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Énoncés du cours Théorie des groupes – L3

1. Notions de base

1.1. Groupes. —

Définition 1.1. — Une loi de composition interne sur un ensemble E est la donnée
d’une application

? :

{
E× E −→ E
(x, y) 7→ x ? y

La loi ? sera dite associative si

(x ? y) ? z = x ? (y ? z)

pour tout (x, y, z) ∈ E3.

Remarque 1.2. — Si la loi ? est associative, on peut donc se passer de parenthèses
et l’expression

xn = x ? · · · ? x︸ ︷︷ ︸
n fois

est définie sans ambiguïté.

Définition 1.3. — Un groupe est un couple (G, ?) où G est un ensemble muni d’une
loi de composition interne ? et qui vérifie :
(i) ? est associative ;
(ii) il existe un élément e ∈ G tel que e ? x = x ? e = x pour tout x ∈ G ;
(iii) pour tout x ∈ G, il existe un élément y ∈ G tel que x ? y = y ? x = e.
Un élément e ∈ G comme ci-dessus est dit neutre pour ? ; l’élément y est appelé un
inverse de x.

Remarque 1.4. — Si (G, ?) est un groupe, alors e est unique ; de même, l’élément
y ci-dessus est unique : tout élément x de G a un unique inverse qui sera noté x−1.
Nous noterons souvent la loi comme un produit xy := x ? y et le neutre 1 := e (ou 1G
si la situation le nécessite).

Définition 1.5. — Le groupe G est dit abélien (ou commutatif ) si l’égalité

xy = yx

est vérifiée pour tout (x, y) ∈ G2.

Remarque 1.6. — Si G est abélien, on notera 0 le neutre de G et la loi sera notée
additivement x+ y, l’inverse de x étant alors −x.

1.2. Morphismes. —

Définition 1.7. — Une application ϕ : G→ H entre les groupes (G, ·) et (H, ?) est
un morphisme de groupes si on a

ϕ(x · y) = ϕ(x) ?ϕ(y)
pur tout (x, y) ∈ G2.

Proposition 1.8. — Soit ϕ : G→ H un morphisme de groupes.
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Énoncés du cours Théorie des groupes – L3

1. On a nécessairement ϕ(1G) = 1H.

2. Si ϕ est bijectif, alors ϕ−1 : H→ G est un morphisme.

Définition 1.9. — Un morphisme de groupes bijectif ϕ : G → H sera appelé un
isomorphisme. Si G = H, ϕ sera appelé un automorphisme de G ; on notera Aut(G)
l’ensemble des automorphismes de G.

Proposition 1.10. — Muni de la composition des applications, l’ensemble Aut(G)
est un groupe d’élément neutre IdG.

1.3. Sous-groupes. —

Définition 1.11. — Un sous-groupe d’un groupe G est une partie non vide H ⊂ G
telle que la restriction de la loi de G à H confère à H une structure de groupe. Si H est
un sous-groupe de G, nous noterons H < G. Un sous-groupe H < G sera dit propre si
H 6= G.

Proposition 1.12. — Une partie H ⊂ G est un sous-groupe de G si et seulement si
elle vérifie :

1. l’élément neutre 1 est dans H ;

2. pour tout (x, y) ∈ H2, xy ∈ H ;

3. pour tout x ∈ H, x−1 ∈ H.

Remarque 1.13. — Il revient au même de demander que H soit non vide et que
xy−1 ∈ H pour tout (x, y) ∈ H2.

Proposition 1.14. — Soit ϕ : G1 → G2 un morphisme de groupes et H1 < G1 et
H2 < G2 des sous-groupes de G1 et G2.

(i) L’image directe de H1 est un sous-groupe de G2 : ϕ(H1) < G2

(ii) L’image réciproque de H2 est un sous-groupe de G1 : ϕ−1(H2) < G1.

(iii) En particulier, ϕ(G1) < G2 et ϕ−1({1G2 }) < G1.

Définition 1.15. — Si ϕ : G→ H est un morphisme de groupes, on note

Im(ϕ) := ϕ(G) et ker(ϕ) := ϕ−1({1})

l’image et le noyau de ϕ (qui sont donc respectivement des sous-groupes de H et G).

Proposition 1.16. — Un morphisme de groupes ϕ : G→ H est injectif si et seule-
ment si ker(ϕ) = 1.
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1.4. Sous-groupe engendré par une partie. —

Proposition 1.17. — Si G un groupe et (Hi)i∈I une famille de sous-groupes de G,
l’intersection

H :=
⋂
i∈I

Hi

est alors un sous-groupe de G.

Définition 1.18. — Si A ⊂ G est une partie d’un groupe G, on notera

〈A〉 :=
⋂
A⊂H

H,

où l’intersection porte sur les sous-groupes de G qui contiennent A. Le sous-groupe
〈A〉 (cf la proposition 1.17 ci-dessus) est alors le plus petit sous-groupe de G contenant
A ; on l’appelle le sous-groupe engendré par A.

Définition 1.19. — Si 〈A〉 = G on dit que A est une partie génératrice de G ou
encore que les éléments de A sont des générateurs de G.

Si un groupe G admet une partie génératrice finie, on dira que G est de type fini.

Proposition 1.20. — Si A est une partie du groupe G, on a alors l’égalité suivante :

〈A〉 =
⋃
m≥1

{
a1 · · ·am | ∀i = 1 . . .m, ai ∈ A ∪A−1

}
.

Remarque 1.21. — En posant

AB := {ab | a ∈ A etb ∈ B} ,

l’égalité ci-dessus se réécrit

〈A〉 =
⋃
m≥1

(
A ∪A−1

)m
.

Définition 1.22. — Si G est engendré par un unique élément x ∈ G, on dit que G
est cyclique (ou monogène). Dans ce cas,

G = {xm | m ∈ Z}

et G est abélien.

1.5. Ordre d’un groupe. —

Définition 1.23. — Si G est un groupe, son cardinal est également appelé son ordre
noté |G| (on autorise donc |G| =∞). Si x ∈ G, l’ordre de x (noté o(x)) est l’ordre du
sous-groupe de G qu’il engendre :

o(x) := |〈x〉|.
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Définition 1.24. — Si H < G, la relation

x ∼ y⇔ y−1x ∈ H

est une relation d’équivalence, dite engendrée par H. On note

G/H := {gH | g ∈ G}

l’ensemble des classes d’équivalence et la quantité

[G : H] := |G/H|

s’appelle l’indice de H dans G.

Théorème 1.25 (Lagrange, 1771). — Si G est un groupe fini et H < G un sous-
groupe, on a alors :

|G| = [G : H]|H|.

En particulier, l’ordre de H divise celui de G.

Corollaire 1.26. — Si G est un groupe fini et x ∈ G, o(x) divise n := |G| et on a
donc xn = 1. En particulier, si n est premier, alors G est cyclique.

2. Groupes cycliques

2.1. Le groupe Z. — On se contente ici de quelques observations et rappels :

1. Si G est un groupe cyclique d’ordre infini, alors G est isomorphe à Z.
2. Les sous-groupes de Z sont de la forme nZ avec n ∈ Z.
3. Les seuls éléments qui engendrent Z sont 1 et −1.

4. Le groupe Aut(Z) est d’ordre 2, engendré par

ϕ :

{
Z −→ Z
n 7→ ϕ(n) := −n

2.2. Groupes finis cycliques. — Si n ≥ 2 est un entier, on considère Z/nZ
l’ensemble des classes d’équivalence de la relation « modulo n ». Si k ∈ Z, on note
k̄ sa classe dans Z/nZ. On constate que l’addition et la multiplication sont bien
définies dans Z/nZ (de neutre respectif 0̄ et 1̄), ce qui fait de ce dernier un anneau
(commutatif).

Proposition 2.1. — L’application naturelle Z→ Z/nZ qui envoie un entier sur sa
classe modulo n est un morphisme de groupes.

On notera (comme dans tout anneau)

(Z/nZ)∗ := {x ∈ Z/nZ | ∃y ∈ Z/nZ, xy = 1}

l’ensemble des éléments inversibles de Z/nZ. On observe enfin que si G est un groupe
cyclique d’ordre n alors G est isomorphe à (Z/nZ,+).
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Proposition 2.2. — L’ensemble des générateurs de Z/nZ s’identifie à (Z/nZ)∗. On
en déduit que l’application

Φ :

{
Aut(Z/nZ) −→ (Z/nZ)∗

f 7→ f(1)

est bien définie et que c’est un isomorphisme de groupes.

Définition 2.3. — Pour n ≥ 2, on pose

ϕ(n) := | (Z/nZ)∗ |.

La fonction ϕ s’appelle l’indicatrice d’Euler.

Théorème 2.4 (des restes chinois). — Si m et n sont deux entiers premiers
entre eux, l’application

Ψ :

{
Z/nmZ −→ Z/nZ× Z/mZ

x̄ 7→ (xmodn, xmodm)

est un isomorphisme d’anneaux et envoie donc inversibles sur inversibles. En parti-
culier, on en déduit :

m∧ n = 1⇒ ϕ(mn) = ϕ(m)ϕ(n).

Comme ϕ(pα) = pα − pα−1 pour p premier et α ≥ 1 entier, on obtient :

Corollaire 2.5. —

ϕ(n) =

r∏
i=1

(pαii − pαi−1i ) = n

r∏
i=1

(1−
1

pi
)

si n = pα11 · · ·pαrr est la décomposition en facteurs premiers de n.

Théorème 2.6. — Le groupe (Z/pαZ)∗ (avec p premier et α ≥ 1) est :
– cyclique si p ≥ 3 (et donc isomorphe à Z/pα−1(p− 1)Z) ;
– trivial si p = 2 et α = 1 ;
– isomorphe à Z/2α−2Z× Z/2Z si p = 2 et α ≥ 2.

3. Groupes abéliens de type fini

Dans tout ce chapitre, on considère G un groupe abélien de type fini, c’est-à-dire
possédant une famille génératrice finie (cf définition 1.19). Comme les groupes sont
supposés abéliens, nous noterons la loi de façon additive x+y (le neutre est donc noté
0 et mx avec m ∈ Z désigne le « produit » de x avec lui-même).

Définition 3.1. — Une famille génératrice finie (x1, . . . , xk) de G sera appelée une
pseudo-base si

∀ (m1, . . . ,mk) ∈ Zk,
k∑
i=1

mixi = 0⇒ mixi = 0, ∀ i = 1 . . . k.
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On dira que (x1, . . . , xk) est une base de G si

∀ (m1, . . . ,mk) ∈ Zk,
k∑
i=1

mixi = 0⇒ mi = 0, ∀ i = 1 . . . k.

Remarque 3.2. — Si G admet un pseudo-base (x1, . . . , xk), alors

G ' 〈x1〉 × · · · × 〈xk〉
et G est produit de groupes cycliques (certains facteurs pouvant être finis). Si G admet
une base, alors G ' Zk.

Définition 3.3. — La torsion d’un groupe abélien G est l’ensemble des éléments
d’ordre fini :

Tor(G) := {g ∈ G | ∃m 6= 0, mg = 0} .

Remarque 3.4. — La torsion d’un groupe abélien est un sous-groupe de G :
Tor(G) < G. Si G admet une base, G est alors sans torsion : Tor(G) = {0}.

Théorème 3.5. — Tout groupe abélien de type fini admet une pseudo-base (et s’écrit
donc comme un produit de groupes cycliques).

La démonstration s’appuie sur le résultat suivant.

Lemme 3.6. — Soient (x1, . . . , xk) une famille génératrice d’un groupe abélien G et
(c1, . . . , ck) ∈ Zk avec pgcd(c1, . . . , xk) = 1. Il existe alors une famille génératrice
(y1, . . . , yk) de G avec y1 :=

∑k
i=1 cixi.

Corollaire 3.7. — Tout groupe abélien de type fini se décompose donc de la façon
suivante :

G ' Tor(G)× Zr

avec r ≥ 0 un entier ne dépendant que de G. On note rg(G) := r cet entier, c’est le
rang de G.

Théorème 3.8. — Si G est un groupe abélien de type fini et H < G un sous-groupe
de G alors H est également de type fini et rg(H) ≤ rg(G).

On s’intéresse enfin à la partie de torsion qui s’écrit donc comme un produit de
groupes de la forme Z/njZ. Le théorème Chinois 2.4 montre qu’il n’y a pas unicité de
la décomposition en général ; il faut fixer des conditions arithmétiques sur les entiers
nj.

Théorème 3.9 (Structures des groupes abéliens finis)
Un groupe abélien fini se décompose d’un unique façon en produit de groupes cy-

cliques
G ' Z/n1Z× · · · × Z/nrZ

sous l’une des deux conditions suivantes :
(a) pour tout i = 1 . . . r− 1, ni divise ni+1 ;

(b) les entiers nj sont de la forme nj = p
αj
j avec pj premier.
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On utilise au cours de la démonstration le résultat suivant.

Lemme 3.10. — Dans le groupe Z/n1Z × · · · × Z/nrZ, le nombre de solutions de
l’équation mx = 0 (c’est-à-dire le nombre d’éléments dont l’ordre divise m) est :

pgcd(m,n1) pgcd(m,n2) . . . pgcd(m,nr).

4. Sous-groupes normaux

4.1. Premiers pas. — On commence par remarquer que si f : G → H est un
morphisme de groupes, alors le sous-groupe ker(f) vérifie la propriété suivante :

∀g ∈ G, ∀ x ∈ ker(f), gxg−1 ∈ ker(f).

Définition 4.1. — Si g ∈ G, alors l’application

intg :

{
G −→ G

x 7→ gxg−1

est un automorphisme de G, appelé automorphisme intérieur. On notera Int(G) ⊂
Aut(G) l’ensemble des automorphismes intérieurs.

Définition 4.2. — Un sous-groupe H < G est dit normal dans G si H est stable
par tout automorphisme intérieur :

∀g ∈ G, gHg−1 = H.

On notera H C G lorsque H est normal dans G (on dit aussi distingué dans G).

Remarque 4.3. — Si G est un groupe abélien, tout sous-groupe H < G est normal
dans G.

Proposition 4.4. — Soit ϕ : G1 −→ G2 un morphisme de groupes et H1 < G1 et
H2 < G2 des sous-groupes.

1. H2 C G2 ⇒ ϕ−1(H2) C G1 ;

2. Si H1 est normal dans G1, alors ϕ(H1) est normal dans ϕ(G1) ;

3. En particulier, si ϕ est surjective, ϕ(H1) est normal dans G2 mais ce n’est pas
le cas en général.

Définition 4.5. — Un groupe G est dit simple si les seuls sous-groupes normaux de
G sont {1} et G lui-même.

4.2. Groupe quotient. —

Théorème 4.6. — Si H C G, alors il existe sur l’ensemble quotient G/H une unique
loi de groupe faisant de la projection canonique π : G −→ G/H un morphisme de
groupes.

Remarque 4.7. — Si H C G, alors H est le noyau de l’application π : G −→ G/H.
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Théorème 4.8 (Propriété universelle du quotient). — Soit f : G −→ H un
morphisme de groupes et N := ker(f) son noyau. Il existe alors un unique morphisme
de groupes injectif ϕ : G/N −→ H tel que f = ϕ◦π. En particulier, G/N est isomorphe
à Im(f).

Théorème 4.9. — Soit N C G. Il existe une correspondance bijective :

{H < G | N ⊂ H}←→ {H̄ < G/N}
qui envoie un sous-groupe H de G (contenant N) sur H̄ := π(H) et un sous-groupe H̄
de G/N sur H := π−1(H̄).

Dans cette correspondance, H est normal dans G si et seulement si H̄ est normal
dans G/N.

Théorème 4.10 (Théorème d’isomorphisme). — Soient H,N < G avec N nor-
mal dans G. Le produit HN (comme dans la remarque 1.21) est alors un sous-groupe
de G dans lequel N est distingué et on a un isomorphisme canonique{

H/(H ∩N)
∼−→ HN/N

h(H ∩N) 7→ hN.

4.3. Exemples fondamentaux. — Si x et y sont deux éléments d’un groupe G,
on note [x, y] := xyx−1y−1 le commutateur de x et y.

Définition 4.11. — Si G est un groupe, on note

Z(G) := {g ∈ G | ∀ x ∈ G, gx = xg} .

C’est un sous-groupe normal (et abélien) de G appelé le centre de G.
Le sous-groupe

D(G) := [G,G] := 〈[x, y] | (x, y) ∈ G2〉
engendré par les commutateurs s’appelle le groupe dérivé de G : c’est également un
sous-groupe normal et le quotient G/D(G) est abélien.

Proposition 4.12. — Si G est un groupe et N C G, alors G/N est abélien si et
seulement si D(G) ⊂ N. Le groupe G/D(G) est donc le plus gros quotient abélien de
G (appelé abélianisé de G).

Proposition 4.13. — Pour tout groupe G, l’application

int :
{
G −→ Aut(G)
g 7→ intg

est un morphisme de groupes, d’image Int(G) et de noyau Z(G). On a donc :

G/Z(G) ' Int(G).

De plus, Int(G) est un sous-groupe normal de Aut(G).
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5. Notion d’action de groupe

5.1. Vocabulaire des actions. —

Définition 5.1. — Soient G un groupe et X un ensemble (non vide). Une action de
G sur X (ont dit aussi que G opère sur X ou que X est un G-ensemble) est la donnée
d’une application α : G× X −→ X vérifiant

1. pour tout x ∈ X, α(1, x) = x ;
2. pour tout (g, h) ∈ G2 et tout x ∈ X, α(g, α(h, x)) = α(gh, x).

On notera aussi l’action sous la forme α(g, x) = g · x.

Proposition 5.2. — La donnée d’une action de G sur X est équivalente à celle d’un
morphisme de groupes

G −→ SX.

Définition 5.3. — Soient G un groupe et X un G-ensemble. Pour un élément x ∈ X,
on note

– G · x := {g · x | g ∈ G} l’orbite de x (sous G) ;
– Gx := {g ∈ G | g · x = x} le stabilisateur de x dans G. C’est un sous-groupe de G.

L’action est dite fidèle lorsque le morphisme G −→ SX est injectif. L’action est dite
libre si Gx = 1 pour tout x ∈ X.

Proposition 5.4. — Si G agit sur X et x ∈ X, l’application{
G/Gx −→ G · x
gGx 7→ g · x

est bien définie et est une bijection. En particulier, si G ou Xsont finis, on a |G/Gx| =
|G · x|.

5.2. Les exemples à avoir en tête. —

Exemple 5.5. — Si G est un groupe, α(g, x) = gx définit une action de G sur lui-
même appelée action par translations à gauche. Cette action est libre et fidèle.

Théorème 5.6 (Cayley, 1854). — Si G est fini d’ordre |G| = n, alors il existe un
morphisme injectif

G ↪→ Sn.

Exemple 5.7. — Le morphisme int : G −→ Aut(G) définit une action de G sur
lui-même dite action par conjugaison. Si x ∈ G, son orbite s’appelle sa classe de
conjugaison et son stabilisateur et aussi appelé le centralisateur de x dans G :

– classe de conjugaison de x dans G :
{
gxg−1 | g ∈ G

}
.

– centralisateur : CG(x) := {g ∈ G | gx = xg}.

Exemple 5.8. — Si G agit sur X et H < G, alors la restriction de α : G −→ SX à H
définit une action de H sur X.
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Exemple 5.9. — Si H < G alors on peut faire agir G sur les classes à gauche G/H
par

(g, xH) 7→ gxH.

Orbites ? Stabilisateur de xH ?

Exemple 5.10. — Un groupe G agit par conjugaison sur l’ensemble X := {H < G}
de ses sous-groupes :

(g,H) 7→ gHg−1.

Les éléments de l’orbite de H sont appelés les conjugués de H et son stabilisateur est

NG(H) := {g ∈ G | gH = Hg}

que l’on appelle le normalisateur de H dans G. On a évidemment H C NG(H) et
NG(H) est le plus grand sous-groupe de G dans lequel H est distingué.

Exemple 5.11. — Le groupe GLn(R) agit sur Rn (orbites ? stabilisateurs ?). De
même, le groupe On(R) agit sur la sphère Sn−1 = {x ∈ Rn | ‖x‖ = 1} (orbites ? stabi-
lisateurs ?). Le groupe dihédral Dn agit sur le polygone régulier à n côtés.

5.3. Équations aux classes et conséquences. — Dans ce paragraphe, X et G
sont supposés finis. Si G agit sur X, on constate que les orbites forment une partition
de X : elles recouvrent X et sont deux à deux disjointes. Si on choisit un représentant
xi de chaque orbite (i = 1 . . . r avec r le nombre d’orbites), on a alors :

|X| =

r∑
i=1

|G · xi| =
r∑
i=1

|G|/|Gxi |.

Proposition 5.12 (Équation aux classes). — Si G est un groupe fini, on consi-
dère l’action par conjugaison de G sur lui-même et on note (gj)1≤j≤k des représen-
tants des orbites qui ne sont pas réduites à un point. On a alors :

|G| = |Z(G)|+

k∑
j=1

[G : CG(gj)].

Définition 5.13. — Un p-groupe (avec p premier) est un groupe G d’ordre |G| =
pn.

Proposition 5.14. — Si G est un p-groupe agissant sur X, on a alors

|X| ≡ |XG|modp

avec XG := {x ∈ X | ∀g ∈ G, g · x = x}.

Corollaire 5.15. — Le centre d’un p-groupe n’est pas réduit à l’identité.

Théorème 5.16 (Cauchy, 1845). — Si l’entier premier p divise l’ordre du groupe
fini G, alors G contient un élément d’ordre p.

6. Étude du groupe symétrique

On rappelle que Sn est le groupe symétrique sur {1 . . . n}, d’ordre n!.
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6.1. Signature d’une permutation. —

Définition 6.1. — La signature d’une permutation σ ∈ Sn est le nombre

ε(σ) :=
∏

1≤i<j≤n

σ(j) − σ(i)

j− i

qui vaut ±1.

Proposition 6.2. — L’application ε : Sn −→ {±1} ' Z/2Z est un morphisme de
groupes.

6.2. Décomposition en produit de cycles et conséquences. —

Définition 6.3. — – Le support d’une permutation σ ∈ Sn est

Supp(σ) := {1 ≤ i ≤ n | σ(i) 6= i} .

– Un k-cycle (ou cycle de longueur k) est une permutation dont on peut écrire le
support Supp(σ) = {a1, a2, . . . , ak} et qui vérifie : σ(ai) = ai+1 pour 1 ≤ i ≤
k− 1 et σ(ak) = a1.

– Un 2-cycle est aussi appelé une transposition.
Le k-cycle de support {a1, a2, . . . , ak} sera noté (a1 a2 . . . ak).

Proposition 6.4. — Deux permutations à supports disjoints commutent :

Supp(σ) ∩ Supp(τ) = ∅⇒ στ = τσ.

Théorème 6.5. — Toute permutation s’écrit comme un produit de cycles à supports
disjoints. L’écriture est de plus unique à l’ordre près. L’ordre d’une permutation est
le plus petit commun multiple des longueurs des cycles qui apparaissent dans sa dé-
composition en produit de cycles.

Remarque 6.6. — On vérifié aisément :

σ(a1 a2 . . . ak)σ
−1 = (σ(a1)σ(a2) . . . σ(ak)).

Théorème 6.7. — Deux permutations σ et τ sont conjuguées dans Sn si et seule-
ment si σ et τ ont le même nombre de k-cycles dans leurs décompositions pour tout
k = 1 . . . n.

Proposition 6.8. — Les transpositions engendrent Sn.

Proposition 6.9. — (i) Une transposition a signature −1 ;

(ii) si σ est un k-cycle, ε(σ) = (−1)k−1 ;

(iii) en général, ε(σ) = (−1)n−mσ avec mσ le nombre d’orbites de σ.
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6.3. Groupe alterné et simplicité. —

Définition 6.10. — Le groupe alterné est le noyau de la signature :

An := ker(ε) C Sn.

C’est un sous-groupe normal d’indice 2 de Sn et d’ordre |An | =
n!

2
.

Proposition 6.11. — Le groupe alterné (pour n ≥ 3) est engendré par les 3-cycles.
Si n ≥ 5, les 3-cycles sont de plus conjugués dans An.

Proposition 6.12. — Les centres et groupes dérivés de Sn et An sont donnés par :
– Z(Sn) = {1} si n ≥ 3 et Z(An) = {1} si n ≥ 4 ;
– D(Sn) = An pour tout n ≥ 2 et D(An) = An si n ≥ 5.

Théorème 6.13 (Galois, 1830). — Si n ≥ 5, le groupe alterné An est simple.

Corollaire 6.14. — Si n ≥ 5, les seuls sous-groupes normaux de Sn sont {1} , An
et Sn.

7. Produits semi-directs

7.1. produit direct. —

Définition 7.1. — Si G1 et G2 sont deux groupes, la loi :{
(G1 ×G2)× (G1 ×G2) −→ G1 ×G2

((g1, g2), (h1, h2)) 7→ (g1g2, h1h2)

munit l’ensemble G := G1×G2 d’une structure de groupe, appelé le produit direct de
G1 et G2.

Proposition 7.2. — Un groupe G s’écrit comme un produit direct de deux groupes
si (et seulement si) il existe N,Q < G deux sous-groupes de G tels que :

(i) N C G ainsi que Q C G ;

(ii) N ∩Q = {1} ;

(iii) NQ = G.

7.2. produit semi-direct. — La situation d’un produit semi-direct correspond au
cas où l’un des deux sous-groupes n’est plus distingué.

Définition 7.3. — Soient N et Q deux groupes, ainsi que α : Q −→ Aut(N) un
morphisme. Le produit semi-direct de N par Q (sous l’action α) est le groupe dont
l’ensemble sous-jacent est le produit G := N×Q muni de la loi :{

G×G −→ G
((n, q), (n ′, q ′)) 7→ (nα(q)(n ′), qq ′)

Ce groupe est noté G = Noα Q ou simplement NoQ.
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Remarque 7.4. — Dans G := N o Q, l’inverse est donné par (n, q)−1 =
(α(q)−1(n−1), q−1). On vérifie facilement que N ' N × {1} est normal dans
G.

Proposition 7.5. — Un groupe G peut s’écrire comme le produit semi-direct de deux
groupes si et seulement si G = NQ avec N et Q deux sous-groupes de G vérifiant

N ∩Q = {1} et N C G.

7.3. Lien avec les extensions. —

Définition 7.6. — Une extension (ou suite exacte courte) est la donnée de deux
morphismes :

f : N −→ G et π : G −→ Q

tels que :

1. f est injectif et π surjectif ;

2. ker(π) = Im(f).

On résume cette situation en une suite exacte courte :

1 −→ N
f−→ G

π−→ Q −→ 1.

Remarque 7.7. — Une suite exacte consiste donc en la donnée d’un sous groupe
normal N C G ou d’un morphisme surjectif G� Q car

Q ' G/ ker(π) = G/ Im(f) = G/N.

Définition 7.8. — On dira que la suite

1 −→ N
f−→ G

π−→ Q −→ 1

est scindée s’il existe un morphisme s : Q −→ G tel que π◦s = IdQ. Un tel morphisme
est appelé une section de π.

Proposition 7.9. — La suite

1 −→ N
f−→ G

π−→ Q −→ 1

est scindée si et seulement s’il existe Q̄ < G un sous-groupe tel que la restriction de
π à Q̄ soit un isomorphisme π|Q̄ : Q̄

∼−→ Q.
Dans ce cas, le groupe G est alors le produit semi-direct de N par Q (pour une

action de Q sur N).

7.4. Étude du groupe dihédral. —
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8. Théorèmes de Sylow

8.1. Rappels sur les p-groupes. — On rappelle qu’un p-groupe est un groupe
dont l’ordre est de la forme pn (définition 5.13) et que le centre d’un p-groupe n’est
pas trivial (corollaire 5.15).

Proposition 8.1. — Si G est un p-groupe avec |G| = pn, alors G a des sous-groupes
( resp. sous-groupes normaux) d’ordre pr pour tout 1 ≤ r ≤ n. Les sous-groupes
d’indice p sont normaux dans G et tout sous-groupe de G est contenu dans un sous-
groupe d’indice p.

8.2. Énoncés des théorèmes. —

Définition 8.2. — Soit G un groupe d’ordre n = prm avec m ∧ p = 1. Un sous-
groupe P de G d’ordre |P| = pr est appelé un p-Sylow de G. L’ensemble des p-Sylow
de G est noté

Sylp(G) = {P < G | |P| = pr} .

Théorème 8.3 (Sylow I, 1872). — Si G est comme ci-dessus, alors Sylp(G) 6= ∅.
En particulier, G a des sous-groupes d’ordre ps pour tout s ≤ r.

Dans la suite, on va noter ¯sp(G) := | Sylp(G)| le nombre de p-Sylow de G.

Lemme 8.4. — Soient P < G un p-Sylow d’un groupe G et H < G un p-sous-groupe
de G. Si H normalise P (c’est-à-dire si H ⊂ NG(P), alors H ⊂ P. En particulier, si
H est un p-Sylow, alors H = P.

Théorème 8.5 (Sylow II). — Soit G un groupe comme ci-dessus. On a alors :

1. deux éléments de Sylp(G) sont conjugués : si P et Q sont deux p-Sylow de G, il
existe alors g ∈ G tel que P = gQg−1 ;

2. ¯sp(G) ≡ 1 (p) et ¯sp(G) divise m ;

3. tout p-sous-groupe de G est contenu dans un p-Sylow de G.

Corollaire 8.6. — Un p-Sylow d’un groupe G est normal dans G si et seulement si
c’est l’unique p-Sylow de G (¯sp(G) = 1).
8.3. Conséquences pour les groupes de petit ordre. —

9. Groupes résolubles

9.1. Suite de composition et suite de Jordan-Hölder. —

Définition 9.1. — Une suite de composition (ou suite sous-normale) d’un groupe
G est une suite décroissante de sous-groupes

{1} = Gn < Gn−1 < · · · < G1 < G0 = G
tels que Gi+1 C Gi pour tout i = 0 . . . n − 1. Les quotients successifs Gi/Gi+1 sont
appelés les facteurs de la suite.
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Définition 9.2. — Une suite de composition dont tous les facteurs sont simples est
appelée une suite de Jordan-Hölder.

Théorème 9.3. — Si G est un groupe fini, alors G admet au moins une suite de
Jordan-Hölder.

Remarque 9.4. — Le véritable contenu du théorème de Jordan-Hölder est de d’af-
firmer que si l’on prend deux suites de Jordan-Hölder, alors elles ont même longueur
et les facteurs de ces deux suites sont les mêmes à permutation près des indices.

Parmi les groupes simples, les plus faciles à appréhender sont les groupes cycliques
d’ordre premier. Nous allons voir que les groupes dont les facteurs de Jordan-Hölder
sont cycliques forment une classe de groupes très intéressante.

9.2. suite dérivée d’un groupe. —

Définition 9.5. — Si G est un groupe, on définit par récurrence la suite décroissante
de sous-groupes suivante :

D0(G) := G et Di+1(G) := [Di(G), Di(G)] ∀ i ≥ 0.

Cette suite s’appelle la suite dérivée de G.

Proposition 9.6. — La suite dérivée d’un groupe est constituée de sous-groupes nor-
maux de G :

∀ i ≥ 0, Di(G) C G.
De plus, les quotients successifs Di(G)/Di+1(G) sont abéliens.

Proposition 9.7 (fonctorialité de la suite dérivée). — Si f : G −→ H est un
morphisme de groupes, on a alors :

∀ i ≥ 0, f
(
Di(G)

)
= Di (f(G)) .

En particulier, f
(
Di(G)

)
⊂ Di(H) pour tout i ≥ 0.

9.3. Notion de résolubilité. —

Définition 9.8. — Un groupe G est dit résoluble s’il existe un entier n ≥ 1 tel que
Dn(G) = {1}. On dit que G est résoluble de classe n si n est le plus entier i vérifiant
Di(G) = {1}.

Remarque 9.9. — Par convention, {1} est le seul groupe de classe 0. Les groupes
résolubles de classe 1 sont les groupes abéliens.

Proposition 9.10. — Si G est résoluble, alors tout sous-groupe et tout quotient de
G est encore résoluble.

Réciproquement, si un groupe G possède un sous-groupe normal N C G tel que N
et G/N sont résolubles, alors G est lui-même résoluble.
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Théorème 9.11. — Un groupe G est résoluble si et seulement s’il admet une suite
de composition

{1} = Gn < Gn−1 < · · · < G1 < G0 = G
dont les facteurs Gi/Gi+1 sont abéliens (pour 1 ≤ i ≤ n− 1).

Corollaire 9.12. — Un groupe fini est résoluble si et seulement si les facteurs de
Jordan-Hölder sont des groupes cycliques d’ordres premiers.

9.4. Classification des groupes finis simples (panorama). — À la fin du
XIXème siècle, il a semblé intéressant à quelques mathématiciens (par exemple Otto
Hölder) de savoir si la classification des groupes finis simples était possible. Cet hori-
zon est resté très lointain mais à partir des années 1950, les travaux autour de cette
question se sont intensifiés (avec notamment Brauer) et le début des années 1960 a
vu la démonstration d’une vieille conjecture sur les groupes simples.

Théorème 9.13 (Feit-Thompson, 1963). — Tout groupe d’ordre impair est réso-
luble. De façon équivalente, un groupe simple non abélien est d’ordre pair.

La démonstration de ce résultat occupe un volume entier du Pacific Journal of
Mathematics (plus de deux cents pages).

Le théorème précédent montre qu’un groupe simple admet des éléments d’ordre
2 et en examinant le centralisateur de ces involutions, il a été possible de dégager
une liste complète des groupes finis simples à isomorphismes près. Ces groupes se
répartissent en 4 classes :

1. les groupes cycliques d’ordres premiers ;
2. les groupes alternés An pour n ≥ 5 ;
3. les groupes de type Lie (comme par exemple PSLn(Fq) pour n ≥ 3 ou n = 2 et
q > 3) ;

4. la classe des groupes sporadiques.
La dernière classe est finie contrairement aux 3 premières : il existe 26 groupes spo-
radiques qui échappent à toute classification. Le plus petit est un des groupes dits de
Mathieu M11 < S11 :

|M11| = 7920 = 2
4 · 32 · 5 · 11.

Il y a 5 groupes de Mathieu découverts par Émile Mathieu entre 1861 et 1873.
Le plus gros des ces 26 groupes sporadiques a été baptisé le Monstre (découvert

par Griess et Fischer en 1981) car son cardinal vaut :

|Monstre| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
≈ 8, 5 · 1053

En guise de comparaison, on estime que le nombre d’atomes de l’univers est de l’ordre
de 1080 . . .

Pour aboutir à cette liste, il a fallu mettre ensemble des centaines d’articles ce qui
représente des dizaine de milliers de pages. Pendant 20 ans (entre 1980 et le début des
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années 2000), un important travail de synthèse (et parfois de réécriture) a été effectué
et la communauté mathématique considère maintenant la liste ci-dessus comme étant
complète.

Benoît Claudon
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