PCAP1 2024-2025

Arithmétique

Mise en route

1 Extraits d'écrits de CAPES

Voici des questions sous forme de « vrai/faux » posées aux écrits du CAPES lors des trois dernières années.

CAPES 2022

Ensembles de nombres

- 1. Tout entier relatif non nul possède un inverse dans \mathbb{Z} pour la multiplication.
- 2. La somme de deux nombres décimaux est un nombre décimal.
- 3. $\frac{1}{3}$ est un nombre décimal.
- 4. $\sqrt{5}$ est un nombre irrationnel.
- 5. Pour tout $n \in \mathbb{N}$, \sqrt{n} est un nombre irrationnel.
- 6. La somme de deux nombres irrationnels est un nombre irrationnel.
- 7. La somme d'un nombre rationnel et d'un nombre irrationnel est un nombre irrationnel.

Arithmétique

- 1. Si trois nombres entiers relatifs a, b, c sont tels que a et b divisent c, alors ab divise c.
- 2. Si trois nombres entiers relatifs a, b, c sont tels que a divise b et c, alors bc est un multiple de a.
- 3. $19x \equiv 3$ [53] admet des solutions dans \mathbb{Z} .

CAPES 2023

- 1. Soit n un entier naturel. $n^3 n$ est pair.
- 2. Soient un entier relatif x et un entier naturel non nul n. Si $x^2 \equiv 9 [n]$, alors $x \equiv 3 [n]$ ou $x \equiv -3 [n]$.

CAPES 2024

- 1. Le produit de deux nombres irrationnels est un nombre irrationnel.
- 2. Soit $n \in \mathbb{N}$. La contraposée de l'assertion « n^2 pair \Rightarrow n pair » est « n pair \Rightarrow n^2 pair ».
- 3. Si la somme des chiffres en base 10 d'un entier naturel est divisible par 3 alors cet entier est divisible par 9.
- 4. Soient a et b deux entiers naturels et n un entier naturel non nul. Si $2a \equiv 2b \pmod{n}$, alors $a \equiv b \pmod{n}$.
- 5. Soit n un entier naturel non nul, la somme des n premiers nombres impairs est égale au carré de 2n+1.
- 6. Soient a, b et c trois entiers tels que $a^2 = b^2 + c^2$. L'un au moins des nombres a, b et c est multiple de 5.

2 Fractions égyptiennes

Le but est de démontrer le théorème suivant :

Théorème. Soit x un nombre rationnel avec 0 < x < 1. Il existe un nombre $p \ge 1$ et des entiers n_1, n_2, \ldots, n_p vérifiant :

(a)
$$1 \le n_1 < n_2 < \cdots < n_p$$
,

(b)
$$x = \frac{1}{n_1} + \dots + \frac{1}{n_p}$$
.

On dira que cette écriture est une décomposition égyptienne de x.

Nous allons voir plusieurs façons de montrer ce résultat qui vont mener à des algorithmes différents.

1. Observer tout d'abord qu'il n'y a pas unicité d'une telle écriture en donnant plusieurs décompositions égyptiennes du nombre $\frac{1}{2}$.

2.1 Une approche grossière

2. Montrer que l'algorithme suivant fournit bien une décomposition de x en fractions égyptiennes :

Début algo1 :

Entrée $x = \frac{a}{b}$ un rationnel

Si a = 1 afficher x

Sinon afficher $\frac{1}{b} + \operatorname{algo1}(\frac{a-1}{b+1}) + \operatorname{algo1}(\frac{a-1}{b(b+1)})$

Fin algo1

- 3. Donner les étapes de l'algorithme pour $x = \frac{3}{16}$.
- 4. Formuler un ou plusieurs reproches à l'encontre de cet algorithme.
- 4+. Écrire proprement l'algorithme en Python et le faire tourner sur quelques exemples.

2.2 Algorithme de Fibonacci (ou algorithme glouton)

Soit x un nombre rationnel avec 0 < x < 1. On pose $x_1 = x$. On définit une suite d'entiers naturels n_i comme suit. On prend pour n_1 le plus petit entier $\geq \frac{1}{x_1}$. Pour $i \geq 2$, si on suppose définis $n_1, n_2, \ldots, n_{i-1}$, on pose $x_i = x - \frac{1}{n_1} - \cdots - \frac{1}{n_{i-1}}$. Si x_i n'est pas nul, on définit alors n_i comme le plus petit entier $\geq \frac{1}{x_i}$.

- 1. Traduire par une inégalité la condition de définition de l'entier \mathfrak{n}_i .
- 2. Établir une relation liant x_i , x_{i+1} et n_i .
- 3. Établir les inégalités suivantes, pour $\mathfrak{i} \geq 1$:

$$0 \le x_i < 1, \quad n_i > 1 \quad {\rm et} \quad x_{i+1} < \frac{1}{n_i}.$$

4. Montrer que la suite (n_i) est strictement croissante.

On écrit désormais le rationnel x_i (pour $i \ge 1$) sous forme de fraction irréductible : $x_i = \frac{r_i}{s_i}$.

- 5. On suppose $r_i > 1$.
 - (i) Montrer que $n_i 1$ est le quotient dans la division euclidienne de s_i par r_i .
 - (ii) Montrer que l'on a $r_{i+1} < r_i$.
- 6. Montrer qu'il existe un entier p tel que $r_p=1$ et conclure que x admet une décomposition égyptienne.
- 7. Appliquer cette procédure pour écrire une décomposition égyptienne de $\frac{3}{16}$.
- 8. En vous munissant d'une calculatrice ou d'un peu de patience, faire de même avec $\frac{5}{121}$. Calculer par ailleurs

$$\frac{1}{33} + \frac{1}{121} + \frac{1}{363}$$
.

Quel reproche formuler à l'encontre de cet algorithme?

2.3 Algorithme de Golomb

Soit $x = \frac{a}{b}$ un rationnel avec 0 < a < 1 et on suppose de plus que c'est l'écriture en fraction irréductible de x.

- 1. Justifier qu'il existe un couple d'entiers (r, s) avec 0 < r < s < b et as = 1 + br.
- 2. En remarquant que $\frac{a}{b} = \frac{1}{bs} + \frac{r}{s}$, écrire un pseudo-code donnant un algorithme fournissant une décomposition égyptienne et vérifier que cet algorithme termine.
- 3. Éxecuter cet algorithme avec $x = \frac{3}{16}$.
- 4. Quel est l'avantage de cet algorithme? Inconvénient?

2.4 Le cas général des rationnels

On considère maintenant le cas général $x \in \mathbb{Q}^+$. Compte tenu de ce qui précède, on suppose même $x \ge 1$.

1. Montrer qu'il existe un unique entier $n \ge 1$ tel que

$$1+\cdots+\frac{1}{n}\leq x<1+\cdots+\frac{1}{n+1}.$$

Indication : se souvenir de la série harmonique.

2. Conlure que x admet une écriture égyptienne au sens du théorème ci-dessus.

3 Les triplets pythagoriciens

On étudie l'équation

$$x^2 + y^2 = z^2$$
 avec $(x, y, z) \in \mathbb{N}^3$. (1)

1. Que peut-on dire si xyz = 0?

À partir de maintenant, nous supposerons xyz > 0 et x, y et z premiers entre eux (pgcd(x, y, z) = 1).

- 2. Montrer que l'un des nombres est pair et que les deux autres sont impairs.
- 3. Montrer que z est nécessairement impair (penser modulo 4).

Pour fixer les idées, on suppose que y est pair et on note y = 2w.

4. Justifier que l'on peut écrire z-x=2u et z+x=2v (avec u et v dans \mathbb{N}^*). Montrer que l'équation (1) s'écrit aussi

$$w^2 = uv (2)$$

les variables (u, v, w).

- 5. Justifier que pgcd(u, v, w) = 1. En utilisant l'équation (2), montrer également que u et v sont premiers entre eux.
- 6. Toujours en utilisant l'équation (2), montrer que l'on peut écrire $\mathfrak{u}=\mathfrak{a}^2$ et $\mathfrak{v}=\mathfrak{b}^2$ avec \mathfrak{a} et \mathfrak{b} premiers entre eux et de parité différente.
- 7. Conclure quant à la forme des solutions (x, y, z) (en termes de a et b).

Pour finir, reprenons le cas général : x, y et z ne sont plus supposés premiers entre eux.

8. En notant d = pgcd(x, y, z), donner la forme générale des solutions de l'équation (1).