2)2

2σ2
e

) in the mixing inequality in Assumption 3 for our

problem. Of course, this estimate is minimax and rather pessimistic. Under some mild extra
assumptions on the Markov chain (Yt) this estimate can be significantly improved. However, this
study is out of the scope of the present paper.

2. One can easily recognize that the computation difficulty of the proposed algorithm is order of N×M
(this is the complexity of the stochastic approximation procedure), and the memory volume which
is required by the algorithm is order of M .

3.1 Lower bound

We have shown that when estimating a nonlinear function from the Barron class on the basis of N
observations (1), the expected quadratic error

E(f(Yt)− f̂(Yt))
2

can be made O(
√

lnNN−1/2), with the constant factor in O(·) depending on the parameters L (the
constant of the class) and σe (intensity of noise et in observations (1)). A natural question is whether
any estimate with essentially better expected performance is possible. We are about to show that in the
minimax setting the answer to the latter question is negative.

Theorem 3 Let L > 0. Consider the problem of estimating a univariate function f(x) : IR → IR from
observations (xt, yt = f(yt−1) + et), t = 1, ..., N , where (et) is a sequence of independent and identically
distributed random variables, e1 ∼ N (0, σ2

e) and y0 has the invariant distribution. Let F∗N (L) be the class

F1
N (L, 1). Then for some absolute constant κ and all large enough values of N for any estimate f̂ of

f ∈ F∗N (L) on the basis of the above observations one has

E(f̂(yt)− f(yt))
2 ≥ κLσe

√
lnN

N
. (19)

Comment. In the case of L ∼ 1 and σe ∼ 1, the lower bound (19) differs from the upper bound
(18) by an absolute constant factor only.

4 Proofs

In what follows C and C′ stand for positive constants which values are not important. The proofs are
split into a sequence of steps.

4.1 Proof of Theorem 1

Step 1. In this step we introduce some notations and basic inequalities. Set

∆t = λt − λ∗

W̃ (z) = W (z)− zTλ∗

p =
q

q − 1
.

We shall verify that the following holds for x ∈ IRM , z ∈ IRM , ‖z‖q ≤ 1, and zt and wt from (12) :

‖x‖q ≤
√
e‖x‖∞

‖∆t‖1 ≤ e

xT∇2W (z)x ≤ (q − 1)‖x‖2q
‖∇W (z + x)−∇W (z)‖1 ≤ (2q − 3)

√
e‖x‖2q
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W̃ (zt) ≤ W̃ (wt)

|W̃ (zt)| ≤ 3/2

‖wt − zt−1‖q ≤ γt
√
eL (eL+ |et|+ |bt|). (20)

The first relation is simply

‖x‖q ≤ M1/q‖x‖∞ =
√
e‖x‖∞

Note that

∇iW (z) = sign(zi)|zi|q−1‖z‖2−qq

what implies

‖λt‖1 ≤M1/q‖λt‖p =
√
e‖∇W (zt)‖p =

√
e‖zt‖q ≤

√
e

and the second one results

‖∆t‖1 ≤ 1 + ‖λt‖1 < e.

The third one is an immediate consequence of

∇2W (z) = −(q − 2)ZZT + (q − 1)‖z‖2−qq diag(zq−2
i ), Zi = sign(zi)|zi|q−1‖z‖1−qq .

The proof of the fourth one reuses the same identity, with the fact that ‖Z‖p = 1 :

‖∇W (z + x)−∇W (z)‖1 = ‖∇2W (z′)x‖1, for some z′

≤ (q − 2)‖Z′‖1|xTZ′|+ (q − 1)‖z′‖2−qq

∑
i

|z′i|q−2|xi|

≤ (q − 2)‖Z′‖1‖Z′‖p‖x‖q + (q − 1)‖x‖q/2
≤ (q − 2)M1/q‖Z′‖2p‖x‖q + (q − 1)‖x‖qM1/q

= (2q − 3)
√
e‖x‖q

The fifth one is a consequence of the following monotonicity property, satisfied for r ≥ 1, ‖z‖q = 1

d

dr
W̃ (rz) = r‖z‖2q − zTλ∗ ≥ r − ‖z‖q‖λ∗‖p ≥ r − ‖λ∗‖1 ≥ 0

The next inequality follows from the fact that for ‖z‖q ≤ 1

|W̃ (z)| = | ‖z‖2q/2− zTλ∗| ≤ 1/2 + |zTλ∗| ≤ 1/2 + ‖z‖∞ ≤ 1/2 + ‖z‖q ≤ 3/2.

Finally, for the last relation we get:

‖wt − zt−1‖q ≤
√
e‖wt − zt−1‖∞ = γt

√
e‖(yt − λTt−1φt)φt‖∞

≤ γt
√
e (‖φtφTt ∆t−1‖∞ + ‖(et + bt)φt‖∞)

≤ γt
√
e (‖φtφTt ‖∞‖∆t−1‖1 + |et + bt|‖φt‖∞)

≤ γt
√
e (eL2 + (|et|+ |bt|)L)

Step 2. We prove here the following bound:

1

m

∣∣∣∣∣E
t∑

i=t−m+1

∆T
i−1[φiφ

T
i − Φ]∆i−1

∣∣∣∣∣ ≤ 6eKL2

tρ

(
e+ 3 lnM(eL+ σe + ε)2γ1

√
t
)
.

Using the mixing condition in assumption 3 we decompose φtφ
T
t −Φ into a martingale increment µt and

a difference process

φtφ
T
t − Φ = µt + νt−1 − νt,
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where

νt =

∞∑
i=1

E(φt+iφ
T
t+i − Φ|Ft),

µt =

∞∑
i=0

E(φt+iφ
T
t+i − Φ|Ft)−

∞∑
i=0

E(φt+iφ
T
t+i − Φ|Ft−1).

Then

t∑
i=t−m+1

∆T
i−1[φiφ

T
i − Φ]∆i−1

=

t∑
i=t−m+1

∆T
i−1µi∆i−1 +

t∑
i=t−m+1

[∆T
i−1νi−1∆i−1 −∆T

i−1νi∆i−1] = I1 + I2.

However, I1 is a martingale, thus EI1 = 0. We can rewrite I2 as follows

I2 = ∆T
t−mνt−m∆t−m −∆T

t νt∆t +

t∑
i=t−m+1

[∆T
i νi∆i −∆T

i−1νi∆i−1].

We have

‖νt‖∞ ≤ KL2

∞∑
i=1

(1− ρ)i−1 =
KL2

ρ
,

so that

|EI2| ≤ |E∆T
t νt∆t|+ |E∆T

t−mνt−m∆t−m|+
t∑

i=t−m+1

E[‖∆i−1 −∆i‖1‖νi‖∞(‖∆i−1‖1 + ‖∆i‖1)]

≤ 2eKL2

ρ

(
e+

t∑
i=t−m+1

E‖∆i−1 −∆i‖1

)
.

Next we get

‖∆i −∆i−1‖1 ≤ (2q − 3)
√
e‖zi − zi−1‖q

≤ 2q
√
e‖wi − zi−1‖q

≤ 2γiqeL(eL+ |bi + ei|)
E[‖∆i −∆i−1‖1] ≤ 4γi ln(M)eL(eL+ σe + ε) ≤ 4γi ln(M)(eL+ σe + ε)2.

Finally, we obtain for t ≥ 2 (note that
√
t−m ≥

√
(t− 1)/2)

1

m
|EI2| ≤

2eKL2

mρ

(
e+ 4 ln(M)(eL+ σe + ε)2

t∑
i=t−m+1

γi

)

≤ 2eKL2

mρ

(
e+ 8 ln(M)(eL+ σe + ε)2γ1(

√
t− 1−

√
t−m)

)
≤ 6eKL2

tρ

(
e+ 3 ln(M)(eL+ σe + ε)2γ1

√
t
)
.
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Step 3. Let m be chosen as in (12). We prove here that the “averaged” criterion satisfies

1

m

t∑
i=t−m+1

E[(φTi ∆i−1)2] ≤ 6

γ1

√
t

+ 4L2 ln(M)(eL+ σe + ε)2 γ1√
t

+ eεL. (21)

Note first that ∆t = ∇W̃ (zt). Using the result of Step 1 we get the recursive relation

W̃ (zt) ≤ W̃ (wt) ≤ W̃ (zt−1) +∇T W̃ (zt−1)(wt − zt−1) +
1

2
max
z

(wt − zt−1)T∇2W̃ (z)(wt − zt−1)

≤ W̃ (zt−1) + γt∆
T
t−1((et + bt)φt − φtφTt ∆t−1) +

(q − 1)

2
‖wt − zt−1‖2q

hence

γt(φ
T
t ∆t−1)2 ≤ W̃ (zt−1)− W̃ (zt) + γt(et + bt)∆

T
t−1φt +

(q − 1)

2
‖wt − zt−1‖2q. (22)

Then by (20)

‖wt − zt−1‖2q ≤ γ2
t e L

2(eL+ |et|+ |bt|)2

and by the Minkowski inequality

E[‖wt − zt−1‖2q]1/2 ≤ γte L(eL+ σe + ε)

(q − 1)

2
E[‖wt − zt−1‖2q] ≤ ln(M)eγ2

tL
2(eL+ σe + ε)2.

On the other hand,

|Ebt∆T
t−1φt| ≤ eεL.

Thus, when taking expectations in equation (22),

E(∆T
t−1φt)

2 ≤ γ−1
t E[W̃ (zt−1)− W̃ (zt)] + eεL+ ln(M)eγtL

2(eL+ σe + ε)2.

When summing over t :

t∑
i=t−m+1

E(∆T
i−1φi)

2 ≤ E

[
W̃t−m

γt−m
− W̃t

γt
+

t−1∑
i=t−m

[γ−1
i+1 − γ

−1
i ]W̃i

]
+meεL

+ ln(M)eL2(eL+ σe + ε)2

t∑
i=t−m+1

γt

≤ 3

2

(
γ−1
t−m + γ−1

t +

t−1∑
i=t−m

[γ−1
i+1 − γ

−1
i ]

)
+meεL+ ln(M)eL2(eL+ σe + ε)2γ1

t∑
i=t−m+1

1√
i

≤ 3

γ1

√
t+

eεLt

2
+ ln(M)eL2(eL+ σe + ε)2γ1

√
t.

Step 4. We show that the variable ∆̄t = 1
m

∑t

i=t−m+1
∆i−1 satisfies

|E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2| ≤ 2e2L2K

t
− 8e2L2 ln(1− ρ)

ln t

t
.

Define for some s

∆̂t =
1

m

t−s∑
i=t−m+1

∆i−1.
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We have

|E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2| ≤ |E∆̄T

t Φ∆̄t − ∆̂T
t Φ∆̂t|

+|E∆̂T
t Φ∆̂t − E(∆̂T

t φt)
2|

+|E(∆̄T
t φt)

2 − E(∆̂T
t φt)

2|
= I1 + I2 + I3. (23)

We get for I3:

|I3| ≤ E(‖∆̄t‖1 + ‖∆̂t‖1)‖∆̄t − ∆̂t‖1‖φtφTt ‖∞ ≤ 2eL2E‖∆̂t − ∆̄t‖1 ≤
2e2L2s

m
.

The same bound is valid for I1. For I2 we obtain due to Assumption 2

|I2| = |E∆̂T
t E(Φ− φtφTt |Ft−s)∆̂t| ≤ KL2(1− ρ)s−1E‖∆̂t‖21 ≤ e2KL2(1− ρ)s−1.

Finally

|E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2| ≤ 4e2L2

m

(
s+

Km

4
(1− ρ)s−1

)
When choosing s = [− ln(K′ + 1)/ ln(1− ρ)], K′ = Km/4 we obtain

|E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2| ≤ 4e2L2

m

(
s+K′(1− ρ)− ln(K′+1)/ ln(1−ρ)−2

)
= 4

e2L2

m

(
s+

K′

K′ + 1
(1− ρ)−2

)
≤ 4

e2L2 ln(K′ + 1)

m

(
ρ−1 + (1− ρ)−2

)
≤ 4

e2L2 ln(Km/4 + 1)

m
ρ−1(1− ρ)−2

Step 5. We gather now the results of the previous steps. Due to the convexity of ∆TΦ∆ we have

E(∆̄T
t φt)

2 ≤ |E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2|+ E∆̄T

t Φ∆̄t

≤ |E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2|+ 1

m

t∑
i=t−m+1

E∆T
i−1Φ∆i−1

≤ |E∆̄T
t Φ∆̄t − E(∆̄T

t φt)
2|+ 1

m

t∑
i=t−m+1

[
E∆T

i−1(Φ− φiφTi )∆i−1 + E(∆T
i−1φi)

2
]

≤ 2e2L2 ln(Kt+ 1)

t
ρ−1(1− ρ)−2 +

6eL2K

ρt

(
e+ 3 ln(M)(eL+ σe + ε)2γ1

√
t
)

+
6

γ1

√
t

+ 2 ln(M)L2(eL+ σe + ε)2 γ1√
t

+ eεL

≤ 2e2L2 ln(Kt+ 1)

t
ρ−1(1− ρ)−2 + eεL+

6e2L2K

ρt

+
6

γ1

√
t

+ 2L2e ln(M)(eL+ σe + ε)2 γ1√
t

(
9K

ρ
+ 1

)
.

Now note that the two last terms only depend on γt = γ1/
√
t. When choosing γ1 to balance these terms

we get

γ1 =
(√

3e ln(M)(9Kρ−1 + 1)L(L+ σe + ε)
)−1

,

and the bound (14) for E(∆̄T
t φt)

2.
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4.2 Proof of Theorem 2

Step 1. According to (17) and (16) we have for all large enough N

M ≤ (1 + 2ε−1ρ(η))d ≤ (Cε−1ρ(η))d ≤
(
C′NνL∗

√
d(L∗ + σe)η

−2
)d

(24)

Let µt be the distribution of Yt, t = 1, ....

Step 2. Let us verify that for every f ∈ FdN (L∗, ν) there exists λ∗ ∈ Λ such that the function

f̃(x) = φ(x)Tλ∗

with ωk ∈ Ω satisfies

‖f̃ − f‖2,µt ≤ 3η.

Indeed, by (16) we have ∫
|ω|>ρ(η)

|F̂ (dω)| ≤ Nνρ−1(η) = η.

This implies that if we define the measure Ĝ as Ĝ(A) = F̂ (A ∩ Wρ(η)) and define g as the Fourier

transform of Ĝ, then

‖f − g‖2,µt ≤ ‖f − g‖∞ ≤ η. (25)

On the other hand, it follows from Barron’s proof of (8) (see [1]) that one can find a function of the
form

h =

m∑
k=1

δk exp(iζTk x)

with ζk ∈Wρ(η), m =c1/η2b and ‖δ‖1 ≤ L∗ such that

‖h− g‖2,µt ≤ η. (26)

Since ‖f‖∞ ≤ L∗, we conclude from (1) that

Ef,y|Yt|2 ≤ d((L∗)2 + σ2
e),

so that for any ω, ω′ ∈ IRd∫
|eix

Tω − eix
Tω′ |2µt(dx) ≤ 4|ω − ω′|2

∫
|x|2µt(dx) = 4d((L∗)2 + σ2

e)|ω − ω′|2. (27)

Let ωk be the element of Ω closest to ζk. Then for

r(x) =

m∑
k=1

δk exp(iωTk x),

we obtain due to (27):

‖h− r‖2,µ ≤ L∗max
k

(∫
|eix

Tωk − eix
T ζk |2µt(dx)

)1/2

≤ 2L∗max
k
|ωk − ζk|

√
d((L∗)2 + σ2

e) = η

(see (16)). Along with (25) and (26) this estimate yields ‖f − r‖2,µt ≤ 3η for any t ≥ 1. Now we can
set f̃(x) = Re{r(x)}.

Now, let φt be as in (15), λ∗2k−1 = Re(δk) and λ∗2k = Im(δk), k = 1, ...,M . Then for yt = f(Yt−1)+et
Assumption 2 holds with ε = 3η and σe unchanged. Since

|Re(δk)|+ |Im(δk)| ≤
√

2|δk|,

11



we have ‖λ∗‖ ≤ 1 if we take L =
√

2L∗ in Assumption 2.
Furthermore, the Markov chain Yt satisfies the Doeblin condition (cf. Case(b) p. 197 of [2]): there

exists a conditional density of the d-step transition probability, which is uniformly (with respect to
x ∈ IRd) bounded from below on some subset of IRd. For proving this, note first that, since ‖f‖∞ ≤ L∗, the
transition probability from x = Yt to y = yt+1 has a density p(x, y) which satisfies for y ∈ [−σe/2, σe/2]
and x ∈ IRd

p(x, y) ≥ δ =
1√

2πσe
exp

(
− (L∗ + σe/2)

2σ2
e

)
.

Thus, for any function g

E[g(Yt+d)|Yt] =

∫
g(yt+d, . . . , yt+1)p(Yt, yt+1) . . . p(Yt+d−1, yt+d)dyt+1 . . . dyt+d

≥ δd
∫

[−σe/2,σe/2]d

g(yt+d, . . . , yt+1)dyt+1 . . . dyt+d.

This means that the d-step transition probability of the chain Yt has an absolutely continuous part with
a density larger than δd on [−σe/2, σe/2]d. Then the inequality (5.6) p. 197 of [2] holds with ν = d, i.e.,
the transition probability of Yt satisfies

|P (x,A)− π(A)| ≤ (1− ρ0)n/d−1

(π(·) stands for the invariant distribution of Yt) with

ρ0 = δdσde = (
√

2π)−d/2 exp

(
−d(L∗ + σe/2)2

2σ2
e

)
.

In other words, the process (Yt) is exponentially φ-mixing. Then using Theorem A.6 of [3] we conclude
that for any continuous function g : IRd → IR:

|Eg(Ym)− πg| ≤ 2‖g‖∞ (1− ρ0)m/d−1 ,

what gives the mixing inequality of Assumption 3, with K = 2/(1− ρ0) and ρ = ρ0/d.

Step 3. When applying the bound (14) of Theorem 1 we get for all large enough values of N (note
that here ε depends on N and tends to zero)

E‖f̂N − f‖2 ≤ C′ρ−1/2
(

lnM

N

)1/2

L∗(σe + L∗),

The latter quantity, as it is immediately seen from (24) and (16), is bounded from above by

κρ−1/2L∗(σe + L∗)
√
dν lnN/N

with properly chosen absolute constant κ.

4.3 Proof of Theorem 3

Let ϕk, k = 1, ..., N , be

ϕk(x) = L cos(
2π

σe
kx).

Given a positive integer p, let us denote by Fp the set of all convex combinations of the functions
ϕ1, ..., ϕN with the coefficients as follows: 2p out of the N coefficients are equal to (2p)−1, and other
coefficients vanish.
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Step 1. It is easily seen that if p ≤
√
N , then Fp contains a subset F∗p with the following properties:

1. Every two functions f, g from F∗p have at most p common nonzero Fourier coefficients, so that

L2σe
4p
≤
∫ σe/2

−σe/2
|f(x)− g(x)|2dx. (28)

2. The cardinality K of F∗p satisfies the relation

K ≥Mκ1p. (29)

Step 2. Consider f ∈ F∗p and let π(·) = πf (·) denote the invariant distribution of the Markov chain
(yt) defined by (1). Let us prove that for p large enough and any function g ∈ F∗p

L2

16p
≤ π[(f − g)2], and π(f2) ≤ 2L2

p
(30)

Note first that for any a and |b| ≤ b0, due to the convexity of exp(x)− 1 (used on the interval [0, b20])

e−(a+b)2 ≤ e−a
2/2+b2 ≤ e−a

2/2

(
1 + (eb

2
0 − 1)

b2

b20

)
.

Since |f(x)| ≤ L by construction, we obtain for the invariant density p(·):

p(y) =

∫
p(x)

1√
2πσe

e
− (y−f(x))2

2σ2e dx

≤
∫

p(x)√
2πσe

e
− y2

4σ2

(
1 + (e

L2

2σ2e − 1)
f2(x)

L2

)
dx

=
1√

2πσe
e
− y2

4σ2 (1 + C(L, σe)π(f2)).

Then, due to (28)

π(f2) =

∫
f2(x)p(x)dx ≤ 1 + C(L, σe)π(f2)√

2πσe

∫
f2(x)e

− x2

4σ2 dx ≤ (1 + C(L, σe)π(f2))
L2

p
,

and for p ≥ 2L2C(L, σe), one has π(f2) ≤ 2L2/p.
Now consider the first inequality of (30). Note that

e−(a+b)2 ≥ e−2a2−2b2 ≥ e−2a2(1− 2b2).

Therefore, using the bound for π(f2) we conclude that the invariant density p(x) satisfies

p(y) =

∫
p(x)

1√
2πσe

e
− (y−f(x))2

2σ2e dx ≥ 1√
2πσe

e
− y

2

σ2e (1− π(f2)

σ2
e

) ≥ 1

3σe
e
− y

2

σ2e

for p large enough. Thus∫
|f(y)− g(y)|2π(dy) ≥ 1

3σe

∫ σe/2

−σe/2
|f(y)− g(y)|2e

− y
2

σ2e dy

≥ 1

3σe
e−1/4

∫ σe/2

−σe/2
|f(x)− g(x)|2dx ≥ L2

16p
.
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Step 3. Now let ε(p) = maxf∈F∗p E[π((f̂ − f)2)] (recall that the measures E and π depend on the true

function f). We claim that for any p ≤
√
N large enough, the inequality ε(p) < L2

256p
would imply

N ≥ κL−2σ2
ep

2 lnN. (31)

Indeed, let us associate with f̂ the method B for distinguishing between K hypotheses, the k-th of them
stating that N observations (1) come from some element f ∈ F∗p . B is as follows : Given observations,

we use f̂ to estimate f ; then we find the closest (in the sense of
∫

(f(x) − f̂(x))2π(dx)) to f̂ element
(any one of them in the non-uniqueness case) in F∗p and claim that this is the function underlying our
observations.

It is immediately seen if any one of our K hypotheses is true, the probability that B fails to recognize
it properly is at most 1/4. Indeed, assume that the true hypothesis is associated with f ∈ F∗p . If B fails

to say that it is the case, then the estimate f̂ is at least at the same distance from f as from some g ∈ F∗p
distinct from f . Taking into account the first inequality in (30), we conclude that then

π[(f − f̂)2]1/2 ≥ 1/2

√
L2

16p
.

Then we get from the definition of ε(p) and the Chebyshev inequality:

P (B 6= f) ≤ P
(
π[(f(x)− f̂)2] ≥ L2

64p

)
≤ 64pε(p)

L2
≤ 1

4
.

Now note that the Shannon information I(Y N , f) of the distribution of N -observation samples (1)
coming from an element of F∗p , in view of the second inequality in (30), can be bounded as follows:

I(Y N , f) ≤ C

σ2
e

N∑
t=1

Ef2(yt) ≤
C′Nσ−2

e L2

p
.

Then the Fano inequality [5] implies that the above K hypotheses can be distinguished only if

Nσ−2
e L2

p
≥ C lnK = κp lnN

(we have used (29)), as required in the conclusion of (31). We now take p = 2L
√
N/(σe

√
κ ln(N)) so

that (31) is violated and the conclusion of Theorem 3 is nothing but ε(p) > L2

256p
.
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