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Density and equidistribution of half-horocycles on a geometrically
finite hyperbolic surface

Barbara Schapira

Abstract

On geometrically finite negatively curved surfaces, we give necessary and sufficient conditions
for a one-sided horocycle (hsu)s≥0 to be dense in the nonwandering set of the horocyclic flow.
We prove that all dense one-sided orbits (hsu)s≥0 are equidistributed, extending results of [Bu]
and [Scha2] where symmetric horocycles (hsu)−R≤s≤R were considered.

1. Introduction

Hedlund [H] proved that on the unit tangent bundle of a finite volume hyperbolic surface, all
nonperiodic positive orbits (hsv)s≥0 of the horocyclic flow (called in [H] ”right-semihorocycles”,
and here positive half-horocycles) are dense.

On nonelementary geometrically finite surfaces of infinite volume, i.e. surfaces (of infinite
volume) whose fundamental group is finitely generated and non virtually abelian, the wandering
set of the horocyclic flow is nonempty. One restricts therefore the study of the dynamics to
the nonwandering set E of the horocyclic flow. All nonwandering and non periodic full orbits
(hsv)s∈R of the horocyclic flow are dense in the nonwandering set E of the horocyclic flow.
More precisely, on such surfaces, the following trichotomy holds (see section 2 for definitions
and details): 1) the horocyclic orbit is periodic iff it is tangent to the boundary at a parabolic
point, 2) the horocyclic orbit is wandering iff its point of tangency to the boundary is outside
the limit set ΛΓ of the group, 3) the horocyclic orbit is dense in E iff it is tangent to the
boundary at a horospherical point.

However, as soon as the surface has infinite volume, we can easily find horocycles (hsu)s∈R

that are globally dense in the nonwandering set E of the horocyclic flow, but with one side
dense and the other not (see figure 2).

In this note, we characterize these horocycles with one side dense and the other not. If
u ∈ T 1S, and ũ is any of its lifts on the unit tangent bundle T 1D of the hyperbolic disc, we
denote by u− ∈ S1 (resp. u+) the negative (resp. positive) endpoint in the boundary S1 = ∂D

of the geodesic line defined by ũ. We prove:

Theorem 1.1. Let S be a nonelementary geometrically finite hyperbolic surface. Let u ∈
T 1S be a vector whose full unstable horocyclic orbit (hsu)s∈R is dense in E . Then the positive
half-horocycle (hsu)s≥0 is dense in E iff u− is not the first endpoint of an interval of S1 \ ΛΓ,
where the circle S1 is oriented in the counterclockwise direction, and the limit set ΛΓ ⊂ S1 is
the smallest non-empty Γ-invariant closed subset of S1.
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On geometrically infinite surfaces, this theorem remains valid for vectors u ∈ T 1S that are
periodic for the geodesic flow (see proposition 3.12).

To prove theorem 1.1, inspired by ideas of [C], we introduce the notion of right horospherical
vector, and prove (proposition 3.9) that on general hyperbolic surfaces, a positive half-horocycle
(hsu)s≥0 is dense in its nonwandering set E iff u is a right horospherical vector. We deduce
theorem 1.1 from the fact that on geometrically finite surfaces, right horospherical vectors are
easy to characterize.

Our initial motivation concerned the equidistribution properties of half-horocycles. Fursten-
berg’s unique ergodicity result [F] for the horocyclic flow ensures that on the unit tangent
bundle T 1S of a compact hyperbolic surface, all horocyclic orbits are equidistributed towards

the unique (hs)-invariant measure λ: for all u ∈ T 1S and f : T 1S → R continuous,
1

T

∫T

0

f ◦

hsu ds→ 1

λ(T 1S)

∫
T 1S

f dλ, where λ is the Liouville measure. Of course, the same result holds

for (hsu)s≤0.
This result was extended by Dani and Smillie [DS] to finite volume hyperbolic surfaces: all

nonperiodic positive orbits (hsu)s≥0 are equidistributed towards λ.
On nonelementary geometrically finite hyperbolic surfaces, there is [Bu] [Ro], up to

normalization, a unique (hs)-invariant ergodic measure m, sometimes called the Burger-
Roblin measure, that has full support in the nonwandering set of (hs); and it is infinite.

Therefore, one considers ratios

∫T

−T f ◦ hsu ds∫T

−T
g ◦ hsu ds

and one can prove [Bu][Scha2] that they

converge to

∫
T 1S f dm∫
T 1S

g dm
for all continuous functions f, g : T 1S → R with compact support, and

all nonwandering and non periodic vectors u ∈ T 1S. We can now complete the trichotomy of
the first page (see lemma 2.3 and remark 3.1): 1) if a horocycle is periodic, the normalized
Lebesgue measure on its orbit defines a (hs)-invariant ergodic probability measure; 2) if it
is wandering, the Lebesgue measure on the orbit defines an infinite totally dissipative (hs)-
invariant ergodic measure, and 3) if the horocycle is dense in E , it is equidistributed towards
the unique (hs)-invariant ergodic measure m supported on the full nonwandering set E .

In both articles [Bu][Scha2], equidistribution is obtained for symmetric horocycles
(hsu)−T≤s≤T only, and not for positive horocycles (hsu)0≤s≤T . Omri Sarig asked whether
similar results hold for one-sided averages. Indeed, symmetric averages are very natural from a
geometric point of view, but not from the ergodic point of view, where a difference of behaviour
between the negative and the positive orbit is an interesting phenomenon. Motivated by this
question, we investigated density and equidistribution properties of half-horocycles.

In theorem 1.1, we characterized horocycles that are dense in E , but have one side dense
and the other not. For these horocycles, one cannot hope for equidistribution of both one-
sided orbits. However, according to Hopf ergodic theorem (as the measure m is ergodic and
conservative), almost all one-sided horocycles should be equidistributed towards m.

On nonelementary geometrically finite hyperbolic surfaces, the above phenomenon of dense
horocycles with a non-dense side is the only obstruction to the equidistribution of one-sided
horocycles. Indeed, methods of [Scha1] and [Scha2] apply here to give:

Theorem 1.2. Let S be a nonelementary geometrically finite surface, and u ∈ T 1S such
that (hsu)s≥0 is dense in the nonwandering set E of the unstable horocyclic flow. Then (hsu)s≥0

is equidistributed towards the unique (up to normalization) (hs)-invariant ergodic measure m
which has full support in the nonwandering set of (hs)s∈R.



HALF-HOROCYCLES Page 3 of 22

In other words, for all continuous functions with compact support f, g : T 1S → R, with∫
T 1S

g dm > 0, we have

∫T

0
f ◦ hsu ds∫T

0
g ◦ hsu ds

→
∫

T 1S
f dm∫

T 1S g dm
, when T → +∞ .

Note that (hs)-periodic orbits are obviously equidistributed towards the normalized Lebesgue
measure on the orbit. Of course, theorem 1.2 also holds for negative orbits (hsu)s≤0.

Remark 1.3. In particular, under the above assumptions, the three following properties
are equivalent.

– the half-horocycle (hsu)s≥0 is equidistributed towards the measure m,
– the half-horocycle (hsu)s≥0 is dense in E ,
– for all T ∈ R, the half-horocycle (hsu)s≥T is dense in E .

Indeed, the first property implies clearly the two other (equivalent) properties, and the other
implication is exactly the result of theorem 1.2.

Most results extend to surfaces of variable negative curvature. However, to avoid too many
preliminaries, we postpone the discussion about such surfaces to the end of the paper.

Section 2 is devoted to preliminaries. Theorem 1.1 is proved in section 3, where we also
discuss the case of geometrically infinite surfaces, and theorem 1.2 in section 4.

I thank warmly O. Sarig for the question at the origin of this note, and several comments,
the referee for his suggestions on the redaction, F. Dal’bo for her comments on the first version
of this work, Y. Coudene for several helpful discussions.

2. Preliminaries

Hyperbolic geometry

The hyperbolic disc D = D(0, 1) is endowed with the metric 4dx2

(1−|x|2)2 . Let o be the origin of

the disc. Denote by π : T 1D → D the canonical projection. The boundary at infinity is S1 = ∂D.
The map z ∈ D 7→ i(1+z)

1−z is an isometry between D with the above metric and the upper half

plane H = R × (0,+∞) endowed with the hyperbolic metric dx2+dy2

y . Therefore, the group
of isometries preserving orientation of D identifies with PSL(2,R) acting by homographies on
H = R × R∗

+. An isometry of PSL(2,R) acts also on TD and T 1D via its differential. Moreover,
the group PSL(2,R) acts simply transitively on the unit tangent bundle T 1D, so that we
identify these two spaces through the map which sends the unit vector (1, 0) tangent to D at
o = (0, 0) on the identity element of PSL(2,R). Let d denote the hyperbolic distance on D and
H.

The Busemann cocycle is the continuous map defined on S1 × D2 by

βξ(x, y) := lim
z→ξ

(d(x, z) − d(y, z)) .

Define the map v ∈ T 1D 7→ (v−, v+, βv−(π(v), o)) ∈ (S1 × S1) \ Diagonal× R , where v± are
the endpoints in S1 of the geodesic defined by v, and π(v) ∈ D is the basepoint in S of v.
It defines a homeomorphism between T 1D and ∂2D × R := (S1 × S1) \ Diagonal× R, and we
shall identify these two spaces in the sequel. An isometry γ ∈ PSL(2,R) acts on (S1 × S1) \
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Diagonal× R by

γ.(v−, v+, t) = (γ.v−, γ.v+, t+ βv−(o, γ−1.o)) .

Let Γ be a discrete subgroup of PSL(2,R). Its limit set ΛΓ is the set ΛΓ = Γ.o \ Γ.o ⊂ S1. It
is also the smallest closed Γ-invariant subset of S1. The group Γ acts properly discontinuously
on the ordinary set S1 \ ΛΓ, which is a countable union of intervals. On the other hand, we
will often use the fact that the action of Γ on ΛΓ is minimal: for all ξ ∈ ΛΓ, Γ.ξ is dense in ΛΓ.

A point ξ ∈ ΛΓ is a radial limit point if it is the limit of a sequence (γn.o) of points of Γ.o
that stay at bounded hyperbolic distance of the geodesic ray [oξ) joining o to ξ. Let Λrad denote
the radial limit set. The set of points of ΛΓ fixed by a hyperbolic isometry is a subset of Λrad.

A horocycle of D is a euclidean circle tangent to S1. It can also be defined as a level set of
a Busemann function. A horoball is the (euclidean) disc bounded by a horocycle. The point
ξ ∈ ΛΓ is horospherical if any horoball centered at ξ contains infinitely many points of Γ.o. In
particular, Λrad is included in the horospherical set Λhor.

An isometry of PSL(2,R) is hyperbolic if it fixes exactly two points of S1, it is parabolic if
it fixes exactly one point of S1, and elliptic in the other cases. Let Λp ⊂ ΛΓ denote the set of
parabolic limit points, that is the points of ΛΓ fixed by a parabolic isometry of Γ.

Any hyperbolic surface is the quotient S = Γ\D of D by a discrete subgroup Γ of PSL(2,R)
without elliptic elements, and its unit tangent bundle T 1S identifies with Γ\PSL(2,R).

In this note, we always assume that Γ is nonelementary, that is #ΛΓ = +∞. Moreover,
we are mainly interested in geometrically finite surfaces S, i.e. surfaces whose fundamental
group Γ is finitely generated. In such cases, the limit set ΛΓ is the disjoint union of Λrad

and Λp [Bow]. Moreover, the surface is a disjoint union of a compact part C0, finitely many
cusps (isometric to {z ∈ H, Im z ≥ cst}/{z 7→ z + 1}), and finitely many ’funnels’ (isometric to
{z ∈ H, Re(z) ≥ 0, 1 ≤ |z| ≤ a}/{z 7→ az} = {z ∈ H, Re(z) ≥ 0}/{z 7→ az}, for some a > 1.

When S is compact, ΛΓ = Λrad = S1; the surface S is called convex-cocompact when it is a
geometrically finite surface without cusps. In this case, ΛΓ = Λrad is strictly included in S1 and
Γ acts cocompactly on the set (ΛΓ × ΛΓ) \ Diagonal× R ⊂ T 1D. When S has finite volume,
there are no funnels and ΛΓ = Λrad ⊔ Λp = S1.

Geodesic and horocycle flows

A hyperbolic geodesic in D is a diameter or a half-circle orthogonal to S1. A vector v ∈ T 1D

is tangent to a unique geodesic of D. Moreover, it is orthogonal to exactly two horocycles
passing through its basepoint π(v), and tangent to S1 respectively at v+ and v−. The set of
vectors w ∈ T 1D such that w− = v− and based on the same horocycle tangent to S1 at v− is
the strong unstable horocycle or strong unstable manifold W su(v) ⊂ T 1D of v. It satisfies

W su(v) = {w ∈ T 1D, d(g−tv, g−tw) → 0 when t→ +∞} .

The strong stable manifold W ss(v) is defined in the same way.
The geodesic flow (gt)t∈R acts on T 1D by moving a vector v of a distance t along its geodesic.

In the identification of T 1D with PSL(2,R), this flow corresponds to the right action by the
one-parameter subgroup {

at :=

(
et/2 0
0 e−t/2

)
, t ∈ R

}
.

The strong unstable horocyclic flow (hs)s∈R acts on T 1D by moving a vector v of a distance
|s| along its strong unstable horocycle. There are two possible orientations for this flow, and
we consider the choice corresponding to the right action by the one parameter subgroup

{
ns :=

(
1 0
s 1

)
, s ∈ R

}
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on PSL(2,R). This flow turns vectors along their strong unstable horocycle, so that {hsv, s ∈
R} = W su(v).

Moreover, for all s ∈ R and all t ∈ R, geodesic and horocyclic flows satisfy the crucial relation :

gt ◦ hs = hset ◦ gt . (2.1)

Remark 2.1. With our choice of orientation of S1, when s→ +∞, if u ∈ T 1D and u+
s ∈ S1

is the positive endpoint of the geodesic defined by hsu, then u+
s converges to u−, with u+

s ≥ u−

in the counterclockwise orientation of S1.

These two right-actions are well defined on the quotient space T 1S ≃ Γ\PSL(2,R).

Definition 2.2. Let (φt)t∈R be a flow acting continuously on a topological space X . The
nonwandering set of φ is the set of points x ∈ X such that for all neighbourhoods V of x, there
exists a sequence tn → +∞ such that φtnV ∩ V 6= ∅.

Lemma 2.3. Let u ∈ T 1S be a vector. The following trichotomy holds:
(i) If u− ∈ Λp, (hsu)s∈R is periodic.
(ii) If u− ∈ Λhor, (hsu)s∈R is dense in the set E of vectors v ∈ T 1S, such that v− ∈ ΛΓ.
(iii) If u− /∈ ΛΓ, (hsu)s∈R is embedded in T 1S and diverges to an end of the surface.

In particular in case (3), the horocycle has no accumulation points, and the Lebesgue measure
on (hsu)s∈R is an infinite (hs)-invariant ergodic totaly dissipative locally finite measure.

Proof. This result follows easily from classical results of Hedlund [H], Eberlein [E1] [E2]
and Dal’bo [Da] in the general case.

Lemma 2.4. The nonwandering set of the geodesic flow acting on T 1S is

Ω := Γ\ ((ΛΓ × ΛΓ) \ Diagonal × R) .

The nonwandering set of the horocyclic flow acting on T 1S is

E := Γ\
(
(ΛΓ × S1) \ Diagonal× R

)
.

It satisfies

E = ∪s∈Rh
sΩ.

Proof. For the geodesic flow, the result is classical (see [E1]). For the horocyclic flow, it
follows from the above lemma. The relation between E and Ω is elementary.

In the proof of theorem 1.1, we will need the following lemma.

Lemma 2.5. We have ∪s≥0hs(Ω) = E .

Proof. Let v ∈ E \ (∪s≥0h
sΩ), and ṽ = (v−, v+, t) be a lift of v to T 1D. It means that

v− ∈ ΛΓ, v+ /∈ ΛΓ, and there is no w̃ = (v−, w+, t) ∈ Ω̃, such that ṽ = hs(w̃), for some s ≥ 0.
(The set Ω̃ = (ΛΓ × ΛΓ) \ Diagonal× R is simply the lift of the nonwandering set Ω of the
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geodesic flow to T 1D.) In other words, in the interval [v+, v−] ⊂ S1 (where the circle is oriented
in the counterclockwise direction), there is no point of ΛΓ, except v− of course.

Consider a sequence ṽn ∈ E converging to ṽ, of the form ṽn = (v−n , v
+, t), v−n → v−, v−n 6= v−,

v−n ∈ ΛΓ. As ΛΓ ∩ [v+, v−] = {v−}, necessarily, v−n is greater than v−, with the counterclockwise
orientation of the circle. Consider now the sequence of vectors w̃n = (v−n , v

−, t). These vectors
are all in Ω̃, and satisfy ṽn = hsnw̃n, sn ≥ 0. In particular, ṽ = limn→∞ hsnw̃n, so that the
lemma is proved.

Nonarithmeticity of the length spectrum

In our situation (nonelementary hyperbolic surfaces) we know that the length spectrum of
the fundamental group Γ of S is nonarithmetic, that is the set {l(γ)} of lengths of closed
geodesics generates a dense subgroup of R. We will use this crucial fact in the sequel.

Local product structure of the geodesic flow

The geodesic flow on the unit tangent bundle of any hyperbolic surface (including D) is a
hyperbolic flow. In particular, it has a (uniform) local product structure : for all ε > 0, there
exists δ > 0 s.t. if d(u, v) ≤ δ, there is a vector w = [u, v] in W ss

ε (gtu) ∩W su
ε (v), where W ss

ε (v)
is the intersection of the strong stable horocycle of v with the ball centered at v of radius ε
and |t| ≤ ε.

u

v

[u, v]

Figure 1. Local product in the hyperbolic disc D

In T 1D, the vector [u, v] is the unique vector of endpoints v− and u+ on W su(v). If u and v
are sufficiently close, [u, v] belongs to W ss

ε (gtu) ∩W su
ε (v).

3. Density of positive half-horocycles

Recall that W su(v) = {hsv, s ∈ R} is compact iff v− ∈ Λp, and dense in E iff v− ∈ Λhor (see
lemma 2.3). Denote by W su

+ (v) = {hsv, s ≥ 0} the positive half-horocycle.
We suppose in the sequel that S1 is oriented in the counterclockwise direction.

Geometry of funnels

Remark 3.1. If the surface S = D/Γ has a funnel isometric to {z ∈ H, Re(z) ≥ 0}/{z 7→
az}, with a > 1, the geodesic line Re(z) = 0 of D induces on the quotient the closed geodesic
bounding the funnel.

Any geodesic line crossing this closed geodesic and entering into the funnel never returns
back to the other side. In particular, if the lift of the funnel is exactly {z ∈ H,Re(z) ≥ 0}, then
the limit set ΛΓ does not intersect the right half line R∗

+.
Any horocycle centered in R∗

+ stays in the funnel except during a finite interval of time.
It is embedded in S. A horocycle centered in 0 or ∞ has one side which does not enter the
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funnel, and the other side enters the funnel and never returns back to the other side. This “half-
horocycle” is embedded in S. The Lebesgue measure induced by the parametrization of the
horocyclic flow on this embedded half-horocycle is an infinite locally finite totally dissipative
measure.

From this elementary remark, we deduce the following key facts.

Fact 3.2. On a geometrically finite hyperbolic manifold, the points on the boundary of an
interval of S1 \ ΛΓ are hyperbolic. More precisely, both extremities of such an interval are the
endpoints p± of the axis of a lift of the closed geodesic bounding the corresponding funnel.

Fact 3.3. Assume S is geometrically finite. If v− ∈ Λhor is the first endpoint of an interval
of S1 \ ΛΓ, then W su

+ (v) = {hsv, s ≥ 0} is not dense in E , it is a closed embedded subset of
T 1S, and (g−tv)t≥0 is asymptotic to the closed geodesic turning around a funnel.

v

ṽ

v−

Figure 2. A vector whose right horocycle is not dense in Ω

Right horocyclic vectors and right horocyclic points

For a vector v ∈ T 1S, we denote by ṽ a lift to T 1D, and by v± ∈ S1 the endpoints of this
lift on the boundary.

If v ∈ T 1D, we denote by Hor(v) ⊂ D the horoball centered at v− and containing the base
point of v in its boundary. We denote by Hor+(v) ⊂ Hor(v) the “right part” of the horoball,
i.e. the set of basepoints of vectors of ∪t≥0W

su
+ (g−tv) = ∪t≥0 ∪s≥0 h

sg−tv = ∪t≥0 ∪s≥0 g
−thsv

(according to the relation (2.1)).
Fix a point o ∈ D. If S is a geometrically finite surface, we assume that o belongs to a lift of

the compact part of S.
In [C], a vector v ∈ T 1S is called horospherical if there exists a (gt)-nonwandering vector

z ∈ Ω, ti → +∞ and vi ∈ W su(v) ∩ Ω s.t. g−tivi → z ∈ Ω. It is equivalent to saying that v− ∈
Λhor, that is that all horoballs centered at v− contain infinitely many points of the orbit Γ.o
(see lemma 3.7 below for a proof).

Definition 3.4. If v ∈ T 1D, and α > 0, we define the cone of width α around v as the set
C(v, α) of points at hyperbolic distance at most α from the geodesic ray (g−tv)t≥0 inside the
horoball Hor(v).
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Definition 3.5. Let S be a nonelementary hyperbolic surface. A vector v ∈ T 1S is a right
horocyclic vector if for a lift ṽ ∈ T 1S, for all α > 0 and D > 0, the orbit Γ.o intersects the right
horoball Hor+(g−Dṽ) minus the cone C(g−Dṽ, α).

ṽ

γ1.o

γn.o

v−

Figure 3. Lift of a right-horocyclic vector

Of course if v is a right horocyclic vector, then v− is horospherical, and v is a horospherical
vector in the sense of [C].

Remark 3.6. This definition depends only of v−. Indeed, if w is another vector with
v− = w−, any cone C(w,α) around w is included in a cone C(gτv, β) around v for some β > 0,
τ ∈ R depending on v, w, α. A point ξ ∈ ΛΓ which is the negative endpoint of a right horocyclic
vector will therefore be called a right horocyclic point.

Lemma 3.7. Let S be a hyperbolic surface. A vector v ∈ T 1S is a right horocyclic vector if
and only if there exists a (gt)-nonwandering vector z ∈ Ω such that for all α > 0, there exists a
sequence tn → +∞, vn ∈W su

+ (v) s.t. g−tnvn converges to z ∈ Ω, but g−tn ṽn /∈ C(ṽ, α), where
ṽ and ṽn are lifts resp. of v and vn on the same horocycle of T 1D.

The definition of right horocyclic vector is probably more natural, but the above equivalent
property will be useful in the sequel.

Proof. Let us begin with the following elementary fact.

Fact 3.8. There exists R > 0, such that for all ξ ∈ ΛΓ, there exists η ∈ ΛΓ, such that the
geodesic (ξη) intersects the ball B(o,R).

Indeed, assuming it is false, we could find a sequence Rn → ∞, ξn ∈ ΛΓ, ξn → ξ ∈ ΛΓ, s.t.
for all η ∈ ΛΓ, the distance d(o, (ξnη)) is greater than Rn. Passing to the limit, for η 6= ξ, we
obtain d(o, (ξη)) = +∞, which gives a contradiction.

Now, let v be a right horocyclic vector. Let Dn → +∞, αn → +∞, and ṽ be a lift of
v to T 1D. There exists a point γn.o in Hor+(g−Dn ṽ) \ C(ṽ, αn). Using fact 3.8, we can
find η ∈ ΛΓ, η 6= v−, s.t. the geodesic (v−η) intersects the ball B(γn.o, R). Choose a vector
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w̃n ∈ Ω̃ ∩ T 1B(γn.o, R) tangent to this geodesic, where Ω̃ = (ΛΓ × ΛΓ) \ Diagonal× R is the
lift of the nonwandering set of the geodesic flow. It satisfies w−

n = v−, w+
n = η, w̃n = g−tn ṽn,

tn ≥ Dn −R, ṽn ∈W su
+ (ṽ), and w̃n does not belong to the cone C(ṽ, αn −R). Passing to T 1S,

we get a sequence of vectors wn of the compact set T 1B(o,R) ∩ Ω. Up to a subsequence, it
converges to some z ∈ Ω. We proved that there exists z ∈ Ω, s.t. for all α > 0, there exists
tn → +∞, and vn ∈W su

+ (v) s.t. g−tnvn → z, and g−tn ṽn /∈ C(ṽ, α).

Conversely, assume the existence of such a z ∈ Ω. Fix α > 0 and D > 0. Let ρ = d(o, π(z)),
α > 0, and β = α+ ρ+ 1. There exists tn → ∞, vn ∈W su

+ (v), g−tnvn → z, and ṽn /∈ C(ṽ, β).
For n large enough, tn ≥ D + ρ+ 1, and d(g−tnvn, z) ≤ 1. There exists an element γn.o ∈
B(π(g−tn ṽn), ρ). By construction, this element is in Hor+(g−Dṽ) \ C(g−Dṽ, α). Thus, ṽ is a
right horocyclic vector.

Proof of theorem 1.1

We will prove

Proposition 3.9. Let S be a hyperbolic surface. A vector v ∈ T 1S is a right horocyclic
vector if and only if (hsv)s≥0 is dense in E .

and

Lemma 3.10. Let S be a geometrically finite surface. If v− ∈ Λhor, v
− is a right horocyclic

point iff v− is not the first endpoint of an interval of S1 \ ΛΓ.

Theorem 1.1 is an immediate consequence of these two results. Let us now prove them.
Proposition 3.9 will be proved thanks to proposition 3.12 below, which is interesting in itself.
Lemma 3.10 is elementary and will be proved later.

Fact 3.11. If y ∈W su
+ (x) = {hsx, s ≥ 0}, then W su

+ (y) = {hsy, s ≥ 0} ⊂W su
+ (x) =

{hsx, s ≥ 0}.

Proof. Evident with the parametrization of W su by the horocyclic flow.

Proposition 3.12. Let S be a hyperbolic surface. If p ∈ Ω is a periodic vector for the
geodesic flow, then its positive half-horocycle (hs(p))s≥0 is dense in the nonwandering set E of
the horocyclic flow if and only if p− is not the first endpoint of an interval of S1 \ ΛΓ.

This result is valid on any hyperbolic surface, without geometrical finiteness assumption. It
is even true on elementary surfaces, but trivial (the limit set is finite, so that p− is necessarily
the first endpoint of an interval of S1 \ ΛΓ).

Let us prove proposition 3.12.

Proof. Assume first that p ∈ T 1S is a periodic vector for the geodesic flow, such that p− is
the first endpoint of an interval ]p−η[ of S1 \ ΛΓ. Denote by γp the isometry whose attractive
(resp. repulsive) fixed point is p+ (resp. p−). In this case, η is necessarily equal to p+ (if not,
observe that the sequence γ−n

p η is a sequence of points of ΛΓ in the interval ]p−η[, which gives
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a contradiction). On the quotient surface S, the area delimited by the geodesic (p−p+) and the
interval [p−p+] on the boundary (oriented counterclockwise) induces a funnel.

And we see easily that the positive half-horocycle (hsp)s≥0 is embedded in T 1S (see remark
3.1).

Assume now that p− is not the first endpoint of an interval of S1 \ ΛΓ, and prove the converse
direction. We follow and adapt the strategy of [C].
∗ Step 1: Prove that gRW su

+ (p) ⊃ Ω (see also [C, Lemma1]).
Indeed, there exists a (gt)-nonwandering vector v ∈ Ω, s.t. (gtv)t≥0 is dense in Ω. Let ṽ (resp. p̃)
be a lift of v (resp. p) to T 1D, and v+ its positive endpoint in S1. The orbit Γ.v+ is dense in ΛΓ.
As p− is not the first endpoint of an interval of S1 \ ΛΓ, we can find a sequence v+

n ∈ Γ.v+

converging to p−, with v+
n ≥ p− (in the counterclockwise order).

p̃

ṽn

p−
v+

n

Figure 4. Construction of a dense geodesic in the weak unstable manifold W wu(p)

If n is large enough, the unique vector ṽn of W ss(p̃) ∩ (p−v+
n ) belongs to the positive half-

horocycle W su
+ (p̃), so that on T 1S, vn ∈W su

+ (p) and gRvn is dense in Ω, because (gtvn)t≥0 and
(gtv)t≥0 are asymptotic by construction. Therefore, gRW su

+ (p) is dense in Ω.

∗Step 2: W su
+ (p) ⊃ gRW su

+ (p) (We still follow [C]).
• Recall first that on a nonelementary negatively curved surface, the length spectrum is
non arithmetic (see [Da]), that is the set of lengths of periodic orbits {l(γ), < γ > periodic}
generates a dense subgroup of R.

Fix ε > 0, and a periodic vector p0 ∈ T 1S, s.t. ∃m,n ∈ Z, with |ml(p) + nl(p0)| < ε. Without
loss of generality, assume n > 0, m > 0 and nl(p0) −ml(p) = ε0, with 0 < |ε0| < ε.

Let δ = δ(ε) > 0 be the constant appearing in the local product structure property (see end
of section 2).
• There exists v ∈W su

+ (p) ∩Wws(p0), such that W su
2ε (v) ⊂W su

+ (p). Let σ1 > 0 be such that
gσ1v ∈W ss

δ/2(p0).

Indeed, as p− is not the first endpoint of an interval of S1 \ ΛΓ, we can lift p0 to p̃0 in such
a way that p+

0 ∈ [p−p+]. Let v ∈W su
+ (p) ∩Wws(p0) be the vector obtained as the projection

on T 1S of the unique ṽ of W su
+ (p̃) ∩Wws(p̃0). If p+

0 is well chosen (i.e. close enough to p−), we
have W su

2ε (v) ⊂W su
+ (p). The geodesic orbit (gtv)t∈R is negatively asymptotic to the periodic

orbit of p, positively asymptotic to the periodic orbit of p0.
It is the only part of the proof where we use the assumption that p− is not the first endpoint

of an interval of S1 \ ΛΓ.
• Using transitivity of the geodesic flow, we construct a vector w ∈ W su

δ/2(p0) ∩Wws(p). As p0

is periodic, we have of course g−knl(p0)w ∈ W su
δ/2(p0) ∩Wws(p), where k ∈ N is any nonnegative

integer, and n > 0 was given above by the nonarithmeticity property.
• For all k ∈ N, there exists a vector wk ∈W su

ε (gσ1v) ∩W ss
ε (g−knl(p0)±εw). It is obtained by

the local product structure, which allows to glue the past of gσ1v with the future of g−knl(p0)w.
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And when one pushes this vector backward by the geodesic flow, one gets a vector vk =
g−σ1wk ∈W su

ε (v) ∩Wws(p). In particular, vk ∈W su
+ (p).

• Note that for all j ∈ Z, and all k ∈ N, gjl(p)vk ∈W su
+ (p) ∩Wws(p) (by periodicity of (gtp)t∈R).

• For k = 0, let j0 ≥ σ1 + 2ε be the smallest integer such that gj0l(p)v0 is ε-close from the
periodic orbit of p. This integer exists as v0 ∈ Wws(p). Let 0 ≤ τ0 ≤ l(p) be such that gj0l(p)v0
belongs to W ss

ε (gτ0(p).
• For all k ≥ 1, let jk be the smallest integer such that jkl(p) ≥ j0l(p) + knl(p0) + kml(p). By
the above, gj0l(p)+knl(p0)vk is 2ε-close to gτ0p.

Therefore,

gjkl(p)vk = g(jk−km−j0)l(p)gkml(p)−knl(p0)gj0l(p)+knl(p0)(vk)

is 2ε-close from g(jk−km−j0)l(p)gkml(p)−knl(p0)gτ0(p) = gkε0+τ0(p).
• We constructed a sequence of elements (gjkl(p)vk)k∈N of W su

+ (p) that are 3ε-dense in the

orbit of p. Let now ε→ 0 to get W su
+ (p) ⊃ {gtp, t ∈ R}.

v

gjkl(p)vk p
vk

p0

Figure 5. Proof of proposition 3.12

∗ Step 3: Conclusion.
The closure of the half-horocycle W su

+ (p) is invariant under hs, for all s ≥ 0, in the sense that

hsW su
+ (p) ⊂W su

+ (p) for all s ≥ 0, and contains Ω. Lemma 2.5 implies that W su
+ (p) contains

the full (hs)-nonwandering set E . This ends the proof.

Proof of proposition 3.9 Assume first that W su
+ (v) = (hsv)s≥0 is dense in E , and prove

that v is a right horocyclic vector.
Let p be a vector on a periodic geodesic, l(p) its length, and d(p) the distance between o and

its orbit. (If v is periodic, we assume that p and v have different orbits.) Fix α > 0 and D > 0.
Without loss of generality, we assume D ≥ l(p) + d(p) + 2. Consider the cone C = C(g−Dṽ, α),
where ṽ is a lift of v to T 1D. The distance between (the basepoint of) hs(g−Dṽ) and the cone
C goes to infinity when s→ +∞.

Fix ε ∈]0, 1[. By density of W su
+ (v) in E , we can find an infinite sequence vk ∈W su

+ (v),
vk = hskv, sk → ∞, s.t. vk is so close to p that (g−tvk)0≤t≤2D and (g−tp)0≤t≤2D stay ε-close
each other. We deduce that g−2Dvk is at distance ε from g−2Dp, hence from the orbit of p,
and therefore at distance less than 1 + l(p) + d(p) from the projection π(o) of o on S. Lift v to
ṽ ∈ T 1D, and vk to ṽk ∈ W su

+ (ṽ) As vk = hskv goes to infinity on W su
+ (v), the distance between

g−2Dṽk and C = C(g−Dṽ, α) goes to infinity. Therefore, we can assume that this distance is
greater than l(p) + d(p) + 2. There exists a point of Γ.o at distance at most d(p) + l(p) + 1 of
g−2Dvk. By construction, this point is inside Hor+(g−Dṽ) \ C(ṽ, α). This construction works
for all α > 0 and D > 0 large enough, so that v is a right horospherical vector.

Let us establish now the other direction, adapting methods of [C]. Let v be a right horocyclic
vector. We will prove that there exists a periodic vector p ∈ W su

+ (v), with W su
+ (p) = (hsp)s≥0
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dense in E . If v is periodic and p is on the orbit of v, the result follows. So we shall always
assume that the periodic vector p is not on the orbit of v.
• Let p be any fixed periodic vector s.t. W su

+ (p) = (hsp)s≥0 is dense in E , or equivalently s.t.
p− is not the first endpoint of an interval of S1 \ ΛΓ, according to proposition 3.12.
• Fix 0 < ε < 1, and let δ be the constant associated to ε by the local product structure

property (see the end of section 2).
• As v is right-horocyclic, we can find tn → ∞, vn = hsnv ∈ W su

+ (v) ∩ Ω, sn → +∞ (i.e.
vn → ∞ on the leaf), s.t. g−tnvn converges to some z ∈ Ω, with g−tn ṽn staying outside a given
cone C(v, 2).
• Using the transitivity and the product structure of the geodesic flow, we can construct a

vector w ∈W su
δ/2(z) ∩Wws(p) negatively asymptotic to z−, and positively asymptotic to p+.

Let s ≥ 0 be such that for all t ≥ s, gtw is ε-close to the orbit of p.
• Now, let n be large enough so that tn ≥ 2s and d(g−tnvn, z) ≤ δ/2. In particular, the

distance between g−tnvn and w is at most δ.
As vn ∈ W su

+ (v) and g−tnvn is not in the cone C(v, 2), the local strong stable manifold
W su

2ε (g−tnvn) is included in W su
+ (g−tnv). Let ṽ be a lift of v, ṽn the lift of vn on W su

+ (ṽ), z̃
(resp. w̃) be the lift of z (resp w) δ/2-close to g−tn ṽn. And let respectively v±, v±n , z±, w±, be
their endpoints in the boundary. Consider the geodesic joining v− to w+. As d(g−tnvn, w) ≤ δ,
the local product structure of the geodesic flow allows to glue the negative orbit of g−tnvn

and the positive orbit of w to get a vector of W su
ε (g−tnvn) ∩W ss

ε (g±εw). On the unit tangent
bundle T 1D of the universal cover, the orbit of such a vector lifts precisely to the geodesic joining
v− to w+. By the above, this geodesic crosses W su

2ε (g−tn ṽn) ⊂W su
+ (g−tn ṽ), and therefore also

W su
+ (ṽ).
• Let ỹ be the unique vector of W su

+ (ṽ) on this geodesic. By construction (gtỹ)t≤0 is
asymptotic to v−, gtỹ belongs to a 2ε-neighbourhood of w̃ for t ≃ −tn, and then it becomes
positively asymptotic to (gtw̃)t≥−tn . In particular, on T 1S, as s is the “time” needed on the
orbit of w to join the ε-neighbourhood of the orbit of p, for t ≥ s− tn, the orbit of y becomes
2ε-close to the orbit of p. We chose tn ≥ 2s so that for t = 0, y is 2ε-close to the orbit of p.
• For ε > 0 fixed, we obtained a vector y ∈W su

+ (v) in the 2ε-neighbourhood of the periodic
orbit of p. Let εk → 0. We get by the above construction a sequence yk ∈W su

+ (v) of vectors
closer and closer from the periodic orbit (gtp)0≤t≤l(p). Up to a subsequence, yk converges to
some gτp, 0 ≤ τ ≤ l(p).

It implies that gτp ∈W su
+ (v). Of course gτp is periodic and W su

+ (gτp) is dense in E . Fact
3.11 implies now that W su

+ (v) is dense in E . �

Proof of lemma 3.10 Assume first that v− ∈ ΛΓ is the first endpoint of an interval of
S1 \ ΛΓ. As the property of being right horospherical depends only on v−, we can assume that
v is a periodic vector on the closed geodesic closing the funnel.

By the definition of a funnel, it becomes clear that if o was chosen in a lift of the compact
part of S, the intersection of the open right horoball Hor+(v) with Γ.o is empty. Thus, ṽ is
not a right horospherical vector.

Suppose now that v is not a right horospherical vector. There exists a cone C(v, α), a positive
number T ≥ 0, and a right horoball Hor+(g−T v), s.t. Γ.o does not intersect Hor+(g−T v) \
C(v, α). Let us shrink the horoball from a distance d equal to the diameter of the compact part

C(S) of S. Thus, the set Hor+(g−T−dv) \ C(v, α) does not intersect the Γ-orbit Γ.C̃(s) of the
lift of the compact part. In other words, viewed on S, the projection ofHor+(g−T−dv) \ C(v, α),
which is a connected set, is necessarily included in a cusp or a funnel. It implies immediately
that v− is a parabolic point or is the first endpoint of an interval of S1 \ ΛΓ. By assumption,
v− is the fixed point of a hyperbolic isometry, so it cannot be parabolic. Thus it excludes the
case of a cusp, and the result is proven. �
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Geometrically infinite surfaces

On these surfaces, the situation is -not surprisingly - more complicated, and we only discuss
here partial results on the behaviour of positive (resp. negative) half-horocycles.

Proposition 3.12 gives a complete answer for periodic vectors. Recall the

Theorem 3.13 Hedlund, [H], thm 4.2 . Let S = D/Γ be a hyperbolic surface of the first
kind, i.e. such that ΛΓ = S1. Let v ∈ T 1S be s.t. (g−tv)t≥0 returns infinitely often in a compact
set, i.e. such that v− ∈ Λrad. Then the positive half-horocycle (hsv)s≥0 is dense in T 1S.

In [Sa-Scha], in the case of an abelian cover of a compact surface (also a surface of the first
kind), we proved the equidistribution, and therefore the density of all positive half-horocyclic
orbits (hsv)s≥0 of vectors v whose asymptotic cycle is not maximal.

Question 3.14. It would be interesting to understand completely the behaviour of half-
horocycles. For example,

(i) On a surface of the first kind (ΛΓ = S1), are all horospherical vectors also right
horocyclic vectors (generalization of Hedlund’s theorem) ?

(ii) On a surface of the second kind, can we prove Hedlund’s theorem for vectors v such
that v− ∈ Λrad is not the first endpoint of an interval of S1 \ ΛΓ? And/or sufficient
conditions to be right horocyclic ?

4. Proof of Theorem 1.2

In this section, S is a nonelementary geometrically finite surface.

4.1. The Patterson-Sullivan construction

Let δΓ be the critical exponent of Γ, defined by

δΓ := lim sup
T→∞

1

T
log #{γ ∈ Γ, d(o, γ.o) ≤ T } .

The well known Patterson construction provides a conformal density of exponent δΓ on S1,
that is a collection (νx)x∈D of measures, supported on ΛΓ ⊂ S1, s.t. νo(S

1) = 1, γ∗νx = νγ.x

for all γ ∈ Γ, and dνx

dνy
(ξ) = exp(−δΓβξ(x, y)).

The Bowen-Margulis-Patterson-Sullivan measure mps on T 1S is defined locally as the
product

dmps(v) = exp (δΓβv−(o, π(v)) + δΓβv+(o, π(v))) dνo(v
−)dνo(v

+)dt

in the coordinates Ω ≃ Γ\(Λ2
Γ \ Diagonal× R).

Under our assumptions on S, it is well known [Su] that the Bowen-Margulis-Patterson-
Sullivan measure is (gt)-invariant, finite and ergodic†, that there exists a unique conformal
density of exponent δΓ, that all measures νx are nonatomic and give full measure to the radial
limit set. Moreover, the Bowen-Margulis-Patterson-Sullivan measure is the measure of maximal
entropy of the geodesic flow, and it is fully supported on the nonwandering set Ω of the geodesic
flow. Note that in general, this measure is NOT invariant under the horocyclic flow, except on

†In fact, this measure is always invariant, bu not necessarily finite or ergodic in variable negative curvature,
and the assumption (∗) added in section 5 ensures finiteness and ergodicity of this measure
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finite volume surfaces, where ΛΓ = S1, Ω = E = T 1S, and ν0 is the Lebesgue visual measure
on S1 (see [K] for details).

4.2. Foliations and measures

The orbits of the horocyclic flow on T 1S form a one-dimensional foliation Wsu of T 1S (and
of T 1D also, of course). We denote by W su(u) a leaf of any of these two foliations. Given any
chart ϕ : B → R2 × R of this foliation, the source B of the chart is called a box, a plaque of
B is a set P = ϕ−1({x} × R), a transversal is a set T = ϕ−1(R2 × {t}). We write B = T × P .
On T 1D, in view of the homeomorphism T 1D ≃ (S1 × S1) \ Diagonal× R, natural transversals
are the weak stable manifolds of the geodesic flow, defined by Wws(ũ) := {v ∈ T 1D, v+ = u+}.
They induce the weak stable manifolds of the geodesic flow on T 1S, that give also locally
transversals to the horocyclic flow.

A holonomy ζ : T → T ′ is the homeomorphism following the plaques between two transver-
sals T and T ′ of the same box B = T × P = T ′ × P . A transverse invariant measure is a
collection ν = {νT} of Radon measures on all transversals T , satisfying νT ′ = ζ∗νT for all
holonomies ζ : T → T ′. The support of such a measure is the closure of the union of the
supports of the measures νT . By invariance by holonomies of {νT }, this support is a saturated
set, that is a union of leaves of the foliation.

Transverse invariant measures for the horocyclic foliation are in one-to-one correspondance
with (hs)-invariant measures. It is a classical fact, which can easily be checked in restriction
to any small box B = T × P . A transverse invariant measure is ergodic iff the (hs)-invariant
measure associated to it is ergodic.

Remark that a periodic horocycle H+ induces canonically a transverse invariant measure
νH+

defined on a transversal T by νT :=
∑

t∈T∩H+ δt.

Definition 4.1. A Haar system is a collection α = {αW su} of measures on the leaves
of the foliation, satisfying the following continuity condition: for all relatively compact boxes
B = T × P and all continuous maps ψ : T 1S → R with compact support included in B, the
map t ∈ T 7→

∫
Pt
ψ dαW su

t
is continuous, where Pt denotes the plaque {t} × P of B through t,

and W su
t the leaf of t.

The Lebesgue measure λ = {λW su} on leaves induced by the parametrization of the flow
defines a Haar system.

The conditional measures of the Patterson-Sullivan measure on leaves define a Haar system
µps defined on T 1D by dµps

W su(v) = exp(δΓβv+(o, π(v)))dνo(v
+). This family is Γ-invariant and

gives rise to a Haar system on the horocyclic foliation of T 1S (see [Scha2] for details).
The Patterson-Sullivan measure induces also a transverse invariant measure, defined on

a weak stable manifold T = Wws(w) of T 1D by dµps
T (w) = exp(−δΓt)dνo(w

−)dt, with t =
βw−(π(w), o)). This transverse invariant measure is invariant under Γ, and induces therefore a
transverse invariant measure on T 1S.

Given a transverse holonomy invariant measure ν and a Haar system α, we may define a
measure ν ◦ α on T 1S, defined locally on boxes B = T × P by

ν ◦ α(B) :=

∫
T

α(Pt)dνT (t) .

This quantity does not depend on the choice of the transversal T in B.
The Patterson Sullivan measure mps is the “product” in this sense mps = µps

T ◦ µps
W su .

On geometrically finite surfaces, it follows from Roblin [Ro] (see also [Bu]) that there is a
unique transverse invariant measure {µps

T } with support equal to E , which gives zero measure
to the set EP of periodic horocycles.
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As a corollary, he obtains the classification of ergodic invariant measures for the horocyclic
flow. Except the probability measures supported on periodic horocycles, and the infinite
measures supported on wandering horocycles, there is a unique (up to normalization) ergodic
invariant measure fully supported in the nonwandering set E ≃ Γ\

(
(ΛΓ × S1) \ Diagonal× R

)

of (hs)s∈R. It is an infinite locally finite measure, defined locally by

dm(v) = ds(v) exp (δΓβv−(o, π(v))) dνo(v
−)dt,

where ds(v) denotes the natural Lebesgue measure on (hsv)s∈R associated with the
parametrization by (hs). In other words, it is the product µps

T ◦ λwsu of the transverse invariant
measure induced by the Patterson-Sullivan measure by the Lebesgue measure on leaves.

Sketch of the proof

The strategy of the proof is exactly the same as in [Scha1] and [Scha2]. We consider ’one-
sided versions’ of all results of these articles. Due to the lengths of the proofs of technical
results in [Scha1], all arguments are not presented with full details. However, following the
recommandations of the referee, we recall all important arguments and ideas.

The main lines of the proof are as follows. We do not prove directly equidistribution of
horocyclic orbits to the unique “interesting” ergodic invariant measure, because this measure
is infinite. We consider auxiliary averages on horocycles. Using classical arguments (tightness in
theorem 4.2 and classification of invariant measures due to Burger [Bu] and Roblin [Ro]), we
prove equidistribution of these auxiliary averages towards the finite Bowen-Margulis-Patterson-
Sullivan measure (theorem 4.3). We deduce then theorem 1.2 from the preceding.

Fix u ∈ T 1S, such that u− ∈ ΛΓ is not the first endpoint of an interval of S1 \ ΛΓ. Let r > 0
be large enough so that µps

W su((hsu)0≤s≤r) > 0. It is possible since (hsu)s≥0 is dense in E ⊃ Ω,
by theorem 1.1, and µps

W su is an infinite measure of support equal to W su(u) ∩ Ω.
Let ψ : T 1S → R be a continuous compactly supported map. Consider the following averages :

M+
r,u(ψ) =

1

µps
W su((hsu)0≤s≤r))

∫
(hsu)0≤s≤r

ψ(v) dµps
W su(v) .

These averages are supported on Ω. As mentioned above, we shall now prove first a tightness,
or nondivergence result for these averages, then an equidistribution result for these averages,
and last deduce theorem 1.2.

4.3. A tightness result

Theorem 4.2. Let S be a nonelementary geometrically finite hyperbolic surface, and u ∈
E ⊂ T 1S. For all ε > 0, there exist a compact set Kε,u ⊂ Ω and r0 > 0 such that for r ≥ r0,
M+

r,u(Kε,u) ≥ 1 − ε.

This theorem is trivial when the surface is convex-cocompact, because the averages M+
r,u are

probability measures on Ω, and saying that the surface is convex-cocompact means that the
nonwandering set Ω is compact.

This result implies that all weak limit points of the sequence of probability measures
(M+

r,u)r>0 when r → +∞ are probability measures. We postpone the (long and technical)
proof to paragraph 4.6.
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4.4. Equidistribution towards the Patterson-Sullivan measure

Theorem 4.3. Let S be a nonelementary geometrically finite hyperbolic surface, and u ∈
E ⊂ T 1S. If the positive orbit (hsu)s≥0 is dense in Ω, then it is equidistributed : for all ψ :
T 1S → R continuous with compact support, we have

M+
r,u(ψ) →

∫
T 1S

ψ dmps , when r → ∞.

Recall that E = {u ∈ T 1S, u− ∈ ΛΓ}. Introduce the notations EP = {u ∈ E , u− ∈ ΛP }, and
Erad = {u ∈ E , u− ∈ Λrad}. The proof of the theorem uses the two following lemmas.

Lemma 4.4. If u ∈ Erad, and u− is not the first endpoint of an interval of S1 \ ΛΓ, every
limit point of (M+

r,u)r≥0 when r → ∞ can be written as ν ◦ µps, where ν is a transverse measure
invariant by holonomy and µps is the Haar system associated with the Patterson-Sullivan
measure mps.

The proof of this lemma is postponed after the proof of theorem 4.3.

Lemma 4.5 [Scha2], lemma 3.6 or [BeMa]. Under the assumptions of theorem 4.3, if
u ∈ Erad, any limit point of (M+

r,u)r≥0 when r → +∞ gives zero measure to EP .

The proof of this lemma is omitted, as the argument is exactly the same as in [BeMa] and
[Scha2].

Proof of theorem 4.3 We follow [Scha2]. Thanks to theorem 4.2, all limit points of
(M+

r,u)r≥0 are probability measures. According to lemma 4.5, such a limit gives measure zero
to the set of periodic horocycles.

Moreover, lemma 4.4 implies that a limit point of the family (M+
r,u)r≥0 when r → ∞ can be

written as the product of a transverse invariant measure to the strong unstable foliation by
the measure µps

W su .
The uniqueness ([Ro]) of a transverse measure of full support in the nonwandering set E

giving measure 0 to periodic horocycles allows to conclude the proof.

Proof of lemma 4.4 We follow closely [Scha2], lemma 3.5.
• As the support of M+

r,u, for r > 0, is included in Ω, the support of any limit point of
(M+

r,u)r>0 when r → ∞ is also included in Ω, so that it is enough to show that all v ∈ Ω have
a relatively compact neighbourhood of the form B = T × P in restriction to which the result
of the lemma is true. This neighbourhood can be assumed to be relatively compact.
• Define a transverse measure on all transversals T by

ν+,r
T =

1

µps
W su((hsu)r

0)

∑

t∈T∩{hsu,0≤s≤r}

δt .

• Observe that the averageM+
r,u, restricted to the box B, can be written asM+

r,u(B) = ν+,r
T ◦

µps
W su(B) + R(T,B, r), where the error term R(T,B, r) is made of two possible contributions

(see figure 6).
First, a term which can have been forgotten in the integral over the transversal T

w.r.t. ν+,r
T , corresponding to the possible t ∈ T ∩W su

+ (u), t /∈ {hsu, 0 ≤ s ≤ r}, which appear
in M+

r,u because the plaque of t satisfies µps
W su(Pt ∩ {hsu, 0 ≤ s ≤ r}) > 0. Second, a term



HALF-HOROCYCLES Page 17 of 22

�
�
�
� ��

��
��
��

R(B,T, r)

T

(hsu)0≤s≤r

B

Figure 6. Study of the error term

corresponding to a possible t ∈ T ∩ {hsu, 0 ≤ s ≤ r}, whose contribution in M+
r,u is smaller

than the contribution in ν+,r
T , in the case where the plaque Pt of t satisfies µps

W su(Pt ∩ {hsu, 0 ≤
s ≤ r}) < µps

W su(Pt).
• As horocycles are one-dimensional, and the box B = T × P is relatively compact, the sum

R(T,B, r) of these two error terms can be bounded as follows:

|R(T,B, r)| ≤ 1

µps
W su((hsu)0≤s≤r)

2 sup
t∈T

µps
W su(Pt) <∞ .

Fact 4.6. If (hsu)s≥0 is dense in E , then µps
W su((hsu)0≤s≤r) → +∞ when r → +∞.

A way to see it is to consider a sequence vn ∈ Ω, rn → +∞, such that (hsvn)|s|≤rn
⊂

{hsu, s ≥ 0}, and vn converges to v∞ ∈ Ω. As (hsu)s≥0 is dense in E ⊃ Ω, such a sequence
exists. As µps

W su(v∞) is an infinite measure, and the family {µps
W su} is a Haar system (i.e. varies

continuously), the sequence µps
W su((hsvn)|s|≤rn

) goes to +∞.
• Thanks to this fact, R(T,B, r) → 0 when r → +∞, so that limit points of (M+

r,u)t>0 are

limit points of the sequence ν+,r
T ◦ µps

W su . They can be written as the product of a transverse
measure with the Haar system µps

W su . It is easy to show that any limit point of {ν+,r
T } is a

holonomy invariant transverse measure. We refer to [Scha2] for details.

4.5. Proof of theorem 1.2

We refer to [Scha2] for a proof with full details in the case of symmetric averages.
• Let m be the unique (hs)-invariant ergodic measure with full support in E . Fix a large

compact set K of T 1S, such that m(K) > 0. Assume that K is proper, that is equal to the
closure of its interior. Consider a continuous function ϕ with compact support in E . Without
loss of generality, we assume that it is nonnegative, that

∫
T 1S

ϕdm > 0, and that its support
is included in a box B = T × P included in K.
• Introduce the averages

M+,K
r,u (ϕ) :=

∫r

0
ϕ ◦ hsu ds∫r

0 1K(hsu) ds
,

and the transverse measure defined on all transversals T by

νK,r
T :=

1∫r

0
1K(hsu) ds

∑

t∈T∩{hsu,0≤s≤r}

δt .



Page 18 of 22 BARBARA SCHAPIRA

• As in the proof of theorem 4.3, and more precisely lemma 4.4 we see that up to an
error term, M+,K

r,u (ϕ) ≃ νK,r
T ◦ λW su , where λ = {λW su} is the Haar system induced by the

parametrization of the horocyclic flow. The error term is bounded by a constant depending on
ϕ divided by

∫r

0
1K(hsu) ds. This denominator goes to 0 as soon as K is not too small (i.e.

intersects largely E , because (hsu)s≥0 is dense in E , and therefore comes back infinitely often
in K).

Recall that up to an error term going to 0, we have

M+
r,u(ϕ) = ν+,r

T ◦ µps
W su .

Moreover, we have

νK,r
T =

µps
W su({hsu, 0 ≤ s ≤ r})∫r

0 1K ◦ hsu ds
ν+,r

T .

• The fact that M+
r,u converges to mps implies that ν+,r

T converges to µps
T . The averages MK

r,u

define probability measures on K, so that the ratio

µps
W su({hsu, 0 ≤ s ≤ r})∫r

0 1K ◦ hsu ds

must have positive and finite limit points when r → +∞ (see [Scha2] page 162 for details).
We deduce that accumulation points of the two sequences (νK,r

T ) and (ν+,r
T ) when r → +∞

differ from a finite positive constant. It implies that any limit measure of the sequence (MK
r,u)

can be written as a (positive finite) constant times the measure µps
T ◦ λ, that is the unique

(hs)-invariant ergodic measure with support E . This concludes the proof.

4.6. Proof of theorem 4.2

Cusps and decomposition of the surface For simplicity, assume that S has exactly one cusp.
If it has no cusp, Ω is compact, so theorem 4.2 is obvious. Denote by (ξi)i∈N = Γ.ξ1 the Γ-
orbit of parabolic limit points of ΛΓ. As S is geometrically finite, there is a Γ-invariant family
of disjoint horoballs Hi of D, based at ξi, such that ⊔i∈NHi = Γ.H1, Γ acts cocompactly on
(Λ2

Γ \ Diagonal× R) \ ∪iT
1Hi. Assume that H1 is the closest horoball to the origin o, that the

distance from o to ∂H1 is bounded by the diameter of the compact part C0 of S, and that
the geodesic ray [oξ1) does not intersect other horoballs Hi, i 6= 1. We will call H the image of
the horoballs Hi on S; it is exactly the cusp of the surface. We know that 1 > δΓ > 1/2 for a
nonlattice not convex-compact geometrically finite group. (†)

If Hi is thee horoball centered at the parabolic point ξi, and (hsu)s≥0 intersects T 1Hi, let
vi be the unique vector of (hsu)s≥0 such that v+

i = ξi.
An elementary computation gives the following lemma (see also [Scha1] page 979).

Lemma 4.7. If (hsu)s∈R intersects T 1Hi, then (hsu)s∈R ∩ T 1H = (hsvi)|s|≤
√

ehi−1
, where

hi is the distance between the base point of vi and the boundary of Hi.

In the sequel, to simplify notations, we replace
√
eh − 1 by eh/2 (see [Scha1] for a rigorous

way to do that).

†Indeed, [Pe] as the surface has infinite volume, it contains a funnel. Let ξ /∈ ΛΓ, and p /∈ Γ a parabolic isometry
fixing ξ. Using the divergence of Γ and [DOP, Prop.2], we obtain 1 ≥ δ<p>∗Γ > δΓ. As all parabolic subgroups
of Γ are divergent, the same proposition [DOP, Prop.2] gives δΓ > δΠ for all Π parabolic subgroups of Γ. And
δΠ = 1/2 by an elementary computation on hyperbolic surfaces.
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Strategy of the proof If Hi is a horoball of D associated to the cusp, denote by HN
i ⊂ Hi

the shrunk horoball centered at the same point, and such that d(∂Hi, ∂HN
i ) = N .

Fix ε > 0. Denote by H (resp. HN ) the image of any of the horoballs Hi (resp. HN
i ) on S.

We will find a N0 ≥ 0 large enough, so that

µps
W su((hsu)0≤s≤r ∩ T 1HN )

µps
W su((hsu)0≤s≤r)

≤ ε , (4.1)

for N ≥ N0, independently of r > 0 (sufficiently positive so that the above quantity is well
defined). The compact set Kε,u of the statement of the theorem will be chosen as

Kε,u = Ω \ T 1HN ,

for N ≥ N0 large enough.
Lift the situation to T 1D, where the cusp H lifts into Γ.H̃ = ⊔i∈NHi. Denote by ξi ∈ ΛP the

limit point associated to Hi, and ũ a lift of u to T 1D.

ΓC̃0

N
H1

Figure 7. Shrunk horospheres on T 1
D

Define Ir,N := {i ∈ N, (hsũ)0≤s≤r ∩ T 1Hi 6= ∅}. It can happen that (hsũ)0≤s≤r intersects
T 1HN

i and T 1Hi, but not completely, i.e. (hsũ)0≤s≤r intersects T 1HN
i , and (hsũ)0≤s≤r ∩ T 1Hi

is strictly included in (hsũ)s≥0 ∩ T 1Hi (see figure 7 above). As the Hi are pairwise disjoint, and
(hsũ)s∈R is one dimensional, there is at most one such index, that we denote by imax(r,N) ∈
Ir,N , when it is defined.

Remark that for i ∈ Ir,N , if vi is the vector of (hsũ)s≥0 such that v+
i = ξi, and hi is the

distance between its base point and ∂Hi, we have (hsũ)s≥0 ∩ T 1Hi = (hsvi)|s|≤ehi/2 , whereas

(hsũ)s≥0 ∩ T 1HN
i = (hsvi)|s|≤e(hi−N)/2 .

We can bound by above the numerator of 4.1 by
∑

i∈Ir,N

µps
W su

(
(hsvi)|s|≤e(hi−N)/2

)
. (4.2)

Due to the boundary problem (the existence of the index imax(r,N)), it is more difficult to
bound by below the denominator of 4.1. This denominater is greater than

∑

i ∈ Ir,N ,

i 6= imax(r, N)

µps
W su

(
(hsvi)|s|≤ehi/2

)
+ µps

W su

(
(hsu)0≤s≤r ∩ T 1Himax(r,N)

)
. (4.3)

Case of indices i 6= imax(R,N)
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Lemma 4.8. For N ≥ 0, r > 0 and i ∈ N, we have

µps
W su((hsvi)|s|≤e(hi−N)/2)

µps
W su(hsvi)|s|≤ehi/2)

≤ Ce(1−2δΓ)N/2 .

In particular, as δΓ > 1/2, for all ε > 0, there exists N0 > 0, such that for N ≥ N0, i ∈ Ir,N ,

µps
W su((hsvi)|s|≤e(hi−N)/2)

µps
W su(hsvi)|s|≤ehi/2)

≤ ε .

This lemma says that the ’time’ (measured with the measure µps
W su) spent by a horocycle in

a horoball T 1HN
i is uniformly small compared to the ’time’ spent in T 1Hi, independently of

the choice of the horocycle.
Before the proof, let us introduce some additional notations. Let o ∈ D be fixed outside all

horoballs Hi, ξ ∈ S1 and t ≥ 0. If η ∈ S1 and C ⊂ D is a closed convex set, the projection of
η on C is the point p of C which minimizes the function x ∈ D 7→ βη(x, o). Let ξ(t) be the
point of the geodesic ray [oξ) at distance t of o, and define the set V (o, ξ, t) as the set of points
η ∈ S1 whose projection on [oξ) is at distance at least t of o. By abuse of notation, we call
such sets shadows, because they are comparable to Sullivan’s shadows [Su] (see for example
[Scha1], section 2.4).

Let us prove the lemma.

Proof. • As u− ∈ Λrad, for all i ∈ N, there exists Ti ≥ hi/2 s.t. g−Tivi ∈ ΓC̃0, where C̃0 is
a lift of the compact part C0 of the surface S in a fundamental domain of the action of Γ on
D. By definition of (µps

W su), this family of measures is quasi-invariant under the geodesic flow
in the sense that gt

∗µ
ps
W su = eδΓtµps

W su for t ∈ R, so that we get

µps
W su((hsvi)|s|≤e(hi−N)/2)

µps
W su((hsvi)|s|≤e(hi−N))

=
µps

W su((hsg−Tivi)|s|≤e(hi−N)/2−Ti )

µps
W su((hsg−Tivi)|s|≤e(hi−N)/2−Ti )

.

• Recall that dµps
W su(u)(v) = eβv+(x,π(v)) dνx(v+) for any choice of x ∈ D, where νx is the

Patterson measure on ΛΓ ⊂ S1 viewed from the point x. By continuity of the Busemann cocycle,
for all C > 1, we can find R > 0, such that if the distance d(π(u), x) between the basepoint of
u and x is less than R, then in restriction to (hsu)|s|≤R, the measures µps

W su and (p−1
W su)∗νx

differ at most from the multiplicative constant C±1. Here, if W su(u) is the horocycle (hsu)s∈R,
p−1

W su(u) is the natural projection from S1 \ {u−} to W su(u) which associates to ξ the unique

vector of W su(u) pointing towards ξ.
Note that we can exchange quantifiers. For all 0 ≤ R ≤ 1, there exists C > 1, such that the

above property is true.
• As the distance from the base point π(g−Tivi) of g−Tivi to Γ.o is less than the diameter

of the compact part C0, up to C±2, where C is given by the above when R = diam(C0), the
above ratio is uniformly close to

νγ.o(V (γ.o, ξi, Ti − hi/2 +N/2))

νγ.o (V (γ.o, ξi, Ti − hi/2))
.

for some γ ∈ Γ.
• The Γ-invariance property of the family (νx)x∈H shows that the above ratio is equal to

νo(V (o, γ−1ξi, Ti − hi/2 +N/2))

νo (V (o, γ−1ξi, Ti − hi/2))
.
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• The so-called Shadow Lemma (see [Scha1] proposition 3.4, but also [Str-Ve]) says that
as γ−1ξi is a parabolic point, we have

νo(V (o, γ−1ξi, t)) ≍ e−δΓt+(1−δΓ)d((γ−1ξi)(t),Γ.o) , (4.4)

where γ−1ξi(t) is the point of the geodesic ray [o, γ−1ξi) at distance t of o.
• Comparing the cases where t = Ti − hi/2 +N/2 and t = Ti − hi/2, the two corresponding

distances from (γ−1ξi)(t) to Γ.o differ exactly from a quantity N/2. We deduce that the ratio
we are interested in is bounded (up to uniform constants) by e(1−2δΓ)N , with δΓ > 1/2. The
result of the lemma follows.

Case where i = imax(r,N) We denote by V +(o, ξ, t) (resp. V −(o, ξ, t)) the positive (resp.
negative) half-shadow, that is the subset of points of V (o, ξ, t) that are greater (resp. less) than
ξ in the counterclockwise order.

To get a bound on the boundary term corresponding to imax(r,N) in (4.1), (4.2) and (4.3),
we want to prove the following analogue of lemma 4.8.

Lemma 4.9. For all ε > 0, there exists N0 > 0, such that for N ≥ N0, i = imax(r,N),

µps
W su((hsvi)|s|≤e(hi−N)/2)

µps
W su(hsvi)−ehi/2≤s≤−e(hi−N)/2)

≤ ε .

Proof. By exactly the same steps as above, we see that it is enough to bound the ratio

νo(V (o, γ−1ξi, Ti − hi/2 +N/2))

νo(V +(o, γ−1ξi, Ti − hi/2) \ V +(o, γ−1ξi, Ti − hi/2 +N/2))

The careful reader can check that all results of [Scha1], and in particular proposition 3.4,
can be adapted verbatim to get the following estimate of parabolic positive half-shadows

νo(V
+(o, γ−1ξi, t)) ≍ e−δΓt+(1−δΓ)d((γ−1ξi)(t),Γ.o) , (4.5)

the constants hidden in the notation ≍ being of course different than in the case of full shadows
V (o, ξ, t).

Now, if N0 is large enough, we deduce that uniformly in i ∈ N, and in particular for i =
imax(r,N), we have

νo(V (o, γ−1ξi, Ti − hi/2 +N/2))

νo(V +(o, γ−1ξi, Ti − hi/2) \ V +(o, γ−1ξi, Ti − hi/2 +N/2))
≤ Cst.e(1−2δΓ)N/2 ,

and the conclusion of the lemma follows.

Conclusion of the proof of theorem 4.2 Lemmas 4.8 and 4.9 show that for N ≥ N0, the
quantity (4.1) is bounded by ε. So we are done.

5. Surfaces with variable negative curvature

Most results proved here extend to surfaces S of variable negative curvature. More precisely,
we assume that all sectional curvatures are pinched between two negative constants. Some
definitions of the notions used here have to be adapted, and we refer to the preliminary sections
of [Scha1] or [Scha2] for details. In particular, horocycles on T 1S and T 1S̃ are defined as the
strong unstable manifolds of the geodesic flow respectively on the unit tangent bundles T 1S
of S and T 1S̃ of the universal cover S̃ of S. The main difference is that there is no canonical
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parametrization of horocycles by a nice horocyclic flow on T 1S̃, even if it is possible to define
such a flow (see [Mrc] for example).

The motivated reader can check that the proof of theorem 1.1 and all results of section 3
extend verbatim to the situation of pinched negatively curved surfaces.

Concerning the equidistribution, we need to be more careful. We add an assumption, denoted
by (∗) in [Scha1] and [Scha2], which allows to control the geometry of the cusps, ensures in
particular that the Bowen-Margulis measure is finite, and allows to prove a Shadow Lemma as
in [Scha1], and to obtain theorem 4.2 in the variable negative curvature case. All other proofs
do not depend on any (negative) curvature assumption. With this restriction, theorem 1.2 is
valid on pinched negatively curved geometrically finite surfaces.
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