Amenability of covers and critical exponents

Dynamics of group actions

Cetraro, mai 2019

60 ans d'Yves Benoist

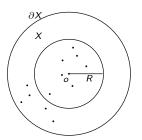
Work in collaboration with Rémi Coulon, Rhiannon Dougall and Samuel Tapie

Critical exponents

A discrete group Γ acts on a hyperbolic space X (for ex. $X = \mathbb{H}^n$).

The critical exponent of this action is

$$\delta_{\Gamma} = \limsup_{R o \infty} rac{1}{R} \log \# \{ \gamma \in \Gamma, \ d(o, \gamma o) \leq R \} \,.$$



Critical exponents

Coincides with

- \rightarrow the dimension of the (radial) limit set $\Lambda_{rad}(\Gamma)$ inside ∂X
- \rightarrow the entropy of the geodesic flow on $T^1(X/\Gamma)$

Of course, if $\Gamma' < \Gamma$, $\delta_{\Gamma'} \le \delta_{\Gamma}$.

Question: When do we have equality $\delta_{\Gamma'} = \delta_{\Gamma}$?

Our result

Theorem: (Coulon-Dougall-Sch.-Tapie 2018) Let Γ be a discrete group acting on a proper hyperbolic space X, with *entropy gap at infinity* $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$. Let $\Gamma' < \Gamma$ be a subgroup. Then

$$\delta_{\Gamma'} = \delta_{\Gamma}$$
 iff Γ/Γ' amenable.

Result already known in particular cases:

- \rightarrow Brooks (81,85) : convex-cocompact actions on \mathbb{H}^n , with $\delta_{\Gamma} > n/2$
- \rightarrow Grigorchuk, Cohen (80, 82): action of a free group on its Cayley graph
- ightarrow Stadlbauer: convex-cocompact (and some geom. finite) actions on \mathbb{H}^n
- \rightarrow Dougall-Sharp : convex-cocompact actions in variable neg. curvature
- ightarrow Coulon-Dal'bo-Sambusetti : cocompact actions on $\mathit{CAT}(-1)$ -spaces
- \rightarrow Roblin (03): amenability implies equality when $\Gamma' \triangleleft \Gamma$

Amenability

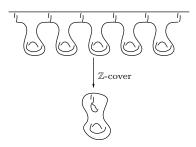
The group Γ' is coamenable in Γ if the regular representation

$$\rho: \Gamma \to \mathcal{U}(\ell^2(\Gamma/\Gamma'))$$

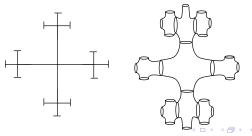
defined by $\rho(\gamma)(\varphi)(\cdot) = \varphi(\gamma \cdot)$ almost admits invariant vectors: for all $\varepsilon > 0$ and $S \subset \Gamma$ finite, there exists $\varphi \in \ell^2(\Gamma/\Gamma')$ such that for $\gamma \in S$, $\|\rho(\gamma)\varphi - \varphi\| < \varepsilon\|\varphi\|$.

Typical amenable group: \mathbb{Z}, \mathbb{Z}^d Typical nonamenable group: \mathbb{F}^n

(Non)-Amenable covers



And an attempt to draw a \mathbb{F}_2 -cover of a compact hyperbolic surface



Entropy gap at infinity

The group Γ acts on X (for ex. $X = \mathbb{H}^n$) Let $K \subset X$ be a compact set, $o \in K$. Define

$$\Gamma_{K} = \{ \gamma \in \Gamma, [o, \gamma o] \cap \Gamma K \subset K \cup \gamma K \} \subset \Gamma.$$

The entropy at infinity is

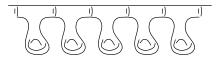
$$\delta_{\Gamma}^{\infty} = \inf_{K \subset X} \delta_{\Gamma_K} \le \delta_{\Gamma}.$$

The action of Γ on X admits a entropy gap at infinity when $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$.

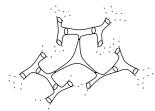
We call these actions strongly positively recurrent actions.

Manifolds with(out) entropy gap at infinity

Typical examples without entropy gap: infinite covers.



Typical examples with entropy gap: compact or convex-cocompact manifolds, geometrically finite locally symmetric manifolds, Schottky products, Ancona surfaces.



Optimality of the assumptions

Result false without hyperbolicity:

 Γ amenable group with exponential growth, $X = Cay(\Gamma)$, $\Gamma' = \{1\}$. Then $\delta_{\Gamma} > 0$ whereas $\delta_{\Gamma'} = 0$, and $\Gamma/\Gamma' = \Gamma$ is amenable

On higher rank symmetric spaces, if Γ/Γ' is amenable, then $\delta_{\Gamma}=\delta_{\Gamma'}$ (Glorieux-Tapie).

Result false without critical gap:

Let $S=X/\Gamma$ be a negatively curved surface without critical gap. For example, S is a \mathbb{Z} -cover of a compact hyperbolic surface. Build a \mathbb{F}_2 -cover $S'=X/\Gamma'$ of S by cutting S along two disjoint nonseparating closed curves. Then there is no critical gap:

$$\delta_{\Gamma} \geq \delta_{\widehat{\Gamma}} \geq \delta_{\widehat{\Gamma}}^{\infty} = \delta_{\Gamma}^{\infty} = \delta_{\Gamma} \ .$$

Recall the Patterson-Sullivan construction

The Poincaré series

$$P(s) = \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)}$$

has critical exponent δ_{Γ} . For $s > \delta_{\Gamma}$, build a measure on $X \cup \partial X$

$$u^s = \frac{1}{P(s)} \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \mathcal{D}_{\gamma o}.$$

When $s \to \delta_{\Gamma}$, get ν on ∂X as any weak limit of ν^s . The measure ν on ∂X is quasi-invariant under Γ .

The unit tangent bundle satisfies $T^1X \simeq \partial X \times \partial X \setminus Diag \times \mathbb{R}$ Build a Γ -invariant product equivalent to $\nu \times \nu \times dt$ Get Bowen-Margulis measure m_{BM} on T^1X/Γ (ergodic, mixing...)

Strategy of the proof

Step 1: Twisted Poincaré series $A(s) = \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \rho(\gamma)$. It has

a critical exponent $\delta_{\rho} \in [\delta_{\Gamma'}, \delta_{\Gamma}]$ such that for $s > \delta_{\rho}$, $A(s) \in \mathcal{B}(\ell^2(\Gamma/\Gamma'))$.

Step 2: Build a twisted Patterson-Sullivan measure a^{ρ} on ∂X with (nonzero) values in $\mathcal{B}(\ell^2(\Gamma/\Gamma'))$, by taking limits of

$$\frac{1}{\|A(s)\|} \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \rho(\gamma) \mathcal{D}_{\gamma o}.$$

Step 3: When $\delta_{\rho} = \delta_{\Gamma}$ and $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$, get absolute continuity of a^{ρ} w.r.t. the classical Patterson-Sullivan measure ν .

Step 4: By an ergodicity argument, deduce that $a^{\rho} = \Psi . \nu$ where $\Psi \in \mathcal{B}(\ell^2(\Gamma/\Gamma'))$ is a "multiplicative constant".

Step 5: By construction of a^{ρ} and ν , Ψ "takes values" in the set of almost invariant vectors.

Step 1: The twisted Poincaré series

Study
$$A(s) = \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \rho(\gamma).$$

The Hilbert space $\mathcal{H} = \ell^2(\Gamma/\Gamma', \mathbb{R})$ has a partial order compatible with the norm: $\phi \geq 0$ if for all $y \in \Gamma/\Gamma'$, $\phi(y) \geq 0$.

Define the associated positive cone \mathcal{H}_+ . A bounded operator on \mathcal{H} is positive if it preserves \mathcal{H}_+ . All $\rho(\gamma)$ are positive.

The Poincaré series A(s) is bounded if $\exists M > 0$, s.t. for all finite $S \subset \Gamma$, $\|\sum_{\gamma \in S} e^{-sd(o,\gamma o)} \rho(\gamma)\| \leq M$. The critical exponent

$$\delta_{\rho} = \inf\{s \in \mathbb{R}, A(s) \text{ is bounded}\}$$

is well defined. Easy to check that

$$\delta_{\Gamma'} \leq \delta_{\rho} \leq \delta_{\Gamma}$$
.

The assumption $\delta_{\Gamma'} = \delta_{\Gamma}$ is only used to guarantee that $\delta_{\rho} = \delta_{\Gamma}$.

Step 2: The twisted Patterson-Sullivan measure

Let $\mathcal{H} = \ell^2(\Gamma/\Gamma')$. Use a nonprincipal ultrafilter $\omega : \mathcal{P}(\mathbb{N}) \to \{0,1\}$.

Build a larger Hilbert space $\mathcal{H}_{\omega} = \lim_{\omega} \mathcal{H}$, and extend ρ to

 $\rho_{\omega}:\Gamma \to \mathcal{U}(\mathcal{H}_{\omega})$. We still have a partial order on \mathcal{H}_{ω} .

A sequence $\Phi = (\phi_n)$ of almost invariant vectors in $\mathcal{H}^{\mathbb{N}}$ becomes an invariant vector Φ under ρ_{ω} on \mathcal{H}_{ω} .

Choose $s_n \to \delta_\rho$. Define

$$a_n^{
ho} = rac{1}{\|A(s_n)\|} \sum_{\gamma \in \Gamma} e^{-s_n d(o, \gamma o)}
ho(\gamma) \ \mathcal{D}_{\gamma o} \,.$$

For $f \in C(X \cup \partial X)$, $\int f \, da_n^{\rho}$ belongs to $\mathcal{B}(\mathcal{H})$, with norm uniformy bounded in n.

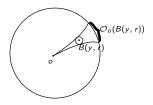
Define $a^{\rho}: C(X \cup \partial X) \to \mathcal{B}(\mathcal{H}_{\omega})$ positive, linear, continuous by

$$a^
ho(f):=\lim_\omega\int f\ da^
ho_n\in\mathcal{B}(\mathcal{H}_\omega)\,.$$

Nonzero measure on ∂X with values in $\mathcal{B}(\mathcal{H}_{\omega})$

Step 3: Absolute continuity (I)

A shadow is $\mathcal{O}_o(B(y,r)) = \{ \xi \in \partial X, (o\xi) \cap B(y,r) \neq \emptyset \}.$



The classical Patterson-Sullivan measure ν is a weak limit of $\frac{1}{P(s)} \sum_{\gamma \in \Gamma} e^{-sd(o,\gamma o)} \mathcal{D}_{\gamma o}$.

Sullivan's Shadow lemma says that $\nu(\mathcal{O}_o(B(\gamma o, r)) \asymp e^{-\delta_\Gamma d(o, \gamma o)}$.

A half-Shadow lemma for a^{ρ} : $||a^{\rho}(\mathcal{O}_{o}(B(\gamma o, r))|| \leq e^{-\delta_{\Gamma}d(o, \gamma o)}$.

Step 3: Absolute continuity (II)

Absolute continuity on shadows

$$||a^{\rho}(\mathcal{O}_o(B(\gamma o, r))|| \le \nu(\mathcal{O}_o(B(\gamma o, r)).$$

The entropy gap allows to show that points lying in infinitely many shadows have full ν and a^{ρ} -measure.

Only but crucial place where we need the entropy gap.

By a Vitali type argument, we deduce that $0 \neq a^{\rho} << \nu$.

For all $\phi \in \mathcal{H}$, $a^{\rho}.\phi << \nu$.

There exists a Radon-Nikodym derivative $D(\phi) \in L^{\infty}(X \cup \partial X, \mathcal{H})$, such that

$$\int f \ d(a^{\rho}.\phi) = \int f \ D(\phi) \, d\nu \, .$$

Step 4: Ergodicity

* The map $\phi \in \mathcal{H} \to D(\phi) \in L^{\infty}((\partial X, \nu), \mathcal{H}_{\omega})$ is linear and satisfies

$$\rho(\gamma) \circ D(\phi) \circ \gamma^{-1} = D(\phi).$$

- * The map $(\xi, \eta) \in (\partial X)^2 \to < D(\phi)(\xi), D(\phi)(\eta) >_{\mathcal{H}_{\omega}} \in \mathbb{R}$ is a Γ -invariant real-valued map.
- \rightarrow The measure $\nu \times \nu$ on $\partial X \times \partial X$ is ergodic w.r.t. the Γ -action

Hint: $T^1X \simeq \partial X \times \partial X \times \mathbb{R}$. The PS measure ν on ∂X allows to build the Bowen-Margulis measure $m_{BM} \sim \nu \times \nu \times dt$ on T^1X/Γ . By Hopf argument, when X is a CAT(-1)-space, it is an ergodic invariant measure for the geodesic flow. Also true for X Gromov-hyperbolic (Bader-Furman strategy).

 \rightarrow We deduce $D(\phi)$ is $\nu \times \nu$ -a.s. constant.

Step 5: Conclusion

We already know that (for any $\phi \in \mathcal{H}_{\omega}$, say with $\|\phi\| = 1$)

$$\rho(\gamma) \circ D(\phi) \circ \gamma^{-1} = D(\phi)$$
.

Moreover, as a map defined on $X \cup \partial X$, it is a.s. constant.

Therefore, for all $\gamma \in \Gamma$, we get the equality in \mathcal{H}_{ω}

$$\rho(\gamma).D(\phi) = D(\phi)$$

We got it $!! D(\phi)$ is our ρ -invariant vector in \mathcal{H}_{ω} .

More on the entropy gap

Show that ν and a^{ρ} are supported on $\Lambda_{rad}(\Gamma)$ (same proof).

$$\Lambda_{rad}(\Gamma)\supset \Lambda_{rad}^K(\Gamma)=\{\xi\in \Lambda(\Gamma),[o\xi) \text{ returns i.o. in } \Gamma.K\}$$
 Define

 $U_K(T) = \{ y \in X \cup \partial X, [oy) \text{ does not return in } K \text{ until time } T \}.$



Entropy gap $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$ allows to show $\nu(U_{K}^{T}) \leq e^{(\delta_{\Gamma_{K}} - \delta_{\Gamma})T}$ Deduce

$$\nu(\cap_{T>0}U_K^T)=0\quad\text{and}\quad\nu(\Gamma.(\cap_{T>0}U_K^T)=0$$

The "easy" direction

Kesten Criterion: any random walk on Γ/Γ' has spectral radius = 1.

Build a sequence of random walks w.r.t. uniform spherical measures on the spheres S(e, n).

Barta's trick : estimate spectral radius on positive functions.

Estimate uniformly from above their spectral radius by $\exp(n(\delta_{\Gamma'} - \delta_{\Gamma}))$.

Roblin needed $\Gamma' \triangleleft \Gamma$. We remove this assumption, but use $\delta_{\Gamma}^{\infty} < \delta_{\Gamma}$

Thank you!

And

Joyeux Anniversaire!