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1. Notions de base
1.1. Groupes. —

Définition 1.1. — Une loi de composition interne sur un ensemble E est la donnée
d’une application

{EXE — E
.-
(xy) — x*xy
La loi x sera dite associative si

(xxy)*z=x%*(y*z)

pour tout (x,y,z) € E3.

Remarque 1.2. — Si la loi * est associative, on peut donc se passer de parenthéses
et I’expression
Xt =Xk kX
-
n fois
est définie sans ambiguité.
Définition 1.3. — Un groupe est un couple (G, *) ot G est un ensemble muni d’une

loi de composition interne * et qui vérifie :
(1)  est associative;
(i1) il existe un élément e € G tel que e * x = x x e = x pour tout x € G;
iil) pour tout x € G, il existe un élément y € G tel que xxy =yxx =e.
Y y=y

Un élément e € G comme ci-dessus est dit neutre pour x; 1’élément y est appelé un
inverse de x.

Remarque 1.4. — Si (G,*) est un groupe, alors e est unique; de méme, ’élément

y ci-dessus est unique : tout élément x de G a un unique inverse qui sera noté x .

Nous noterons souvent la loi comme un produit xy := x *y et le neutre 1:=e (ou 1g
si la situation le nécessite).

Définition 1.5. — Le groupe G est dit abélien (ou commutatif) si égalité

XY = Yx
est vérifiée pour tout (x,y) € G2.

Remarque 1.6. — Si G est abélien, on notera 0 le neutre de G et la loi sera notée
additivement x 4y, I'inverse de x étant alors —x.

1.2. Morphismes. —

Définition 1.7. — Une application ¢ : G — H entre les groupes (G, -) et (H,*) est
un morphisme de groupes si on a

o(x-y) =) *xo(y)
pur tout (x,y) € G2.

Proposition 1.8. — Soit ¢ : G — H un morphisme de groupes.
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1. On a nécessairement ©(1g) = 1.

1

2. Si @ est bijectif, alors ' : H — G est un morphisme.

Définition 1.9. — Un morphisme de groupes bijectif @ : G — H sera appelé un
isomorphisme. Si G = H, ¢ sera appelé un automorphisme de G ; on notera Aut(G)
I’ensemble des automorphismes de G.

Proposition 1.10. — Muni de la composition des applications, I’ensemble Aut(G)
est un groupe d’élément neutre Idg.

1.3. Sous-groupes. —

Définition 1.11. — Un sous-groupe d’un groupe G est une partie non vide H C G
telle que la restriction de la loi de G & H confére a H une structure de groupe. Si H est
un sous-groupe de G, nous noterons H < G. Un sous-groupe H < G sera dit propre si

H # G.
Proposition 1.12. — Une partie H C G est un sous-groupe de G si et seulement si
elle vérifie :

1. l’élément neutre 1 est dans H ;

2. pour tout (x,y) € H2, xy € H;

3. pour tout x € H, x~ ! € H.

Remarque 1.13. — 1l revient au méme de demander que H soit non vide et que
xy~! € H pour tout (x,y) € H2.

Proposition 1.14. — Soit ¢ : G1 — G2 un morphisme de groupes et Hy < Gy et
H, < G, des sous-groupes de G et G;.

(i) L’image directe de Hy est un sous-groupe de Gy : @(H1) < G2

(ii) L’image réciproque de Hy est un sous-groupe de Gy : @' (Ha) < Gj.
(iii) En particulier, (G1) < Gz et @ '({1g,}) < G1.

Définition 1.15. — Si @ : G — H est un morphisme de groupes, on note

Im(@) := @(G) et ker(p):=¢ '({1})

Iimage et le noyau de @ (qui sont donc respectivement des sous-groupes de H et G).

Proposition 1.16. — Un morphisme de groupes @ : G — H est injectif si et seule-
ment si ker(p) =1.
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1.4. Sous-groupe engendré par une partie. —

Proposition 1.17. — Si G un groupe et (Hi)ic1 une famille de sous-groupes de G,

lintersection
H:=(Hs
iel

est alors un sous-groupe de G.

Définition 1.18. — Si A C G est une partie d’un groupe G, on notera
(A) = ﬂ H,
ACH

ol l'intersection porte sur les sous-groupes de G qui contiennent A. Le sous-groupe
(A) (cf la proposition 1.17 ci-dessus) est alors le plus petit sous-groupe de G contenant
A ; on 'appelle le sous-groupe engendré par A.

Définition 1.19. — Si (A) = G on dit que A est une partie génératrice de G ou
encore que les éléments de A sont des générateurs de G.
Si un groupe G admet une partie génératrice finie, on dira que G est de type fini.

Proposition 1.20. — Si A est une partie du groupe G, on a alors l’égalité suivante :

A)=J {aramlVi=1...mya; e AUA T},

m>1
Remarque 1.21. — En posant
AB:={ab|a € Aetb € B},
I’égalité ci-dessus se réécrit

A= (aua )™,

m2>1

Définition 1.22. — Si G est engendré par un unique élément x € G, on dit que G
est cyclique (ou monogéne). Dans ce cas,

G=x"|meZ}

et G est abélien.

1.5. Ordre d’un groupe. —

Définition 1.23. — Si G est un groupe, son cardinal est également appelé son ordre
noté |G| (on autorise donc |G| = 00). Si x € G, lordre de x (noté o(x)) est 'ordre du
sous-groupe de G qu’il engendre :
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Définition 1.24. — Si H < G, la relation

1

x~y&y xeH

est une relation d’équivalence, dite engendrée par H. On note
G/H:={gH|g € G}
I’ensemble des classes d’équivalence et la quantité
[G: H]:=|G/H]
s’appelle I'indice de H dans G.

Théoréeme 1.25 (Lagrange, 1771). — Si G est un groupe fini et H< G un sous-
groupe, on a alors :

|Gl = [G : H]IH|.
En particulier, 'ordre de H divise celui de G.

Corollaire 1.26. — Si G est un groupe fini et x € G, o(x) divise n := |G| et on a
donc x™ = 1. En particulier, si n est premier, alors G est cyclique.

2. Groupes cycliques
2.1. Le groupe Z. — On se contente ici de quelques observations et rappels :
1. Si G est un groupe cyclique d’ordre infini, alors G est isomorphe a Z.
2. Les sous-groupes de Z sont de la forme nZ avec n € Z.
3. Les seuls éléments qui engendrent Z sont 1 et —1.
4. Le groupe Aut(Z) est d’ordre 2, engendré par

Jz — Z
Y n emn)=-n

2.2. Groupes finis cycliques. — Si n > 2 est un entier, on considére Z/n7Z
I’ensemble des classes d’équivalence de la relation « modulo n ». Si k € Z, on note
k sa classe dans Z/nZ. On constate que l'addition et la multiplication sont bien
définies dans Z/nZ (de neutre respectif 0 et T), ce qui fait de ce dernier un anneau
(commutatif).

Proposition 2.1. — L’application naturelle Z. — Z/nZ qui envoie un entier sur sa
classe modulo n est un morphisme de groupes.

On notera (comme dans tout anneau)
(Z/MZ)* :={x € Z/nZ |3y € Z/nZ, xy = 1}

I’ensemble des éléments inversibles de Z/nZ. On observe enfin que si G est un groupe
cyclique d’ordre n alors G est isomorphe & (Z/nZ,+).
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Proposition 2.2. — L’ensemble des générateurs de Z./n7Z s’identifie a (Z/nZ)". On
en déduit que 'application

. Aut(Z/nZ) — (Z/nZ)"
' f = f(1)

est bien définie et que c’est un isomorphisme de groupes.
Définition 2.3. — Pour n > 2, on pose

o(n) :=[(Z/nZ)"].
La fonction ¢ s’appelle I'indicatrice d’Euler.

Théoréme 2.4 (des restes chinois). — Si m et n sont deux entiers premiers
entre eux, I’application

Z/nvmZ — Z/MZ X Z/mZ
Y. _
x = (xmodn,xmodm)

est un isomorphisme d’anneaux et envoie donc inversibles sur inversibles. En parti-
culier, on en déduit :

mAn=1= e(mn)=e(m)e(n).
Comme @ (p%) =p* —p*~! pour p premier et « > 1 entier, on obtient :

Corollaire 2.5. —

T T
1
i =1y
o) =[]mH —pf ) =n]J0-—)
i=1 i=1 Pi
sin=py" - p¥ est la décomposition en facteurs premiers de n.

Théoréme 2.6. — Le groupe (Z/p*Z)" (avec p premier et o« > 1) est :
~ cyclique si p > 3 (et donc isomorphe a Z/p* ' (p —1)Z);
—trivial sip=2etou=1;
~ isomorphe a 7/2% 27 x 7.J27 sip =2 et « > 2.

3. Groupes abéliens de type fini

Dans tout ce chapitre, on considére G un groupe abélien de type fini, c’est-a-dire
possédant une famille génératrice finie (¢f définition 1.19). Comme les groupes sont
supposés abéliens, nous noterons la loi de fagon additive x+y (le neutre est donc noté
0 et mx avec m € Z désigne le « produit » de x avec lui-méme).

Définition 3.1. — Une famille génératrice finie (x1,...,xx) de G sera appelée une
pseudo-base si

k
V(m1,...,mk) EZk, Zmixi:()#miXiZO,Vi:]...k.

i=1
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On dira que (x1,...,Xk) est une base de G si

k
Vimi,...,m) €25 Y mixi=0=m; =0,Vi=1...k
i=1
Remarque 3.2. — Si G admet un pseudo-base (x1,...,xk), alors
G~ (x1) X - X (x)
et G est produit de groupes cycliques (certains facteurs pouvant étre finis). Si G admet

une base, alors G ~ ZX.

Définition 3.3. — La torsion d’'un groupe abélien G est l’ensemble des éléments
d’ordre fini :
Tor(G) :={g € G| Im # 0, mg = 0}.

Remarque 3.4. — La torsion d’un groupe abélien est un sous-groupe de G :
Tor(G) < G. Si G admet une base, G est alors sans torsion : Tor(G) = {0}.

Théoréme 3.5. — Tout groupe abélien de type fini admet une pseudo-base (et s’écrit
donc comme un produit de groupes cycliques).

La démonstration s’appuie sur le résultat suivant.

Lemme 3.6. — Soient (x1,...,xx) une famille génératrice d’un groupe abélien G et
(C1y...,cx) € Z* avec pged(cty...,xk) = 1. Il existe alors une famille génératrice

(Y1y-.-,Yx) de G avec yq := 25:1 CiXi.

Corollaire 3.7. — Tout groupe abélien de type fini se décompose donc de la fagon
sutvante :

G ~ Tor(G) x Z"
avec v > 0 un entier ne dépendant que de G. On note rg(G) := 1 cet entier, c’est le
rang de G.

Théoréeme 3.8. — Si G est un groupe abélien de type fini et H < G un sous-groupe
de G alors H est également de type fini et rg(H) < rg(G).

On s’intéresse enfin & la partie de torsion qui s’écrit donc comme un produit de
groupes de la forme Z/n;Z. Le théoréme Chinois 2.4 montre qu’il n’y a pas unicité de
la décomposition en général ; il faut fixer des conditions arithmétiques sur les entiers
n;.

Théoréme 3.9 (Structures des groupes abéliens finis)
Un groupe abélien fini se décompose d’un unique fagon en produit de groupes cy-
cliques
GZ/MZx - XZL/NZ
sous 'une des deuz conditions suivantes :
(a) pour touti=1...v—1, ny divise i1 ;

(b) les entiers n; sont de la forme nj = p]ij avec pj premier.
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On utilise au cours de la démonstration le résultat suivant.

Lemme 3.10. — Dans le groupe Z/T\WZ X --- X Z/N.Z, le nombre de solutions de
Uéquation mx = 0 (c’est-a-dire le nombre d’éléments dont l'ordre divise m) est :

pged(m, ng) pged(m,nz) ... pged(m,n,).

4. Sous-groupes normaux

4.1. Premiers pas. — On commence par remarquer que si f : G — H est un
morphisme de groupes, alors le sous-groupe ker(f) vérifie la propriété suivante :

VgeG,Vxeker(f), gxg ' € ker(f).

Définition 4.1. — Si g € G, alors 'application
. { G — G
intg : 1
X = gxg

est un automorphisme de G, appelé automorphisme intérieur. On notera Int(G) C
Aut(G) lensemble des automorphismes intérieurs.

Définition 4.2. — Un sous-groupe H < G est dit normal dans G si H est stable
par tout automorphisme intérieur :

Vge G, gHg ' =H.

On notera H <0 G lorsque H est normal dans G (on dit aussi distingué dans G).

Remarque 4.3. — Si G est un groupe abélien, tout sous-groupe H < G est normal
dans G.
Proposition 4.4. — Soit @ : Gy — G2 un morphisme de groupes et Hy < Gp et

H,; < G, des sous-groupes.
1. H <Gy = @ '(Ha) < Gy ;
2. Si Hy est normal dans Gy, alors @(H;) est normal dans ¢(G1);
3. En particulier, si @ est surjective, @(Hy) est normal dans G, mais ce n’est pas

le cas en général.

Définition 4.5. — Un groupe G est dit simple si les seuls sous-groupes normaux de
G sont {1} et G lui-méme.

4.2. Groupe quotient. —

Théoréme 4.6. — SiH < G, alors il existe sur ’ensemble quotient G/H une unique
loi de groupe faisant de la projection canonique ™ : G — G/H un morphisme de
groupes.

Remarque 4.7. — Si H < G, alors H est le noyau de I'application m: G — G/H.



Enoncés du cours Théorie des groupes — L3

Théoréeme 4.8 (Propriété universelle du quotient). — Soit f : G — H un
morphisme de groupes et N := ker(f) son noyau. Il existe alors un unique morphisme
de groupes injectif @ : G/N — H tel que f = @om. En particulier, G/N est isomorphe
a Im(f).

Théoréme 4.9. — Soit N < G. Il existe une correspondance bijective :
{H<G|NCH}H{H<G/N}

qui envoie un sous-groupe H de G (contenant N) sur H := n(H) et un sous-groupe H
de G/N sur H:=m'(H).

Dans cette correspondance, H est normal dans G si et seulement si H est normal
dans G/N.

Théoréme 4.10 (Théoréme d’isomorphisme). — Soient H,N < G avec N nor-
mal dans G. Le produit HN (comme dans la remarque 1.21) est alors un sous-groupe
de G dans lequel N est distingué et on a un isomorphisme canonique

H/(HAN) — HN/N
h(HNN) — hN.

4.3. Exemples fondamentaux. — Si x et y sont deux éléments d’un groupe G,
on note [x,y] :==xyx 'y~ le commutateur de x et y.
Définition 4.11. — Si G est un groupe, on note

Z(G)={ge G|VxeG, gx=xg}.

C’est un sous-groupe normal (et abélien) de G appelé le centre de G.
Le sous-groupe

D(G) =[G, G] == ([x,y] | (x,y) € G?)
engendré par les commutateurs s’appelle le groupe dérivé de G : c’est également un

sous-groupe normal et le quotient G/D(G) est abélien.

Proposition 4.12. — Si G est un groupe et N < G, alors G/N est abélien si et
seulement si D(G) C N. Le groupe G/D(G) est donc le plus gros quotient abélien de
G (appelé abélianisé de G).

Proposition 4.13. — Pour tout groupe G, l'application

. { G — Aut(G)
nt : .
— mtg

est un morphisme de groupes, d’image Int(G) et de noyau Z(G). On a donc :
G/Z(G) ~ Int(G).

De plus, Int(G) est un sous-groupe normal de Aut(G).
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5. Notion d’action de groupe
5.1. Vocabulaire des actions. —
Définition 5.1. — Soient G un groupe et X un ensemble (non vide). Une action de

G sur X (ont dit aussi que G opeére sur X ou que X est un G-ensemble) est la donnée
d’une application o« : G x X — X vérifiant

1. pour tout x € X, (1,x) = x;
2. pour tout (g,h) € G2 et tout x € X, x(g, a(h,x)) = «(gh, x).

On notera aussi I’action sous la forme x(g,x) =g - x.

Proposition 5.2. — La donnée d’une action de G sur X est équivalente a celle d’un
morphisme de groupes

G — Sx.
Définition 5.3. — Soient G un groupe et X un G-ensemble. Pour un élément x € X,

on note

- G-x:={g-x| g€ G}lorbite de x (sous G);

— Gx :={g € G| g-x = x} le stabilisateur de x dans G. C’est un sous-groupe de G.
L’action est dite fidele lorsque le morphisme G — Sx est injectif. L’action est dite
libre si Gx = 1 pour tout x € X.

Proposition 5.4. — Si G agit sur X et x € X, l"application
G/Gx — G-x
gGx — g-x

est bien définie et est une bijection. En particulier, si G ou Xsont finis, on a |G/Gx| =
|G - x]|.

5.2. Les exemples a avoir en téte. —

Exemple 5.5. — Si G est un groupe, «(g,x) = gx définit une action de G sur lui-
méme appelée action par translations & gauche. Cette action est libre et fidéle.

Théoréeme 5.6 (Cayley, 1854). — Si G est fini d’ordre |G| = n, alors il existe un
morphisme injectif
G — Sn.

Exzemple 5.7. — Le morphisme int : G — Aut(G) définit une action de G sur
lui-méme dite action par conjugaison. Si x € G, son orbite s’appelle sa classe de
conjugaison et son stabilisateur et aussi appelé le centralisateur de x dans G :

— classe de conjugaison de x dans G : {gxg_1 g e G}.

— centralisateur : Cg(x) :={g € G| gx = xg}.

Exemple 5.8. — Si G agit sur X et H < G, alors la restriction de «: G — Sx a H
définit une action de H sur X.

10
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Exemple 5.9. — Si H < G alors on peut faire agir G sur les classes a gauche G/H
par
(g, xH) — gxH.

Orbites ? Stabilisateur de xH ?

Exemple 5.10. — Un groupe G agit par conjugaison sur l’ensemble X := {H < G}
de ses sous-groupes :
(g,H) — gHg ™"
Les éléments de ’orbite de H sont appelés les conjugués de H et son stabilisateur est
Ng(H) :={g € G| gH =Hg}

que l'on appelle le normalisateur de H dans G. On a évidemment H <0 Ng(H) et
Ng(H) est le plus grand sous-groupe de G dans lequel H est distingué.

Exemple 5.11. — Le groupe GL,(R) agit sur R™ (orbites? stabilisateurs?). De
méme, le groupe Oy, (R) agit sur la sphére S*™! = {x € R™ | ||x|| = 1} (orbites ? stabi-
lisateurs 7). Le groupe dihédral D, agit sur le polygone régulier a n cotés.

5.3. Equations aux classes et conséquences. — Dans ce paragraphe, X et G
sont supposés finis. Si G agit sur X, on constate que les orbites forment une partition
de X : elles recouvrent X et sont deux & deux disjointes. Si on choisit un représentant
xi de chaque orbite (i =1...r avec T le nombre d’orbites), on a alors :

X =Y 1G-xil = IGI/IGx,l.
i=1 i=1

Proposition 5.12 (Equation aux classes). — Si G est un groupe fini, on consi-
deére laction par conjugaison de G sur lui-méme et on note (gj)1<j<i des représen-
tants des orbites qui ne sont pas réduites & un point. On a alors :

k
G| = Z [G: Calg;)l

Définition 5.13. — Un p-groupe (avec p premier) est un groupe G d’ordre |G| =
p".
Proposition 5.14. — Si G est un p-groupe agissant sur X, on a alors
IX| = IX¢|modp
avec X6 :={x € X|Vg € G, g-x=x}.
Corollaire 5.15. — Le centre d’un p-groupe n’est pas réduit a lidentité.

Théoréme 5.16 (Cauchy, 1845). — Si lentier premier p divise l’ordre du groupe
fini G, alors G contient un élément d’ordre p.

6. Etude du groupe symétrique

On rappelle que S, est le groupe symétrique sur {1...n}, d’ordre n!.

11
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6.1. Signature d’une permutation. —

Définition 6.1. — La signature d’une permutation o € S;; est le nombre
o(j) —a(i)
e(o) = _—
= 11 =5
1<i<i<n
qui vaut +1.

Proposition 6.2. — L’application € : S, — {+1} =~ Z/27 est un morphisme de
groupes.

6.2. Décomposition en produit de cycles et conséquences. —

Définition 6.3. —  — Le support d’une permutation o € S, est
Supp(o) :={1 <i<n|o(i) #i}.

— Un k-cycle (ou cycle de longueur k) est une permutation dont on peut écrire le
support Supp(o) = {as, az,...,ax} et qui vérifie : o(a;) = aj 7 pour 1 <1i <
k—1et olax) = aj.

— Un 2-cycle est aussi appelé une transposition.

Le k-cycle de support {a, az,...,ax} sera noté (a; az ... ax).

Proposition 6.4. — Deuz permutations a supports disjoints commutent :

Supp(o) N Supp(t) =0 = ot = T0.

Théoréme 6.5. — Toute permutation s’écrit comme un produit de cycles a supports
disjoints. L’écriture est de plus unique a l’ordre prés. L’ordre d’une permutation est
le plus petit commun multiple des longueurs des cycles qui apparaissent dans sa dé-
composition en produit de cycles.

Remarque 6.6. — On vérifié aisément :

—1

olajaz ... ax)o ' =(o(aj)o(az) ... olax)).

Théoréeme 6.7. — Deux permutations o et T sont conjuguées dans Sy, si et seule-

ment st 0 et T ont le méme nombre de k-cycles dans leurs décompositions pour tout
k=1...n.

Proposition 6.8. — Les transpositions engendrent Sy, .

Proposition 6.9. — (i) Une transposition a signature —1 ;
(i) si o est un k-cycle, e(o) = (=1)k71;

(iii) en général, (o) = (—1)""™° avec my le nombre d’orbites de .

12
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6.3. Groupe alterné et simplicité. —

Définition 6.10. — Le groupe alterné est le noyau de la signature :
A, = ker(e) < Sh.

n!
C’est un sous-groupe normal d’indice 2 de S,, et d’ordre [A,, | = 5

Proposition 6.11. — Le groupe alterné (pour n > 3) est engendré par les 3-cycles.

Sim > 5, les 3-cycles sont de plus conjugués dans Ay .

Proposition 6.12. — Les centres et groupes dérivés de Sy, et An sont donnés par :
- Z(Sn) ={1} sin>3 et Z(An) ={1} sin>4;
- D(Sn) = Ay, pour tout n > 2 et D(A) = A, sin > 5.

Théoréme 6.13 (Galois, 1830). — Sin > 5, le groupe alterné A, est simple.

Corollaire 6.14. — Simn > 5, les seuls sous-groupes normauz de Sy, sont {1}, An
et Sn.

7. Produits semi-directs

7.1. produit direct. —

Définition 7.1. — Si Gy et G, sont deux groupes, la loi :
{ (G] XGz)X(G1 XGz) — G x Gy
((91,92), (1, h2)) = (g1g2,hih2)

munit 'ensemble G := G; x G, d’une structure de groupe, appelé le produit direct de
G et Gy.
Proposition 7.2. — Un groupe G s’écrit comme un produit direct de deuzx groupes
si (et seulement si) il existe N, Q < G deux sous-groupes de G tels que :

(i) N < G ainsi que Q < G;

(i) NNQ ={1};
(iit) NQ =G.
7.2. produit semi-direct. — La situation d’un produit semi-direct correspond au
cas ou I'un des deux sous-groupes n’est plus distingué.

Définition 7.3. — Soient N et Q deux groupes, ainsi que o« : Q — Aut(N) un
morphisme. Le produit semi-direct de N par Q (sous l'action «) est le groupe dont
I’ensemble sous-jacent est le produit G := N x Q muni de la loi :

{ GxG — G
(nyq),(n',q") = (nalq)(n’),qq’)
Ce groupe est noté G = N x4 Q ou simplement N x Q.

13



Enoncés du cours Théorie des groupes — L3

Remarque 7.4. — Dans G := N x Q, linverse est donné par (n,q)”' =
(x(q)""(m71),q"). On vérifie facilement que N ~ N x {1} est normal dans
G.

Proposition 7.5. — Un groupe G peut s’écrire comme le produit semi-direct de deux
groupes si et seulement si G = NQ avec N et Q deux sous-groupes de G vérifiant

NNQ={1} et N<G.

7.3. Lien avec les extensions. —

Définition 7.6. — Une extension (ou suite exacte courte) est la donnée de deux
morphismes :

f:N—G et m:G—Q
tels que :
1. f est injectif et 7t surjectif;
2. ker(mt) = Im(f).

On résume cette situation en une suite exacte courte :

1—N-56-5Q—1.

Remarque 7.7. — Une suite exacte consiste donc en la donnée d’un sous groupe
normal N < G ou d’un morphisme surjectif G — Q car

Q ~ G/ ker(n) = G/Im(f) = G/N.
Définition 7.8. — On dira que la suite
1—N-56-5Q—1

est scindée s’il existe un morphisme s : Q — G tel que wos = Idg. Un tel morphisme
est appelé une section de 7.

Proposition 7.9. — La suite

1—N-15G65Q—1
est scindée si et seulement sl existe Q < G un sous-groupe tel que la restriction de
7 4 Q soit un isomorphisme URE Q — Q.

Dans ce cas, le groupe G est alors le produit semi-direct de N par Q (pour une
action de Q sur N).

7.4. Etude du groupe dihédral. —

14
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8. Théorémes de Sylow

8.1. Rappels sur les p-groupes. — On rappelle qu'un p-groupe est un groupe
dont l'ordre est de la forme p™ (définition 5.13) et que le centre d’un p-groupe n’est
pas trivial (corollaire 5.15).

Proposition 8.1. — Si G est un p-groupe avec |G| = p™, alors G a des sous-groupes
(resp. sous-groupes normauz) d’ordre p* pour tout 1 < r < n. Les sous-groupes
d’indice p sont normaux dans G et tout sous-groupe de G est contenu dans un sous-
groupe d’indice p.

8.2. Enoncés des théorémes. —

Définition 8.2. — Soit G un groupe d’ordre n = p"m avec m A p = 1. Un sous-
groupe P de G d’ordre |P| = p" est appelé un p-Sylow de G. L’ensemble des p-Sylow
de G est noté

Syl,(G) ={P<G[IPl=p"}.

Théoréme 8.3 (Sylow I, 1872). — Si G est comme ci-dessus, alors Syl,(G) # 0.
En particulier, G a des sous-groupes d’ordre p® pour tout s <.

Dans la suite, on va noter s, (G) :=|Syl,,(G)| le nombre de p-Sylow de G.

Lemme 8.4. — Soient P < G un p-Sylow d’un groupe G et H < G un p-sous-groupe
de G. Si H normalise P (c’est-a-dire si H C Ng(P), alors H C P. En particulier, si
H est un p-Sylow, alors H = P.

Théoréme 8.5 (Sylow II). — Soit G un groupe comme ci-dessus. On a alors :

1. deux éléments de Sylp(G) sont conjugués : si P et Q sont deuz p-Sylow de G, il
existe alors g € G tel que P =gQqg™ " ;

2. 55(G) = 1(p) et 4p(G) divise m;

3. tout p-sous-groupe de G est contenu dans un p-Sylow de G.

Corollaire 8.6. — Un p-Sylow d’un groupe G est normal dans G si et seulement si
c’est lunique p-Sylow de G (4p(G) =1).

8.3. Conséquences pour les groupes de petit ordre. —

9. Groupes résolubles
9.1. Suite de composition et suite de Jordan-Hdélder. —

Définition 9.1. — Une suite de composition (ou suite sous-normale) d’un groupe
G est une suite décroissante de sous-groupes

M=GL<Gh1<-<G1 <Gy=G

tels que Gi41 < G pour tout i = 0...n — 1. Les quotients successifs Gi/Giy1 sont
appelés les facteurs de la suite.
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Définition 9.2. — Une suite de composition dont tous les facteurs sont simples est
appelée une suite de Jordan-Holder.

Théoréme 9.3. — Si G est un groupe fini, alors G admet au moins une suite de
Jordan-Hélder.

Remarque 9.4. — Le véritable contenu du théoréme de Jordan-Hélder est de d’af-
firmer que si 'on prend deux suites de Jordan-Holder, alors elles ont méme longueur
et les facteurs de ces deux suites sont les mémes & permutation prés des indices.

Parmi les groupes simples, les plus faciles & appréhender sont les groupes cycliques
d’ordre premier. Nous allons voir que les groupes dont les facteurs de Jordan-Hoélder
sont cycliques forment une classe de groupes trés intéressante.

9.2. suite dérivée d’un groupe. —

Définition 9.5. — Si G est un groupe, on définit par récurrence la suite décroissante
de sous-groupes suivante :

D°(G):=G et DY'(G):=[DYG),D}G)Vi>0.
Cette suite s’appelle la suite dérivée de G.

Proposition 9.6. — La suite dérivée d’un groupe est constituée de sous-groupes nor-
maux de G :

vi>0, DYG) < G.
De plus, les quotients successifs DY(G)/DY1(G) sont abéliens.

Proposition 9.7 (fonctorialité de la suite dérivée). — Si f : G — H est un
morphisme de groupes, on a alors :

vi>0, f(D'G)) = D' (f(G)).
En particulier, f (Di(G)) c DY(H) pour tout i > 0.

9.3. Notion de résolubilité. —

Définition 9.8. — Un groupe G est dit résoluble s’il existe un entier n > 1 tel que

D™(G) ={1}. On dit que G est résoluble de classe n si n est le plus entier i vérifiant
DY(G) ={1}.

Remarque 9.9. — Par convention, {1} est le seul groupe de classe 0. Les groupes
résolubles de classe 1 sont les groupes abéliens.

Proposition 9.10. — Si G est résoluble, alors tout sous-groupe et tout quotient de
G est encore résoluble.

Réciproquement, si un groupe G posséde un sous-groupe normal N <1 G tel que N
et G/N sont résolubles, alors G est lui-méme résoluble.
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Théoreme 9.11. — Un groupe G est résoluble si et seulement s’il admet une suite
de composition
{I}=GL<Gh1< <G <Gy=G

dont les facteurs Gi/Giy1 sont abéliens (pour 1 <i<n—1).

Corollaire 9.12. — Un groupe fini est résoluble si et seulement si les facteurs de
Jordan-Hélder sont des groupes cycliques d’ordres premiers.

9.4. Classification des groupes finis simples (panorama). — A la fin du
XIX®™€ sigcle, il a semblé intéressant a quelques mathématiciens (par exemple Otto
Holder) de savoir si la classification des groupes finis simples était possible. Cet hori-
zon est resté trés lointain mais & partir des années 1950, les travaux autour de cette
question se sont intensifiés (avec notamment Brauer) et le début des années 1960 a
vu la démonstration d’une vieille conjecture sur les groupes simples.

Théoréme 9.13 (Feit-Thompson, 1963). — Tout groupe d’ordre impair est réso-
luble. De facon équivalente, un groupe simple non abélien est d’ordre pair.

La démonstration de ce résultat occupe un volume entier du Pacific Journal of
Mathematics (plus de deux cents pages).

Le théoréme précédent montre qu’un groupe simple admet des éléments d’ordre
2 et en examinant le centralisateur de ces involutions, il a été possible de dégager
une liste compléte des groupes finis simples a isomorphismes prés. Ces groupes se
répartissent en 4 classes :

1. les groupes cycliques d’ordres premiers;
2. les groupes alternés A, pour n > 5;

3. les groupes de type Lie (comme par exemple PSL,, (Fq) pourn >3 oun =2 et
q>3);
4. la classe des groupes sporadiques.

La derniére classe est finie contrairement aux 3 premiéres : il existe 26 groupes spo-
radiques qui échappent & toute classification. Le plus petit est un des groupes dits de
Mathieuw Mq7 < Sq7 ¢
IMqq| =7920 =2%.3%.5-11.
Il y a 5 groupes de Mathieu découverts par Emile Mathieu entre 1861 et 1873.
Le plus gros des ces 26 groupes sporadiques a été baptisé le Monstre (découvert
par Griess et Fischer en 1981) car son cardinal vaut :

|Monstre| = 2%¢.320.57 .76.112.133.17-.19-23-29-31-41-47 .59 . 71
~8,5-10°3
En guise de comparaison, on estime que le nombre d’atomes de 'univers est de ’ordre

de 1089 ...

Pour aboutir & cette liste, il a fallu mettre ensemble des centaines d’articles ce qui
représente des dizaine de milliers de pages. Pendant 20 ans (entre 1980 et le début des
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années 2000), un important travail de synthése (et parfois de réécriture) a été effectué
et la communauté mathématique considére maintenant la liste ci-dessus comme étant
compléte.

BenoiT CLAUDON
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