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we must also have Remarks on Linear and Nonlinear Filtering 

s* = argmin E [ N ;  s[O],  s[I], . . . , s[N - 11, .r]. 
.[.I 

Bernard Delyon 

Hence, it remains only to show 
Abstract- This communication tries to give some insight into rela- 

tionships existing between Viterbi and the Forward-Backward algorithm 
(used in the context of Hidden Markov Models) on one hand and Kalman 
filtering and Rauch-TungStriebel smoothing on the other. We give a 
unifying view which shows how those algorithms are related and give 
an example of a nonlinear hybrid system that can be filtered through a 

s* = argmin -.[TI + 1: s[O], s[ l ] ,  . . . . .$[.I, X] 

.[.I 
n 

- sgn C l j z ( k - - ” ) ~ ( , - k )  
s~n-11 s[kl(y[’l) (42) - 

k=O mixed algorithm. 

to initiate the induction. 
But since 

Index Terms-Nonlinear filtering, Viterbi algorithm. 

E[11 + 1: s[O], s[l], . . . , s[n], 4 I. INTRODUCTION 
In this communication, we consider estimation of the state of semi- 

Markov processes. These processes arise in two quite different fields: 
Hidden Markov Models (widely used for speech recognition, [I]) and 
Kalman-Bucy filtering; in the first case, the state-space is discrete 
(generally finite) while in the second one it is the Euclidean space. 

Inspection of these similarities will lead us first to a generalization of 
Kalman-Bucy filtering in a particular extension to nonlinear systems 
and secondly to extend this model to a state-space which is mixed 
continuous-discrete. 

= s [ n ;  s[o]. s[l], . . . , s[n - 11, F3T;,(s)] + (Y[T-C + I] - .E)’ 

we have 

s* = argmin E[. + 1; s[O], s [ l ] ,  . . . , s[n], x] 
.[.I 

,I However, algorithms which are used have considerable similarities. 
= argmin t j * ( k - n ) ( F $ , ~ ~ ~ ,  . . , s [ k l ( ~ [ k ] )  - F $ I ( T ) ) ~ ( ~ ~ )  

in (43) and noting from (6) that, for 

.In1 k=O 

Expanding the quadratic 
.r E ( - l , , 3  - 1) 

(44) A. Model , ? - l - . r  
IF-1 (s) l= 

Semi-Markov processes (K ) are defined through their state-space 
representation ( X ,  , Y, ) (in some measurable space X x y )  where Y 
is the observation and X is the hidden state; (X , ,  Y,) is a Markov 
chain and the assumption is that the transition from (-Xn, Y n )  to 
(X7L+l,  Y,,+l) does not depend on Y,,, which implies that ( X , )  
is itself a Markov chain. This process is thus characterized by its 
transition function n(r ,  .r’, y’). 

.[.I P 
is independent of .[TI], we get 

s[n - 11,. . . , s [k] ( Y  [‘I ) . se = argmax ~ ~ ~ i ~ ( 2 - 1  P ~ ( ~ - ~ ~ ) F ( ~ ~ - ~ )  (45) } s[nI { k=O 

In turn, since 

s[n]  = sgnF,T,’](r) 

for P E ( -  1. d - 1) in accordance with (6), (45) implies s+ must be 
given by the right-hand side of (42). 

In the case of discrete spaces 

II(.C. P‘, y’) = P(X,,+I = .r’, Yn+l = y’lX, = P) 

for continuous spaces 

n ( x ,  s’, y ’ ) d ~ ’ d y ’  = P(X,+l E ds’. E,+1 E dy’IX, = X )  
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and analogous formulas for mixed discretekontinuous spaces. 
An initial distribution is also given for A-0. The assumption 
imply that (Y, ) “depends” only on ( Xrt- 1, X ,  ) in the sense 
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where p(.r,  x ’ )  is the transition function of the chain ( X , )  

p ( x ,  2) = /ncx. S I .  y’) dy ’ .  

Thus the distribution of the process may also be realized by 
first running the Markov chain (Xrt) with its own law and 
then drawing the random variables (Y,) with their distribution 
conditioned on ( X ,  - 1, AYn ) . 
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B. Examples 

The linear-Gaussian model has the following representation: 

X ,  = FX,-i+ ~ ~ - 1 ,  ZU, zA"(0,  Q )  
Y, = H X ,  -k U,, % I n  _N Jb?(O, R )  (1) 

(for the sake of simplicity, we assume that matrices F, H ,  Q,  R are 
not time-dependent and U and w are two independent sequences of 
independent variables). We have (see bottom of page) 

In the case of nonlinear filtering with discrete state space (Hidden 
Markov Models), transition probabilities are generally presented in 
the form (cf [l]) 

Wi, j ,  Y)  = a*,b*,(?/) 

where 

is the transition matrix of the chain (A-,) and b,,  is the distribution 
of Y, conditional to the transition from i to j .  

C. Problems 

Two problems are traditionally addressed: 
Smoothing: what can be said of the sequence X O ,  X I ,  . . . , X.v 
once we are given an observation set YI , Yz, . . . , Kv? 
Filtering: how to estimate recursively X, from the observation 
of l'p and the previous estimate 2q-1? 

In any case, the problem is strongly connected to the maximization 
over X o ,  X z ,  . . . , X ,  of the log-likelihood functional 

a x o .  Xl,. . . ,X,) = f(X0, XI, Yl) + f (Xl ,  Xz, Yz) 
+...+ f(Xn-l,li, ,  Yn). (2) 

The usual filtering algorithms when the model is linear-Gaussian 
(Kalman-Bucy, Rauch-Tung-Striebel) or when the state-space is 
finite (Viterbi) consist only in fast exact maximization of such a 
functional by taking maximum advantage of this particular form. 
The most popular strategy, for nonlinear systems in continuous state- 
space, is to use the Extended Kalman Filter, which consist of some 
kind of linearization of the above functional; this procedure is not 
guaranteed to lead to a stable algorithm. Another possible choice 
would be to search for an approximate solution of this equation by 
fast numerical methods (which are frequently very efficient); this 
last aspect does not seem to have been really explored. In this 
communication, we will try to extend as far as possible the exact 
maximization procedures to some nonlinear models. 

In Section 11, we will show how the solutions for Viterbi and 
Kalman-Bucy are related; in Section 111, we study the case of 
nonlinear filtering in continuous state-space; in Section IV we give 
an example where the state-space is a mixed discrete and continuous 
space. 

11. FORWARPBACKWARD AND VITERBI ALGORITHMS 
We compare here two algorithms: the first estimates the present 

state X , ,  by maximizing its probability conditionally to the obser- 
vations, while the second maximizes the probability of the whole 
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trajectory Xo, XI,  . . . , X ,  conditionally to the observations. In the 
case of filtering, the observations we consider for the estimation X, 
are YI . Y2, . . . , Y, while in the case of smoothing it is the whole 
observation set ( Yl , Y2 , . . . , Kv ) . 

A. Forward-Backward Algorithm 

This algorithm is designed for recursive estimation of the 
probability for the current state X ,  to be L once we have 
observed k;;..,Y,, that is, P(Yn = z(Y")  (we put 1'" = 
(Yl, Yz, . . . , Y,)); it is actually simpler to calculate the unnormalized 
probability a, (r )  = P(X, ,  = x ,  Y"). Using Markov property and 
Bayes formula we obtain 

a, (z )  = p ( X ,  = I, Yn, x,-1 = U ,  

U 

y",-l = C P ( X , ,  = I. YnlXn-l  = U ,  )an- l (u)  
U 

= CII(lL, I. Yn)an-l(u). ( 3 )  
U 

Using this formula we can estimate recursively, at each time n,  cy, ( P) 
for all values of x. 

In the same way, in continuous state-space, we obtain for the 
unnormalized probability density the equation 

a,(a.) = c Y n - l ( U ) I I ( U ,  2, Y , ) d u .  (4) / 
In the case of Kalman-Bucy filtering, an (I) is a Gaussian density 
and the last formula leads directly to Kalman-Bucy filter equation, 
expressing the reestimation of mean and variance. In the same way, 
after time N ,  we can compute recursively the backward variables 

with 

L?&)C. Bn+l(U)n(s, U ,  Y,+l). 
U 

The estimated filtered state at time n will be 

i, = argmaxa,(z). 

The Markov property (independence of the past and future condi- 
tioned on the present) implies that P ( X ,  = x ,  Y") = CY, ( x ) p n  (z) 
and the estimated smoothed state at time n will be 

z$ = argmaxa,(z)D,(z). 

In the Gaussian case, this algorithm coincides with the two-filter or 
Mayne-Fraser smoother ($ is the weighted mean of E [ X ,  lY"] and 
E[X,IY;J1]; cf [ 3 ] ,  eq. (5.1-12)]); this comes simply from the fact 
that (4) implies that a,  has the form 

a,(.r) = c,, exp{-(r - E[x,IY~I)~R,~(~ - E [ - X , I Y " ] ) / ~ }  

and a similar expression holds for d, 

exp{-(r - Fu)' &-'(.I- - F U ) / 2  - (y  - H x ) ~ R - ' ( ~  - H x ) / 2 }  
det ( 2 ~ 6 ) ) ' / ~  det ( 2 i ~ R ) ' / ~  H(u ,  .r, Y)  = 
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B. Viterbi Algorithm 

The Viterbi algorithm is designed for recursive estimation, for 
each State T,, of the most likely path ending at this state, say 
C(T,) = (IO(T~),...~,-~(X,), T,) .  Like before we have 

We explore here a more general setting where & and En can still be 
parametrized. We study only the stationary case (i.e., corresponding 
in the Kalman-Bucy context to the case where the variance Of the 
first state is such that no matrix has to be reestimated during the 
algorithm). The assumption on the model is constituted by a constraint 
on the form of the transition and observation probability. 

- - s u p  P ( T O , " ' , T n .  E ' " )  We assume that the transition and observation probability may be 
On(J-11)  A P ( C ( T " t ) r  Y") 

T O  7,-1 expressed as 

lOgP(X, = x ' ,  k, = y'lXn-l = .r) = - U ( x  - AT') - \ ' (T')  
- - sup P ( K ,  T,(.t.o,. . . ,sn-l. 1-1)  

I O  I,-1 

. P(so , " ' ,Tn - l ,  E.n-1) + S ' ( . r )  + B ( y y s /  - Z(y')  (9) 

At the same time we memorize the function 

E n - l ( ~ n )  arg SUP n(xn-i ,  x n ,  Y,)@,-i ( ~ ~ - 1 ) .  (6) 

When the state-space is discrete, this function, is a state pointer 
which represents the value of sn-l on the most likely path C(s,) = 
( T O , . . . , T ~ - I ,  x V L )  when (sn, Yl,...,Yn) aregiven;inthecaseof 
Gaussian linear smoothing it will be a linear function (see below). 
The filtered estimate at time n knowing I.'" is 

x n - 1  

where U and S7 are convex functions, 0 and 2 are arbitrary functions, 
and A is a matrix with all eigenvalues inside the unit circle. 

Theorem 1:  We assume that the a priori probability for XO is 
proportional to exp ( -V(TO)  + O ~ . r o ) ;  in that case, functions 9, and 
<, may be parametrized with a sequence 8, and the filtering and 
smoothing equations are 

6'" = A T O n - 1  + 0(Yn) (10) 

(11) 
2 ,  = Gh(0,) (12) 

<n(,r) = As + Y g ( 0 , )  

(7 )  2 ,  = argmaxO,(T). 

Smoothed estimates over the interval [0, AV] are given by the equa- 
tions 

where g and h are Legendre transforms of functions V and V 
I 

g(0)  = S U p o ~ T  - U ( x )  

h ( 0 )  = sIIp0T.r - V(.r). 

(13) 

(14) 

I 

X 

X X  = 2 ,  

Equations (8) are used for smoothing. 
Proof: The proof is elementary if one sues (5); it consists in 

verifying by induction that Those equations are well known in dynamic programming (cf [lo]). 

C. Comments 

The forward-filtered estimate i, maximizes the a posteriori prob- 
ability P ( X ,  = sJY")  with respect to s, while Viterbi-filtered 
estimate 2 ,  maximizes (s) which is the a posteriori probability of 
the whole path; those two estimates are generally different. However, 
as we shall see in next section, they are identical in the case of 
Gaussian linear filtering. 

In the following sections we consider smoothing only under Viterbi 
aspects for the following reason: nothing guarantees that the sequence 
x:ft- = argmax,P(X, = TIY"), n = O ; . . , n . ,  has a nonzero 
probability for the Markov chain; this sequence is fundamentally 
different from (s:) (for instance, in speech recognition, the identified 
sequence of phonemes has to be globally meaningful (constitute 
a word), which means that it is necessary to obtain a sequence 
with nonzero probability). However, in the case of Gaussian linear 
smoothing, those two sequences are identical. 

111. FAST FILTERING IN CONTINUOUS STATE-SPACE 

A. Result 

In the case of continuous state-spaces, the problem in the ap- 
plication of previous formulas is that we have to memorize the 
functions @,, and &, which is impossible unless those functions 
are parametrized by a vector, say 6' E Rd.  This is what happens 
in Kalman-Bucy (filtering) and Rauch-Tung-Striebel (smoothing) 
algorithms where these functions are Gaussian densities. 

Equations (12) and (11) come from (7) and (6) and from the fact 
that the T which realizes the supremum of (13) (resp. (14)) is Vg(8) 

Comments: 0 The function U is not necessarily finite; for in- 
stance, in two dimensions, one can have I ' ( r )  = +m if the second 
coordinate of T is nonzero; if the matrix il has a second row (1,O), 
this will mean that the second coordinate of X ,  coincides with the 
first one of X,+1; one can easily verify that for such a function I ' ,  
g ( x )  does not depend on the second coordinate of T .  

0 The corresponding with Kalman-Bucy filtering and Rauch- 
Tung-Strie-bel smoothing (with the notation of (1) and of [3]) is 

(resp., V h ( 8 ) ) .  

where P+ and P- are variance of prediction errors of 

i: = E[.rnlIrn] = 2 ,  and 2 ,  = E [ I , I Y " ' ~ ~ ]  = F2n-1. 
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They are solution of the system 

P- = F P + F ~  + Q 
p;‘ = PI‘ + H ~ R - ~ H  (16) 

(cf [3], tables 4.2.1 and 5.2.21). Checking this correspondence is 
standard matrix algebra, starting with the identification of (9) with 

- ( S I  - Fz)T&-’(s‘  - F x ) / 2  
-(y’ - Hs’)‘R-’(y’ - H . T ’ ) / ~  + const 

and using (16). 
0 One has 

8, = Vl;(x; - AX;+,) 

where (z:) is the optimal sequence. This can be checked instanta- 
neously by differentiation with respect to I, of the global likelihood 
of the sequence: 

IogP(.rl,.  . . , ZX, yl , . . . , y v )  

= V(z0)  - T.’(S,\) 

- I‘(ro - ‘4T1) .  . . - U(sv-1 - A z v )  

+O(yl)Tsl,...,+O(yN)Ts!\. - Z ( y 1 ) , . . . , - Z ( y n )  (17) 

where the three terms appear after differentiation led to (IO). 

B. Examples 

Starting from a Linear Model: Replacement, in (15), of L ‘ ( x )  by 
f ( U ( z ) )  for some function f leads to new models. For instance, if 
f(s) = sa, 1/2 < a,  we obtain, after a simple calculation 

Cg(0) = (0’i~~0/2)(1-”j’(2”-’)Me 

M = (F’Q-~F + P;’)-’. 

with 

This transformation may be interpreted as a spreading of the noise 
distribution if Q < 1, and a peaking if a > 1; note that only the 
backward smoothing equation is affected by this modification. 

A solution for assuming the noise bounded (in the sense that 
lU(x  - Ax’)( 5 a )  would be to choose, for example, f(z) = z 
if 1x1 < a and +m elsewhere. In this case 

Anotherapproach: It is not easy to design functions U and V 
such that (9) represents a transition probability; if ( A ,  U,  0 ,  Z )  is 
given, exp (-1’) should be an eigenvector of the operator 

f ---f Tf( s )  = f(x’)exp{-U(z - As’) 1 
+B(y’)’z’ - Z ( y ’ , }  dz’ dy‘ 

since the operator is positive, the existence of V is equivalent to the 
existence of a nonnegative function W such that TW < cW for 
some constant c. 

On the other hand, note that for smoothing purposes, an approxi- 
mation of V may be sufficient because this function is utilized only 
for obtaining the filtered estimate of the _state at the last time N .  
In other words, a replacement of 1’ by V has the same effect as 
replacing the likelihood of the sequence (20 ,  . . . , z h 1 by 

p ( x o , . .  . , ~ v ) ~ v ( z N ) - v ( z N j  

(cf (17)) which has a small influence on the estimates except close 
to the end. 

It is thus reasonable to define the model by giving the functions 
(A, c’, 0, Z) ,  and calculate V later. This has an interesting prob- 
abilistic interpretation since the probability given the past and the 
future is 

log P ( 2 .  y’ls, x ” )  N -L‘(s - As’) 
-L-(.c‘ - As”) + O(y’)Ts’ - Z(y’). (18) 

The Markov chain is thus represented as a reciprocal process (cf (41). 
In the linear case, the theory of reciprocal processes has been worked 
out completely in [ 5 ] ,  [6]; the nonlinear case, which is much more 
complex, is studied in [7], (81. It is unfortunately very difficult to 
find a form similar to (1) (i.e., X,+I = f ( X , , .  wTL+l) )  for such a 
process; on the other hand, (18) contains the only terms of global 
likelihood involving s‘ and y’; thus a direct minimization over a‘ 
and y’ leads to the equations satisfied by the most likely (noiseless) 
trajectories: for three successive points ( x ,  s’. s”) 

AT Gll( .r  - As‘) - O17(x’ - A x / ’ )  + B(y’) = 0 (19) 

and (1 8) can be considered as the distribution of a noisy version of 
a process satisfying (19) and (20). 

We now particularize and explore the kind of dynamical systems 
which may be represented by those equations. If Z is convex with 
Legendre transform IC and 0 has the form 0(y) = H T y  for same 
matrix H ,  (20) leads of y’ = V k ( H s ’ )  and (19) becomes 

AT VLr(s - A x ’ )  - GC’(.r’ - A s ” )  + H T  V l c ( H x ’ )  = 0. 

If we set 0, = Cc’(s., + this equation can be rewritten as 

6, = ATO,-l + H T y ,  
x n  = A X , + ’  + Vg(0,) 
y n  = V k ( H z , , )  

(remember that Og(VC(x)) = z) which is actually the noiseless 
version of (10). We do not know any simple way of solving this 
system in discrete time; we will interpret it as the discretization of 
the continuous-time system 

(21) 
5 = - B x  - Vg(0) (22) 

y = CIC(Hz) (23) 

8 = BTO + H T y  

where 

A = exp ( E B )  (24) 

and E is the sampling period. Since A has all its eigenvalues inside 
the unit circle, B is stable. This system is explosive if we start with 
arbitrary initial conditions; searching for stable solutions of the form 
s = @ ( e ) ,  we obtain the equation for o 

g ( 0 )  = -OTBd(0)  - k ( H 0 ( 6 ) )  (25) 

and the noiseless state .E and observation y satisfy 

B = B ~ o + H ~ ~  
x = d e )  
y = VIC(Hz) .  

Authorized licensed use limited to: Universite de Rennes 1. Downloaded on March 17,2023 at 08:18:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 1 ,  JANUARY 1995 321 

This is the model ( B ,  H ,  IC, 9 )  of the noiseless system; the condi- 
tions on the model are that B is stable, k is convex, and the function 
g given by (25) is convex. Filtering is done by feeding (21) with 
the observed process yt and smoothing is performed by running (22) 
backwards in time with the trajectory Bt obtained in the filtering stage. 
A natural initial value of ST is ~ ( O T ) .  

We particularize again further. For instance, performing the usual 
trick for translating high-order systems into systems of order one, we 
can consider examples of the form 

corresponding to the one-dimensional representation of the noiseless 
process 

where A (  a )  = k ’ ( 2 ) .  The condition on B is that the roots of 

x b J a J  

have a negative real part; because of the special form of 0, function 
g can be rewritten as 

We have finally the conditions (convexity of g and k )  

of b,zJ have negative real part 
Z )  5 2 b l .  assumptions 

The continuous-time filtering and smoothing equations become 

filtering, { 6, = BtOf + H T y f  
smoothing ?( = B z f  - (2b1Bfl - X ( B t l ) ) H T  backward 

the first equation is solved on [0, T ]  and the second one, backwards in 
time with the initial condition of s ( T )  = ( b z ,  bs,....bp, l)TB1(T). 

forward 

If for instance, a function X such as 

satisfies the assumptions. In those cases, the evolution equation of 
the model with p = 1 has two stable points with opposite values 
and 0 is unstable; this is a major difference with what happens with 
linear systems. The amount of noise assumed in the noisy system is 
difficult to evaluate; it is clearly related to invariant transformations 
of the noiseless system such as A(- )  + X ( Z )  + cz  and b l  + bl + c 
which do not change the noiseless system while they modify the noise 
(we could also have put @ ( e )  = (bz, b3,..., b,. l ) T y , ( O l )  for some 
increasing function 

Thus the noise in the stochastic system is determined by the 
particular form of equations chosen for describing the noiseless one 
(i.e., (19 and 20)). 

Obviously many questions remain open, particularly the problem 
of the nature of the noise (some interesting insights may be found 
in [6]). 

without changing the system). 

IV. A HYBRID MODEL 
This section extends the idea of Viterbi and Kalman filtering to a 

mixed continuous and discrete state (s, e) ,  e E { 1, 2 , .  . . . n}.  
A similar situation is considered in [9, p. 1821 where e, is a 

finite-state Markov chain and z, is a linear process whose matrices 
F, H .  Q ,  R (cf. (1)) depend on e,; as explained [9, p. 1861, filtering 
equations lead to an infinite set of equations to be solved at each 
instant (this is basically due to the fact that zn  is not Gaussian any 
more, so that the propagation of its conditional mean implies the 
propagation of its whole conditional distribution). We will explore 
this case in the following looking this time at S and s*. 

Theorem 2: We assume that the transition and observation prob- 
ability may be expressed as 

where the functions reet and are convex and the functions 0, 
are arbitrary. We assume that the a priori probability of (10, e o )  is 
proportional topo(eo) exp ( - V ( z o ) + B ~ z o ) ;  filtering and smoothing 
may be performing by estimating the continuous and discrete states 
through the equations 

vo = log(po(e)) (28) 

B,, = d T B , _ l  + B(Y,) (29) 

~ n ( e )  = ~ ~ - i ( ~ - i ( e ) )  + gt,-,(tjc(Bn-1) - Zen-l(cje(Yn) 
(30) 

En(e) = argmaxv,(e,,)+g,,,,(8,) - Z,, , , (K+1) (31) 
e 7% 

where g e e (  and h, are Legendre transforms of functions and L; . 
€,(e) is the most likely discrete state at time n knowing e,+l = e 
(it is independent of sr1+1). 

Proof: By using ( 5 )  we shall show by induction on n that 

Taking the supremum over s,, we obtain 

~ ’ n  = - 4 ~  + y g P , e ( B n )  
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322 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 1, JANUARY 1995 

The e, = € ( e )  which realizes the optimum leads to (31), and then 
(36) leads to (32). 

Taking the supremum over zn, in ( 3 3 ,  we obtain 2 ,  = Ch,, (0,) 
and the probability of the hest path arriving at e, at time n is 

l o g ~ , ( e , )  = q n ( e n )  + hen(O,) 

which leads to (33). 
Comments: 0 The storage requirements of this algorithm are still 

reduced: for smoothing it will be N state pointers (as in Viterbi 
algorithm) and A’ vectors. 

0 We can model a signal whose law is a mixture of linear models: 
each element of the mixture will be indexed by a pair ( e ,  e’) and 
Cec , (u )  will be (with some abuse of notation) 

where p (  e. e ’ )  is the probability of the transition from e to e’. As 
before, functions K(z)  will be quadratic forms zTVez and 0 ( y )  is a 
matrix product 0 y .  If we drop indices in the ( e ,  e ’ )  -dependent linear 
model (Fe,,,  Q e , , ,  H , , , ,  Re , , ) ,  we have to identify the likelihood 
(27) to 

-(z’ - F X ) ~ Q - ’  .r’ - F x ) / 2  - (y’ - H z ’ ) ~ R - ’ ( ~ ’  - H x ’ ) / 2  
(( 

and this leads to 

H ~ R - ’  H + Q-’) = 2ATUe:,,,A + 2L:t 

F ~ Q - ‘  F = 2ue, ,  - 2ve 

F ~ Q - ’  + Q - ~ F  = U , , ~ A + A ~ U , , ~  

R-’ = 0. 

With those notation the process may be described in the following 
way: starting with a discrete state (e, z), the process jumps to another 
one e’ with probability p ( e ,  e ’ ) ,  and a new state x’ is chosen with 
the dynamics of (Fe ,! ,  Q e e , )  and an observation y’ is then produced 
with z‘ and ( H e , , ,  R e e t )  (cf (1)). Setting e = e’ in the equations 
above (steady state), we see the principal restriction of this mode: the 
matrices R - ’ H ( =  0)  and P+F*PI’(= A )  are independent of e.  
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Echo Canceler Performance Analysis in Four-Wire Loop 
Systems with Correlated AR Subscriber Signals 

John Homer, Member, ZEEE, and Iven 
M. Y. Mareels, Senior Member, ZEEE 

Abstract-By using a simple example we illustrate the effect of auto- 
correlation and cross correlation of subscriber signals on the achievable 
performance of adaptive echo cancelers in a four-wire telephone network. 

Index Terms-LMS adaptation, FIR filter, bias, averaging, convergence 
rate. 

I. INTRODUCTION 

Adaptive echo cancelers are used in four-wire loop telephone net- 
works to suppress the effects of echoes. The commonly used double 
echo-canceler (DEC) system with an LMS adaptive FIR echo canceler 
placed at each end of the four-wire loop-Fig. 1-typically performs 
well. However, poor performance, such as slow or inadequate echo 
cancelation, and bad behavior, such as signal bursting, has been 
observed [l]. Such behavior has been linked to the presence of 
correlation within and between the subscriber signals [l], [ 2 ] .  One 
approach is to quantify this link so that line-coding schemes can be 
used confidently to control the subscriber signal correlation levels 
and enhance the performance of the DEC system [3]. 

In this light, various authors [2], [3] have determined bounds 
on the correlation levels of the subscriber signals within which 
good echo cancelation is guaranteed. The bounds, however, only 
identify sufficient conditions for good performance. The aim of this 
communication is to derive an explicit equation relating asymptotic 
performance of the DEC system to the cross-correlation and auto- 
correlation levels of the subscriber signals. Although a number of 
simplifying assumptions are made, the results indicate the necessity 
of reducing signal correlation levels if good echo cancelation is to 
be achieved. 

Consider the DEC system of Fig. 1, with subscribers 1 and 2, at 
either end of the network, sending signals SI and s2 and receiving 
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