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Abstract

On the unit tangent bundle of a hyperbolic surface, we study the density
of positive orbits (hsv)s≥0 under the horocyclic flow. More precisely, given a
full orbit (hsv)s∈R, we prove that under a weak assumption on the vector v,
both half-orbits (hsv)s≥0 and (hsv)s≤0 are simultaneously dense or not in the
nonwandering set E of the horocyclic flow. We give also a counter-example to
this result when this assumption is not satisfied.

1 Introduction

On the unit tangent bundle of a finite volume hyperbolic surface, Hedlund [H]
proved that all positive non periodic orbits (hsv)s≥0 of the horocyclic flow are
dense.

On the other hand, there exists today a complete geometric criterion (see [Da]
for a general result and full references) to know whether, on any hyperbolic surface,
a full horocycle (hsv)s∈R is dense or not in the nonwandering set E of the horocyclic
flow. It is dense if and only if v is horospherical (see section 3).

When such a full horocycle is dense, a natural question from a dynamical point
of view is to know whether both half-horocycles (hsv)s≥0 and (hsv)s≤0 are dense
or not.

Hedlund had a partial positive answer, on the so-called “first kind surfaces” for
radial vectors, that is vectors v whose backward geodesic orbit returns infinitely of-
ten in a compact set. (We consider backward geodesics when we study the unstable
horocyclic flow.)

In [Scha], we solved the problem on hyperbolic surfaces whose fundamental
group is finitely generated, and we proved that the answer is always positive (both
positive and negative horocyclic orbits are simultaneously dense or not), except in
the case (trivial obstruction, see figure 1) of vectors v such that one half-horocycle
is dense in E , and the other eventually leaves all compact sets.

In this work, we obtain an almost complete answer to this question, on any
(infinitely generated) oriented hyperbolic surface.

Let us introduce some definitions and notations. Let S be a connected oriented
hyperbolic surface. It can be written S = Γ \ D, where Γ is a discrete group of
isometries of the hyperbolic disc D, and its unit tangent bundle T 1S identifies with
the quotient Γ \ T 1

D of the unit tangent bundle of the hyperbolic disc by Γ. Let
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π : T 1S → S be the canonical projection. If u ∈ T 1S, and ũ is a lift of u to T 1
D,

we denote by u− ∈ S1 (resp. u+) the negative (resp. positive) endpoint of the
geodesic (gtũ)t∈R defined by ũ in the boundary at infinity S1 = ∂D. The limit set
ΛΓ ⊂ S1 is the set Γ.o \ Γ.o of limit points of an orbit. In this work, we assume Γ
to be nonelementary, that is not virtually abelian. It is equivalent to say that the
limit set ΛΓ is infinite.

We endow the boundary S1 with its counterclockwise orientation.
A horocycle is a euclidean circle of D, tangent to ∂D.
An unstable horocycle is the set of unit vectors orthogonal to a given horocycle,

and pointing outwards. We study here the unstable horocyclic flow. This flow
(hs)s∈R acts on T 1

D; its orbits are unstable horocycles, and the map hs turns vectors
of a distance |s| (for the induced Riemannian distance) on the unstable horocycle,
in the clockwise direction. This flow induces on T 1S the unstable horocycle flow of
T 1S.

A vector v ∈ T 1S is radial if its geodesic orbit (g−tv)t≥0 returns infinitely often
in a compact set (here, (gt)t∈R denotes the geodesic flow, which moves vectors of
a distance t along the geodesic line that they define). It is well known that if v is
radial, its horocycle (hsv)s∈R is dense in the nonwandering set E of the horocyclic
flow, that is the set E of vectors of T 1S such that all neighbourhoods V satisfy
hsnV ∩V 6= ∅ for a sequence sn → +∞. (It is the set which contains the interesting
dynamics.)

Hedlund’s result extends to :

Theorem 1.1 Let S be a nonelementary oriented hyperbolic surface. Let v ∈ T 1S
be a radial vector. Then its positive half-horocycle (hsv)s≥0 is dense in the nonwan-
dering set E of the horocyclic flow if and only if v− is not the first endpoint (in the
counterclockwise direction) of an interval of S1 \ ΛΓ.

The above result is stated and proved because its proof is simple and short, and
uses simplified versions of Hedlund’s ideas. But I prove below a much more general
result.

Theorem 1.2 Let S be a nonelementary oriented hyperbolic surface. Let v be a
vector whose full horocycle (hsv)s∈R is dense in E, and such that there exist two
constants Λ > 0 and 0 < α0 ≤ π/2, such that the geodesic ray (π(g−tv)), t ≥ 0,
intersects infinitely many closed geodesics of length at most Λ, with an angle of
intersection at least α0. Then both half-orbits (hsv)s≥0 and (hsv)s≤0 are dense in
E.

In the assumptions of this theorem, the geodesic ray (π(g−tv)t≥0 can intersect
(with an angle of intersection bouded from below) infinitely many times finitely
many closed geodesics, or infinitely many distinct closed geodesics.

A radial vector satisfies this assumption, because closed geodesics are dense in
E , and if v is radial, (g−tv) returns infinitely often in a closed ball of E . One can
show that the assumption of theorem 1.2 is therefore satisfied, by using for example
a pants decomposition of the surface.

It is worth noticing that a very close assumption is used in a recent work of
Omri Sarig [Sa] on the horocyclic flow.

We can ask whether this result is optimal or not. We build a counterexample to
a completely general result.

Theorem 1.3 There exist nonelementary oriented hyperbolic surfaces containing
vectors v such that (hsv)s≥0 is dense in E, (hsv)s≤0 is not dense in E, v− is not the
endpoint of an interval of S1 \ ΛΓ, and (g−tv)t≥0 intersects infinitely many closed
geodesics of length going to infinity.
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Depending on the examples, the intersection angle of (g−tv)t≥0 with these geodesics
can be uniformly bounded away from zero, or go to zero.

Section 2 is devoted to preliminaries, and the three other sections to proofs of
the three above results.

I thank Yves Coudene, Antonin Guilloux and Omri Sarig for discussions on this
work.

2 Preliminaries

Hyperbolic geometry

The hyperbolic disc D = D(0, 1) is endowed with the hyperbolic metric 4dx2

(1−|x|2)2 .

Let o be the origin of the disc, and π : T 1
D → D the canonical projection. The

boundary at infinity of D is S1 = ∂D. We denote by d both riemannian distances
on D and T 1

D.
The Busemann cocycle is the continuous map defined on S1 × D

2 by

βξ(x, y) = lim
z→ξ

(d(x, z)− d(y, z)) .

The map
v ∈ T 1

D 7→ (v−, v+, βv−(π(v), o)) ∈ (S1 × S1) \∆× R ,

where v± are the endpoints of the geodesic (gtv)t∈R in S1, and ∆ is the diagonal of
S1 × S1, is an homeomorphism. In the sequel, we will identify T 1

D with the set of
Hopf coordinates (S1 × S1) \∆× R.

The classical identification of D with H = R × R
∗
+ through the homography

z 7→ i 1+z
1−z allows to identify the group of isometries preserving orientation of D with

PSL(2,R) acting by homographies on H. This action extends to a simply transitive
action on T 1

D (or T 1
H). We identify therefore T 1

D with PSL(2,R). In the Hopf
coordinates, an element γ ∈ PSL(2,R) acts as follows :

γ.(v−, v+, t) = (γ.v−, γ.v+, t+ βv−(o, γ−1.o) .

If Γ ⊂ PSL(2,R) is a discrete group, we identify the unit tangent bundle T 1S =
Γ\T 1

D of Γ\D with the quotient Γ\
(
(S1 × S1) \∆× R

)
.

The limit set ΛΓ of the group is defined as ΛΓ = Γ.o \ Γ.o ⊂ S1. It is also the
smallest non empty closed Γ-invariant subset of S1. We will often use the minimality
of the action of Γ on ΛΓ: for all ξ ∈ ΛΓ, Γ.ξ is dense in ΛΓ.

A point ξ ∈ ΛΓ is radial if it is the limit of a sequence (γn.o) of points of Γ.o
that stay at bounded hyperbolic distance of the geodesic ray [oξ) from o to ξ. We
denote by Λrad the radial limit set. The set of points of ΛΓ that are fixed by an
hyperbolic isometry (see definition below) of Γ is included in Λrad.

An horocycle of D is a euclidean circle tangent to S1; it is also a level set of a
Busemman function. An horoball is a euclidean disk bounded by an horocycle. A
point ξ ∈ ΛΓ is horospherical if all horoballs centered at ξ contains infinitely many
points of the orbit Γ.o. In particular, Λrad is included in the set of horospherical
limit points, denoted by Λhor.

An isometry of PSL(2,R) is said hyperbolic if it has exactly two fixed points
on S1, parabolic if it fixes exactly one point of S1, and elliptic in other cases. We
denote by Λp ⊂ ΛΓ the set of parabolic limit points, that is the fixed points of a
parabolic isometry of Γ.
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Any oriented hyperbolic surface can be written as the quotient S = Γ\D of D by
a discrete subgroup Γ of PSL(2,R) without elliptic element, and its unit tangent
bundle T 1S = Γ\T 1

D identifies with Γ\PSL(2,R).
In this note, we will always assume Γ to be nonelementary, i.e. #ΛΓ = +∞.
When S is compact, then ΛΓ = Λrad = S1. The surface is convex-cocompact

when Γ is finitely generated and contains only hyperbolic isometries. In this case,
ΛΓ = Λrad is strictly included in S1, and Γ acts cocompactly on the set (ΛΓ ×ΛΓ) \
Diagonale× R ⊂ T 1

D. When S has finite volume, all ends are cusps isometric to
{z ∈ H, |z| > 1}/ < z 7→ z + 1 >, and ΛΓ = Λrad ⊔ Λp = S1.

Geodesic and horocyclic flows

A hyperbolic geodesic of D is a diameter or a half-circle orthogonal to S1. A vector
v ∈ T 1

D is tangent to a unique geodesic, and orthogonal to exactly two horocycles
containing its basepoint, tangent to S1 respectively at v+ and v−. The set of vectors
w ∈ T 1

D such that w− = v− and whose basepoint belongs to the horocycle tangent
to S1 at v− and containing π(v) is the strong unstable horocycle, or strong unstable
manifold of v. We denote it by W su(v) = {hsv, s ∈ R}. The strong stable horocycle
is defined similarly.

The geodesic flow (gt)t∈R acts on T 1
D by moving a vector v of a distance t along

the geodesic that it defines. In the identification of T 1
D with PSL(2,R), this flow

corresponds to the right action by multiplication of the one-parameter subgroup

{
at :=

(
et/2 0
0 e−t/2

)
, t ∈ R

}
.

The unstable horocyclic flow (hs)s∈R acts on T 1
D by moving a vector v of a

distance |s| along its strong unstable horocycle. There are two possible orientations
for such a flow, and we choose the orientation which corresponds to the right action
by multiplication by the one-parameter subgroup

{
ns :=

(
1 0
s 1

)
, s ∈ R

}

on PSl(2,R). This flow makes the vectors turn around their strong unstable horo-
cycle so that the orbit {hsv, s ∈ R} is equal to the full strong unstable horocycle.

Moreover, for all s ∈ R and t ∈ R, these geodesic and horocyclic flows satisfy
the following fundamental relation:

gt ◦ hs = hset ◦ gt . (2.1)

Remark 2.1 With our choice of orientation of S1, when s → +∞, if u ∈ T 1
D

and u+
s ∈ S1 is the positive endpoint of the geodesic determined by hsu, then u+

s

converges to u−, with u+
s ≥ u− in the counterclockwise orientation of S1.

These two right actions commute with the left action by multiplication of PSL(2,R)
on itself, so that they are well defined on the quotient on T 1S ≃ Γ\PSL(2,R).

Definition 2.2 Let (φt)t∈R be a flow acting by homeomorphisms on a topological
space X. The nonwandering set of φ is the set of points x ∈ X such that for all
neighbourhoods V of x, there exists a sequence tn → +∞ such that φtnV ∩ V 6= ∅.

The first part of the following lemma is due to Eberlein [E1], and the second
part is proved in [Scha].
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Lemma 2.3 The nonwandering set of the geodesic flow acting on T 1S is

Ω := Γ\ ((ΛΓ × ΛΓ) \∆× R) .

The nonwandering set of the horocyclic flow acting on T 1S is

E := Γ\
(
(ΛΓ × S1) \∆× R

)
.

Moreover, we have
E = ∪s∈Rh

sΩ and E = ∪s≥0hsΩ

Recall that W su(v) = {hsv, s ∈ R} is compact if and only if v− ∈ Λp, and
dense in E if and only if v− ∈ Λhor. Denote by W su

+ (v) = {hsv, s ≥ 0} the positive
half-horocycle of v.

We assume in the sequel that S1 is oriented in the counterclockwise direction.

Funnels

Recall (see for example [Scha]) the standard following facts.

Remark 2.4 If the surface S viewed as Γ\H has a funnel isometric to {z ∈
H, Re(z) ≥ 0}/ < z 7→ az >, for some fixed a > 1, the geodesic Re(z) = 0
induces on the quotient a closed geodesic bounding the funnel. A geodesic inter-
secting this closed geodesic and entering in the funnel will never leave the funnel.
In particular, the limit set ΛΓ viewed in ∂H = R ∪ {∞} does not intersect R∗

+.
A horocycle centered in R

∗
+, viewed on the quotient on S, will stay in the funnel

except at most during a finite interval of time. A horocycle centered at 0, viewed
on S, will have a side which will never enter the funnel, and the other side which
will stay in the funnel and never go outside.

Fact 2.5 In the case of a geometrically finite hyperbolic surface, the endpoints of
an interval of S1 \ ΛΓ are hyperbolic; they are the endpoints of the axis of a lift
of the closed geodesic which bounds the funnel. It is not necessary the case on a
general hyperbolic surface (2) .

Fact 2.6 If v− ∈ ΛΓ is the first endpoint of an interval of S1 \ΛΓ, then W su
+ (v) =

{hsv, s ≥ 0} is not dense in E .

v

ṽ

v
−

Figure 1: A vector v whose positive horocycle (hsv)s≥0 is not dense in E

2We can consider (example given by M. Peigné) the group Γ =< αnhα−n, n ∈ Z >, where h
and α are two hyperbolic isometries generating a Schottky group, and α /∈ Γ, so that its fixed
points α− are α+ the endpoints of an interval of S1 \ ΛΓ, but it does not correspond to a funnel
on the quotient surface.
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3 Proof of theorem 1.1

Right horocyclic points and vectors

If v ∈ T 1
D, let v± be its endpoints in ∂D, Hor(v) ⊂ D the horoball centered

at v− and containing its base point π(v). The right horoball Hor+(v) ⊂ Hor(v)
is the set of basepoints of vectors of ∪t≥0 ∪s≥0 hsg−tv = ∪t≥0 ∪s≥0 g−thsv (see
relation (2.1)). Similarly, the left horoball Hor−(v) is defined as the other side of
Hor(v), that is Hor−(v) = Hor(v) \Hor+(v) is the set of basepoints of vectors of
∪t≥0 ∪s≤0 h

sg−tv = ∪t≥0 ∪s≤0 g
−thsv.

Definition 3.1 If v ∈ T 1
D, and α > 0, the cone of width α around v is the set

C(v, α) of points x ∈ Hor(v) at (hyperbolic) distance at most α of the geodesic ray
(g−tv)t≥0. It is the intersection of Hor(v) with a euclidean cone.

Definition 3.2 A vector v ∈ T 1S is right horocyclic if it admits a lift ṽ ∈ T 1
D,

such that for all α > 0 and D > 0, the orbit Γ.o intersects the right part of the
horoball Hor+(g−Dṽ) minus the cone C(g−Dṽ, α).

A point ξ ∈ ΛΓ is right horocyclic if there exists a right horocyclic vector v ∈ T 1S
such that ξ = v− (see figure 3).

Recall that a vector v is horospherical if all horoballs Hor+(g−Dv) contain
infinitely many points of Γ.o.

ṽ

γ1.o

γn.o

v−

Figure 2: Lift of a right horocyclic vector

Recall the proposition

Proposition 3.3 ([Scha]) Let S be a hyperbolic surface. A vector v ∈ T 1S is right
horocyclic if and only if (hsv)s≥0 is dense in E.

Recall also the following result.

Proposition 3.4 ([Scha]) Let S be an oriented hyperbolic surface. If p ∈ Ω is a
periodic vector for the geodesic flow, then its positive half-horocycle (hs(p))s≥0 is
dense in the nonwandering set E of the horocyclic flow if and only if p− is not the
first endpoint of an interval of S1 \ ΛΓ.

Theorem 3.5 (Hedlund, [H], thm 4.2 ) Let S = Γ\D be an oriented hyperbolic
surface of the first kind, that is such that ΛΓ = S1. Let v ∈ T 1S be such that
(g−tv)t≥0 returns infinitely often in a compact set, that is such that v− ∈ Λrad.
Then its positive half-horocycle (hsv)s≥0 is dense in T 1S.
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3.1 Proof of theorem 1.1

If v is a radial vector, and v− is the first endpoint of an interval of S1 \ ΛΓ, using
lemma 2.3, we see that for s > 0 large enough, hsv will definitively leave the non-
wandering set E of the horocyclic flow. Thus it cannot be dense in E .

We will prove that a radial vector v ∈ T 1S such that v− is not the first end-
point of an interval of S1 \ ΛΓ is right horocyclic. To simplify notations, without
ambiguity, we shall denote v for a lift of v to T 1

D. Let R > 0 and D > 0 be two
constants, large enough. Let us prove that #Γ.o ∩Hor+(g−Dv) \ C(v,R) = +∞.

•As v is radial, there existsR0, and a sequence γn.o → v−, such that d(γn.o, (v
−, v]) ≤

R0. Let g
−tnv, tn → +∞, be a sequence of vectors at distance at most R0 of γn.o.

Letting γ−1
n act, we get a sequence of vectors γ−1

n g−tnv on the unit tangent bundle
T 1B(o,R0) of the ball B(o,R0). Up to a subsequence, we can assume that this
sequence converges to a vector w∞ ∈ T 1B(o,R0), with endpoints w±

∞ ∈ ∂D.
Note that (see figure 3) γ−1

n .v− → w−
∞, and that the half-horocycle of D π(γ−1

n .∪s≥0

hsv) converges (in the Hausdorff topology of closed subsets of D) to the half-circle
[w−

∞, w+
∞] of the boundary, oriented in the counterclockwise direction.

• As v− is not the first endpoint of an interval of S1 \ ΛΓ, and the γn preserve
orientation, w−

∞ is not the first endpoint of an interval of S1 \ ΛΓ.

• Choose a hyperbolic isometry h ∈ Γ, with fixed points h± ∈ ΛΓ, both in the
interval [w−

∞, w+
∞], on the right side of w−

∞, close to w−
∞. The axis of h projects

on S to a closed geodesic. Let D0 > 0 be the distance from this geodesic to the
projection of the origin o of the disk D.

Up to conjugate h by another hyperbolic isometry wich has its fixed points on
the right side of w−

∞, we can assume that the axis (h−, h+) of the isometry h is at
distance at least 2R+R0 +D0 of the geodesic (w−

∞, w+
∞).

• As the half-horocycle π(∪s≥0h
sγ−1

n v) converges to [w−
∞, w+

∞] (in the Hausdorff
topology on closed subsets of D) for n large enough, this half-horocycle intersects
the geodesic (h−h+) at two points x−

n , x
+
n , with d(x−

n , x
+
n ) → ∞.

We see also that if yn is the point of the geodesic segment [x−
n , x

+
n ] at the

largest distance of the horocycle π(∪s≥0h
sγ−1

n v), then this distance from yn to this
horocycle goes to infinity when n → +∞.

But this point yn is at distance at most D0 of a point, say gn.o, of the orbit Γ.o.
In other words, for n large enough, gn.o belongs to the horoball Hor+(g−Dγ−1

n v).
The point yn lies on (h−h+), and is therefore at distance at least 2R + R0 +

D0 of the geodesic (w−
∞, w+

∞). We deduce that gn.o is at distance at least 2R of
this geodesic. For n large enough, gn.o is at distance at least R of the geodesic
(γ−1

n .v−, γ−1
n .v+).

• Let us come back with γn: denote h
±
n = γn.h

±, where hn = γn ◦ h ◦ γ−1
n is the

corresponding hyperbolic isometry. The points γn.gn.o, for n large enough, are all
in the horoball Hor+(g−Dv) but not in the cone C(v,R). It is the desired result.

4 And more generally

Before the proof of theorem 1.2, recall some classical lemmas of hyperbolic geometry.
We refer to [G-Ha] or [C-D-P] for example.

Lemma 4.1 Let (a, b, c) be a hyperbolic triangle (possibly infinite). If the angle at
a is greater than α0 > 0, there exists a constant C(α0) > 0, such that
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o

h−

w+
∞

γ−1
n .v

x+
n

x−
n

yn

w−
∞

h+

Figure 3: Proof of theorem 1.1

1. we have d(a, b) + d(b, c)− C(α0) ≤ d(b, c) ≤ d(a, b) + d(a, c),

2. the distance from a to [b, c] is smaller than C(α0).

The converse to this lemma is also true.

Lemma 4.2 Let k > 0. There exist constants α(k) > 0, d(k) > 0 and C(k) =
C(α(k)) such that if (a, b, c) is a hyperbolic triangle (possibly infinite) such that
d(a, [bc]) ≤ k and d(b, c) ≥ d(k), then the angle at the vertex a of the triangle
(a, b, c) is greater than or equal to α(k), and we have

d(a, b) + d(b, c)− C(k) ≤ d(b, c) ≤ d(a, b) + d(a, c) .

Let us state another lemma which will be useful in the sequel.

Lemma 4.3 There exists a constant δ > 0, such that for all ξ ∈ ∂D and p, q ∈ D

such that βξ(p, q) = 0, there exists an “interior triangle” α, β, γ satisfying α ∈ (ξ, q],
β ∈ (ξ, p], γ ∈ [p, q], d(α, β) ≤ δ, d(α, γ) ≤ δ, d(β, γ) ≤ δ, and moreover βξ(α, β) =
0, d(α, q) = d(γ, q), d(β, p) = d(γ, p).

In this situation, we also have d(p, q) = 2d(p, γ) = 2d(p, β) = 2d(q, γ) =
2d(q, α).

Let us prove now theorem 1.2.

Proof : Let us prove first that one of the two sides (hsv)s≥0 or (hsv)s≤0 is dense in
E , or equivalently that v− is left or right horocyclic. As (hsv)s∈R is dense in E , the
point v− ∈ ΛΓ is horospherical. If if v− were horocyclic but neither left nor right
horocyclic, by definition, the horoball Hor(ṽ) minus a certain cone C(ṽ, R) would
contain no element of Γ.o. It implies that Γ.o ∩ C(ṽ, R) is infinite, so that v− is
radial. As v− is in the limit set, it cannot be the endpoint of two distinct connected
components of S1 \ ΛΓ. But Theorem 1.1 implies in this case that one of the two
sides (hsv)s≥0 or (hsv)s≤0 is dense in E .

Assume therefore that (hsv)s≥0 (for example) is dense, or equivalently that v−

is right-horocyclic, and let us prove that it is also left-horocyclic, or equivalently
that (hsv)s≤0 is dense. The idea is as follows.

Let γ be a hyperbolic isometry coresponding to one of the closed geodesics, of
length at most Λ, that are intersected by (g−tv)t≥0. This isometry γ let globally
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the orbit Γ.o invariant. Given two constants D > 0 and R > 0, this isometry,
iterated in a convenient way, should send a point of Γ.o ∩ Hor+(g−Dv) \ C(v,R)
in Γ.o ∩Hor∓(g−D+constv) \ C(v,R− const′), for some constants const and const′

depending on D,R, but not on γ.
It will allow us to prove that there exist infinitely many points of Γ.o inside

Hor−(g−D′

v) \ C(v,R′), for all D′, R′ > 0.

Let us introduce some notations. We lift v to T 1
D, and still denote it by v.

Assume that γ− ≥ v− ≥ γ+, on the circle oriented in the counterclockwise direc-
tion, so that γ will roughly move points from Hor+ to Hor−, and not in the other
direction. Assume therefore that v− is right horocyclic, and let us show that it is
left horocyclic.

Fix first D;R, big compared to all constants appearing in the statement and in
all lemmas used in the proof: the bound Λ on the lengths of closed geodesics that
are intersected, the angle α0 which is a lower bound for the angle of intersection
between (g−tv) and these closed geodesics, and the constants C(α0) of lemma 4.1
and C(k), d(k) of lemma 4.2 for k = C(π/2) above, and the constant C2(α0) which
appears below.

Choose now a point y0 ∈ Γ.o in Hor±(g−Dv) \ C(v,R), and x0 its projection on
the axis (γ−, γ+). Let xn = γn(x0) and yn = γn(y0).

Consider at last an isometry γ such that the axis (γ−γ+) of γ induces on S a
closed geodesic intersecting (g−tv)t≥0, such that the angle on D between the axis
of γ and (g−tv) is at least α0, and such that y0 belongs to the bounded connected
component ofHor(v)\(γ−γ+). As there exist infinitely many such geodesics (γ−γ+)
arbitrarily far from y0, we shall assume that the distance from y0 to (γ−γ+) is
greater than the constant d(k) of lemma 4.2, for k = C(π/2), the constant given by
lemma 4.1.

Denote by w = hsv the vector of the horocycle of v such that (g−tw) intersects
(γ−γ+) orthogonally. Denote respectively by Iv and Iw the intersection points of
(g−tv) (resp. (g−tw)) with (γ−γ+).

 

w

y0

Iw

v

Iv

C(v,R)

v−

x′
0

y′
0

γn.y0

γn.x0
x0

Figure 4: Proof of theorem 1.2

Lemma 4.4 If the angle at Iv between (γ−γ+) and (g−tv)t≥0 is bounded from below
by α0, the distance between Iv and Iw is bounded (from above) by C(α0).
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Proof : Consider the infinite triangle v−, Iv, Iw. By lemma 4.1, we get d(Iv, (v
−Iw)) ≤

C(α0). As the angle at Iw between (IvIw) and (v−Iw) is equal to π/2, this distance
equals d(Iv, Iw). The lemma is proven. �

Lemma 4.5 Let x0 be the projection of y0 on (γ−γ+), and xn = γnx0, yn =
γny0. There exist constants C2(α0) and R(α0), depending only on α0, such that if
d(xn, Iw) ≥ R(α0), and d(xn, Iv) ≥ R(α0/4), then

d(y0, x0) + d(xn, Iw)− C2(α0) ≤ d(yn, (g
−tw)t≥0) ≤ d(y0, x0) + d(xn, Iw)

d(y0, x0) + d(xn, Iv)− C2(α0) ≤ d(yn, (g
−tv)t≥0) ≤ d(y0, x0) + d(xn, Iv)

As a consequence, we have

∣∣d(yn, (g−tw)t∈R)− d(yn, (g
−tv)t∈R)

∣∣ ≤ d(Iv, Iw) + C2(α0) ≤ C1(α0) + C2(α0) .

Proof : The third line follows directly from the first two lines and lemma 4.4. It is
therefore enough to prove the first two lines of inequalities.

In both cases, the right inequality follows immediately from the standard trian-
gular inequality and from the fact that d(xn, yn) = d(x0, y0).

The triangle yn, xn, Iw has a right angle at xn, so that by lemma 4.1, d(yn, Iw) ≥
d(yn, xn) + d(xn, Iw)− C(π/2) = d(y0, x0) + d(xn, Iw)− C(π/2). In the same way,
d(yn, Iv) ≥ d(y0, x0) + d(xn, Iv)− C(α0).

We still have to prove that the distance from yn to (g−tw)t≥0 (resp. (g−tv)t≥0),
is, up to uniform constants, realised by d(yn, Iw) (resp. d(yn, Iv)).

Let p be the projection of yn on (g−tw)t∈R. Assume that d(xn, Iw) ≥ C(α0/4).
Lemma 4.1 in the triangle yn, Iw, xn implies that the angle at Iw between [Iw, xn]
and [Iw , yn] is bounded from above by α0/4.

Then the angle at Iw between [Iwp] and [Iw , yn] is larger than π/2− α0/4 > 0.
Lemma 4.1 in the triangle (p, Iw, yn) gives therefore d(yn, p) ≥ d(yn, Iw)+d(Iw, p)−
C(π/2 − α0/4). Thus, we proved that d(yn, (g

−tw)t≥0) = d(yn, p) ≥ d(yn, Iw) −
C(π/2− α0/4) ≥ d(y0, x0) + d(xn, Iw)− C(π/2)− C(π/2 − α0).

The same reasoning, replacing Iw by Iv, gives d(yn, (g
−tv)t≥0) ≥ d(x0, y0) +

d(xn, Iv)− C(α0)− C(3α0/4). It concludes the proof of the lemma. �

Let us now conclude the proof of the theorem. Recall that y0 ∈ Γ.o belongs
to Hor+(g−Dv) \ C(v,R), and that we want to show that for a suitable n, γn.y0
belongs to Hor−(g−D±cstev) \ C(v,R ± Cste). Recall also that w is the vector on
(hsv)s∈R such that (v−w+) intersects orthogonally (γ−γ+).

Let y′0 and x′
0 be respectively the images of y0 and x0 under the symmetry of axis

(v−w+). As the iterates γn.x0 are its translates from a distance l(γ) ≤ Λ on the axis
(γ−, γ+), there exists n ≥ 1, such that d(γnx0, x

′
0) ≤ Λ, and d(γnx0, x0) ≥ d(x′

0, x0).
By symmetry, we have d(y′0, ∂Hor(v)) = d(y0, ∂Hor(v)) and d(y′0, (g

−tv)t≥0) =
d(y0, (g

−tv)t∈R).
Denote H = Hor(v) and compare first d(y0, ∂H) ≥ D with d(yn, ∂H). By

symmetry, we have of course d(y′0, ∂H) ≥ D. As xn = γn.x0 and x′
0 are at distance

at most Λ, we deduce that |d(xn, ∂H) − d(x′
0, ∂H)| ≤ Λ. We will try to bound

by below d(yn, ∂H) − d(y′0, ∂H) by a uniform constant. It will imply d(yn, ∂H) ≥
D − cste for D large enough.

Denote respectively by qn and q′ the projections of yn = γn.x0 and y′0 on ∂H. If
d(yn, ∂H) ≥ d(y′0, ∂H) ≥ D, it is perfect. Assume now that d(yn, ∂H) ≤ d(y′0, ∂H),
and let us prove that this distance cannot be too small compared to D.

The triangle (yn, xn, v
−) has an angle greater than π/2 at xn (because xn is

the projection of yn on (γ−, γ+) which intersects [yn, v
−)). By lemma 4.1, we have
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Figure 5: Proof of theorem 1.2

d(xn, [yn, v
−)) ≤ C(π/2). If we consider the triangle (qn, xn, v

−), we deduce in
particular that the distance from yn to the side [qn, xn] satisfies d(yn, [qn, xn]) ≤
C(π/2). We assumed that the distance d(yn, xn) = d(yn, (γ

−, γ+)) is large com-
pared to k(C(π/2)). Lemma 4.2 gives therefore d(xn, yn)+d(yn, qn)−C(k(C(π/2))) ≤
d(xn, qn) ≤ d(xn, yn)+d(yn, qn). The same reasoning applies if we replace xn, yn, qn
by x′

0, y
′
0, q

′. We deduce therefore (using the fact that d(xn, yn) = d(x′
0, y

′
0)) that

d(yn, ∂H)−d(y′0, ∂H) = d(yn, qn)−d(y′0, q
′) ≥ d(xn, qn)−d(x′

0, q
′)−C(k(C(π/2))) .

On the other hand, we know that |d(xn, ∂H)−d(x′
0, ∂H)| ≤ Λ. We have therefore

to compare d(xn, qn) with d(xn, ∂H) on the one hand, and d(x′
0, q

′) with d(x′
0, ∂H)

on the other hand. We clearly have d(xn, qn) ≥ d(xn, ∂H). Let us show that d(x′
0, q)

is close to d(x′
0, ∂H).

Apply lemma 4.3 in the triangle (p′, q′, v−). With the notations of this lemma,
the point x′

0 lies on (v−, p′]. If x′
0 ∈ [β, v−), we deduce easily that |d(x′

0, p
′) −

d(x′
0, q)| ≤ δ. If x′

0 were on ]β, p′], there vould exist a point of (γ−γ+) inside the
triangle (α, β, γ) closer from y′0 than from x′

0, which would contradict the definition
of x′

0.
All the above imply that

|d(x′
0, ∂H)− d(x′

0, q
′)| = |d(x′

0, p
′)− d(x′

0, q
′)| ≤ δ .

Putting all these inequalities together, we proved that

d(yn, ∂H)− d(y′0, ∂H) ≥ d(xn, ∂H)− d(x′
0, ∂H)− δ − C(k(C(π/2)))

≥ −Λ− δ − C(k(C(π/2))) .

In particular, we deduce the desired result, that is that for all D > 0 large enough,
if d(y0, ∂H) ≥ D, then d(yn, ∂H) ≥ D − Λ− δ − C(k(C(π/2))).

We still have to understand the distance from yn = γn.y0 to the geodesic
(g−tv)t≥0. We assumed that d(y0, (g

−tv)t≥0) ≥ R. If y′0 is larger than y0 from
this geodesic, we have d(y′0, (g

−tv)t∈R) ≥ R. In the other case, it means that y′0 is
closer to (g−tv)t≥0 than to (g−tw)t≥0. By symmetry and by lemma 4.5, we have

d(y′0, (g
−tw)t≥0) = d(y0, (g

−tw)t≥0)

≥ d(y0, (g
−tv)t≥0)− C(α0)− C2(α0) ≥ R− C(α0)− C2(α0).

By lemma 4.5, d(yn, (g
−tv)t≥0) ≥ d(yn, (g

−tw)t≥0)− C(α0)− C2(α0).
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By definition of y′0 and yn, yn is farther than y′0 from (g−tw)t∈R. We deduce
from what precedes that d(yn, (g

−tv)t≥0) ≥ R − 2C(α0)− 2C2(α0).

In other words, we associated to the point y0 of Γ.o∩Hor+(g−Dv) \ C(v,R) an-
other point γny0 which belongs toHor−(g−D+Λ+δ+C(k(C(π/2)))v)\C(v,R−2C(α0)−
2C2(α0)).

As v was assumed to be right horocyclic, we can choose successively for k =

1, 2, . . . infinitely many such points y
(k)
0 in Γ.o∩Hor+(g−Dv)\C(v,R) and construct

for each of them another point in Γ.o ∩ Hor−(g−D+constv) \ C(v,R − const′). We

can choose a sequence of points (y
(k)
0 )k∈N of the right side in such a manner that

their ”images” on the left are pairwise distinct (for example by letting the distance

from y
(k)
0 to the boundary ∂Hor(v) go to infinity with k).

In particular, as v is right horocyclic, it proves that it is also necessarily left
horocyclic. In view of proposition 3.3, it implies that under the assumptions of
theorem 1.2, (hsv)s≥0 and (hsv)s≤0 are simultaneously dense in E , and concludes
the proof of theorem 1.2. �

5 A counterexample

We prove the following result:

Theorem 1.3 There exists hyperbolic surfaces whose unit tangent bundle contains
vectors v such that (hsv)s≥0 is dense in E, (hsv)s≤0 is not dense in E, v− is not the
endpoint of an interval of S1 \ ΛΓ, and (g−tv)t≥0 intersects infinitely many closed
geodesics with length going to infinity, with an angle which can, depending on the
surface, go to 0, or be uniformly bounded from below.

The idea of the construction is as follows. Fix v− = ∞, v+ = 0, and study the
orbit of o = i.

Choose on R+ half-circles C+
n , so that C+

n is tangent to C+
n±1, their euclidean

radius is bounded, let say equal to 1, and they are centered at 2n + 1, n ≥ 0,
n → +∞. Choose on R− half-circles C−

n , centered at −xn, so that C+
n is tangent

to C+
n±1, of radius Rn → +∞. By an immediate induction, we get x1 = R1, and

xn =
∑n−1

k=0 2Rk +Rn. Choose hyperbolic isometries γn of translation length going
to +∞, of fixed points γ−

n = 2n+ 1 and γ+
n = xn, which send C+

n onto C−
n .

A classical ping pong argument gives the following lemma.

Lemma 5.1 The (γn)n∈N generate a discrete, free (Schottky) group with infinitely
many generators.

Remark 5.2 It is unclear whether the above group satisfies ΛΓ = S1. If it is not
the case, it would be interesting to construct another counterexample satisfying
ΛΓ = S1.

Now, it is easy to see that the vector v based at o = i, with v− = ∞, v+ = 0,
cannot be left horospherical (3) because the orbit of o = i does not intersectHor−(v)
at all.

It is also clear that if ξ ∈ ΛΓ, ξ 6= v±, γnξ converges to v− on the right when
n → +∞, and γ−1

n ξ converges to v− on the left. In other words, v− is not in the
boundary of S1 \ ΛΓ.

3the terminology left or right horocyclic seems to be absurd on this example, but it is convenient
for all points v− on the real axis on the boundary at infinity.
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Figure 6: Proof of theorem 1.3

We just have to check that for a suitable choice of xn and rn, v
− is right horo-

cyclic. To prove it, show that the vertical coordinate of γn.o goes to +∞ (the
horizontal coordinate goes to −∞ by construction.)

Denote by zn the point of coordinates (2n+1, 1), and Pn the intersection point
of the axis of γn and the circle C+

n , that is the intersection of both half circles

of equations (x − (2n + 1))2 + y2 = 1 and
(
x−

(
2n+1−xn

2

))2
+ y2 =

(
2n+1+xn

2

)2
.

Its coordinates are
(
2n+ 1− 1

xn+2n+1 ,
√
1− 1

(xn+2n+1)2

)
, so that the hyperbolic

distance from Pn to zn satisfies d(Pn, zn) → 0 when n → ∞, and for n large enough
n (independently of the choice of xn), d(Pn, zn) ≤ 1.

Besides, a classical computation gives d(o, zn) ∼ 2 lnn when n → +∞. There-
fore, we have d(o, Pn) ≤ 3 lnn when n → +∞.

The image of Pn under γn is the intersection point Nn = γn.Pn of the half-circle
C−

n and the axis of γn, whose equations are (x+xn)
2+y2 = r2n and (x− 2n+1−xn

2 )2+

y2 =
(
2n+1+xn

2

)2
. The point Nn has therefore its coordinates equal to

(
−xn +

r2n
2n+ 1 + xn

, rn

√
1−

r2n
(2n+ 1 + xn)2

)
.

Now, we know that the distance from γn.o to Nn is at most 3 lnn for n large.
We wish that γn.o have an imaginary part as large as possible. But Im(γn.o) ≥

rn

√
1− r2

n

(2n+1+xn)2
− 3 lnn.

Observe that xn + rn = 2
∑n

k=1 rk. If we choose for all k ≥ 1, rk = k, we obtain

xn + n = n(n + 1), so that xn = n2, and rn

√
1− r2

n

(2n+1+xn)2
= n

√
1− n2

(n+1)4 ∼ n

when n → ∞. In other words, this choice of (rn)n≥1 is convenient.
If we choose for all k ≥ 1, rk = αk, α > 1, we get xn+αn = 2α(αn− 1)/(α− 1),

so that xn = αn α+1
α−1 − 2α1−n

α−1 . Denote by yn the vertical coordinate of Nn. An

immediate verification gives y2n ∼ α2n 4α
(α+1)2 >> (3 lnn)2. Therefore, Im(γn.o) →

+∞ when n → ∞, and this choice of (rn)n∈N is also convenient.

Remark 5.3 It is clear by construction that on the unit tangent bundle of the quo-
tient surface S, the geodesic (g−tv)t≥0 intersects infinitely many closed geodesics,
of length going to +∞, which are the projections on the surface of the axis of γn.
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A computation shows that the angle θn between the geodesic (v−v+) = iR

and the axis of γn satisfies cos θn = xn−(2n+1)
xn+2n+1 . In both examples above, we have

2n+ 1 = o(xn), whereas cos θn → 1 and θn → 0.
In other words, the above example satisfies none of the two assumptions of

theorem 1.2.
We can modify it so that it satisfies one of the two assumptions. The reader will

easily check that if we keep the circles C−
n unchanged, centered at −xn, of radius

Rn → +∞, but the circles C+
n are now centered at +xn, and still of radius 1 (they

are not tangent anymore one to another), then the geodesic (v−v+) = iR intersects
the axis (−xn, xn) of γn orthogonally. The distance from o to Pn is equivalent to
2 lnxn, so that d(γn.o,Nn) ∼ 2 lnxn, whereas the vertical coordinate of the point

Nn equals yn = rn

√
1−

r2
n

4x2
n

. If Rn = n et xn = n2, the imaginary part of γn.o

goes to +∞, so that the point +∞ is still right horocyclic but not left horocyclic.
Besides, one can also add isometries that send circles of bounded height one to

another, to “fill the gaps” between the half-circles C+
n . It is still not sure that it

would give a limit set ΛΓ = S1, because of the unbounded radius of the circles C−
n .
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