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Complex Geometry

Digest on differential forms

A standard reference for this material is Chapter I, §1-5 in :
R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer Verlag, 1982.

Let M be a differentiable manifold of dimension m = dim(M). A differential form α

of degree k is a smooth section of the vector bundle
⋀︀k T*

M : for any point x ∈ M, α(x) is
a k-multilinear skew-symmetric form on the vector space TM,x.

In the sequel we will denote by Ak(U) the vector space of differential forms of degree
k defined on an open set U ⊂ M. It is a C∞(U)-module (a differential form can be
multiplied by a smooth function).

Local description. If (x1, . . . , xm) are local coordinates defined on an open set U ⊂ M,
then α can be written

α(x) =
∑
|I|=k

αI(x)dxI

where :
⋆ I := {1 ≤ i1 < i2 < · · · < ik ≤ n} is an ordered set of indices (a multi-index) ;
⋆ αI : U→ R is a smooth function for any I ;
⋆ dxI := dxi1 ∧ · · · ∧ dxik is the Ith-term of canonical basis of

⋀︀kRm.

In particular, the vector space of differential forms of degree k defined on a coordinate
patch U ⊂ M is a free module of rank

(︀m
k

)︀
over the ring C∞(U).

Wedge product. There is a natural product

k⋀︁
V ⊗

p⋀︁
V −→ k+p⋀︁

V

defined for any vector space V. In particular, it gives rise to a product for differential
forms : if α is a k-form and β a p-form, then α∧β is a (k+ p)-form. This wedge product
has the following properties :

⋆ it is C∞-linear : (fα) ∧ (gβ) = fg(α ∧ β) for any smooth functions f, g and for
any differential forms α and β ;

⋆ it is anti-commutative : α∧ β = (−1)kpβ∧ α (with k and p their degrees).
In particular, if α is a 1-form, then we have : α∧ α = −α∧ α and α∧ α = 0.
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The product can be computed using the local description above. Let us consider
α(x) =

∑
|I|=k αI(x)dxI and β(x) =

∑
|J|=p βJ(x)dxJ. By linearity, we have :

α∧ β(x) =
∑
I, J

αI(x)βJ(x)dxI ∧ dxJ.

Using the fact that dxi ∧ dxi = 0, we see that dxI ∧ dxJ = 0 as soon as I ∩ J ̸= ∅. On
the contrary, if I ∩ J = ∅, then I ∪ J is a (k+ p)-tuples of indices and it can be reordered.
Finally we have :

α∧ β(x) =
∑
I∩J=∅

αI(x)βJ(x)εI,JdxI∪J

where εI,J = ±1 according to the number of permutations needed to reorder I ∪ J.

Exterior derivative. Differential forms can be differentiate as smooth functions. There
is a well-defined operator d acting on forms and increasing the degree by one :

d : Ak(U) −→ Ak+1(U)

and having the following properties :
1. if α = f is a function (i.e. a 0-form), then df coincides with the tangent map of f :

dfx : TM,x −→ TR, f(x) = R.

2. the operator d satisfies the Leibniz rule :

d(α∧ β) = dα∧ β+ (−1)kα∧ dβ

for any forms α, β with deg(α) = k.
3. the square of d vanishes : d(dα) = 0 for any form α.

In local coordinates, the operator d has the following expression. First, observe that if
α = f is a function, then

df(x) =
m∑
i=1

∂f

∂xi
(x)dxi

according to Point 1 above. Points 2 and 3 imply that

dα(x) =
n∑
i=1

∑
|I|=k

∂αI
∂xi

(x)dxi ∧ dxI =
∑
i /∈I

∂αI
∂xi

(x)εi,Idxi∪I

where εi,I = ±1 is the signature of the reordering of {i} ∪ I.
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Behavior with respect to smooth mappings. Any C∞ map f :M −→ N between
smooth manifolds M and N of respective dimensions m = dim(M) and n = dim(N)
induces a morphism (called pull-back) :

f* : Ak(N) −→ Ak(M).

Intrinsically, it is defined as follows :

f*(α)x(v1, . . . , vk) = αf(x)(dfx(v1), . . . , dfx(vk))

where α is a k-form on N, x ∈ M and v1, . . . , vk are tangent vectors to M at the point x.
It is not difficult to check that f* is compatible with d and with the wedge product

in the following sense :

f*(α∧ β) = f*α∧ f*β, ∀α,β ∈ A∙(N)

d(f*α) = f*(dα), ∀α ∈ A∙(N).

If (x1, . . . , xm) are local coordinates near a point x ∈ M and (y1, . . . , yn) are local
coordinates near y = f(x) then the map f can be written f = (f1, . . . , fn). The pull-back
of a form α(y) =

∑
|I|=k αI(y)dxI is given by :

f*(α)(x) =
∑

I={i1<···<ik}

αI(f(x))dfi1(x)∧ · · · ∧ dfik(x).

In the special case n = m = k, the form α is just α(y) = g(y)dy1 ∧ · · · ∧ dyn and the
pull-back formula can be read :

f*α(x) = g(f(x))Jac(dfx)dx1 ∧ · · · ∧ dxn.

De Rham cohomology. The property d2 = 0 implies that

Im(d : Ak−1(M)→ Ak(M)) ⊂ Ker(d : Ak(M)→ Ak+1(M))

and it legitimates the following definition.
Definition (de Rham cohomology groups). The kth de Rham cohomology group of a
smooth manifold M is denoted by :

HkdR(M,R) :=
Ker(d : Ak(M)→ Ak+1(M))

Im(d : Ak−1(M)→ Ak(M))
.

It is naturally a R-vector space.
A typical element in this cohomology group is a closed form (i.e. a form α with

dα = 0) up to the addition of an exact form (i.e. α = dβ). Leibniz rule implies that the
product of cohomology classes is well defined (check it !) and the compatibility of f* and
d can be rephrase by saying that f :M→ N induces a map between cohomology groups :

f* : HkdR(N,R) −→ HkdR(M,R)

which is a morphism of algebras (with the wedge product).
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Easy computations.
1. If M is connected, then H0dR(M,R) = R.
2. If M is compact and oriented then HmdR(M,R) ≃ R (with m = dim(M)) and the

isomorphism is given by the integration [α] ↦→ ∫M α (cf. [Bott-Tu, Corollary 5.8]).
The fact that the latter map is well-defined boils down to the so-called Stokes’
formula.

3. The Poincaré lemma (cf. [Bott-Tu, Proposition 4.1]) states that :

∀k ≥ 1, Hk(Rn,R) = 0

(any closed k-form is exact on Rn or more generally on a contractible manifold).

The Künneth formula This gives the cohomology of a product. It says the following :

Proposition. Let M and N be compact manifolds. The cohomology algebra of M×N is
given by :

H*(M×N,R) ≃ H*(M,R) ⊗H*(N,R).

The tensor product of graded algebra has the following meaning :

∀k ≥ 0, Hk(M×N,R) ≃
⨁︁
i+j=k

Hi(M,R) ⊗Hj(N,R).

It has to be noticed that both projections

M
p←−M×N q−→ N

can be used to define a map on forms :{
Ai(M) ⊗ Aj(N) −→ Ai+j(M×N)

α⊗ β ↦→ p*(α)∧ q*(β)

that induces the isomorphism in the Künneth formula above.
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