Amenability of covers and
critical exponents

Dynamics of group actions
Cetraro, mai 2019

60 ans d'Yves Benoist

Work in collaboration with
Rémi Coulon, Rhiannon Dougall and Samuel Tapie



Critical exponents
A discrete group I acts on a hyperbolic space X (for ex. X = H?").

The critical exponent of this action is

1
or = limsup = log#{~ €T, d(o,70) < R}.
R—o0 R




Critical exponents

Coincides with
— the dimension of the (radial) limit set A,,4(I") inside OX

— the entropy of the geodesic flow on T1(X/I)
Of course, if ' < T, 6r < or.

Question : When do we have equality 6 = or 7



Our result

Theorem : (Coulon-Dougall-Sch.-Tapie 2018) Let I' be a discrete
group acting on a proper hyperbolic space X, with entropy gap at
infinity 6p° < dr. Let I’ < T be a subgroup. Then

S =6 iff [/’ amenable.

Result already known in particular cases:

— Brooks (81,85) : convex-cocompact actions on H", with ér > n/2

— Grigorchuk, Cohen (80, 82): action of a free group on its Cayley graph
— Stadlbauer: convex-cocompact (and some geom. finite) actions on H"
— Dougall-Sharp : convex-cocompact actions in variable neg. curvature
— Coulon-Dal’bo-Sambusetti: cocompact actions on CAT (—1)-spaces
— Roblin (03): amenability implies equality when " < T



Amenability
The group I is coamenable in T if the regular representation
p: T —= U/

defined by p(7)(¥)(-) = ¢(7v -) almost admits invariant vectors:
for all ¢ > 0 and S C T finite, there exists ¢ € ¢2(T/T") such that

fory €S, [[p(7)e — ol <ellell.

Typical amenable group: Z, Z4
Typical nonamenable group: F"



(Non)-Amenable covers
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And an attempt to draw a Fo-cover of a compact hyperbolic surface




Entropy gap at infinity

The group I acts on X (for ex. X = H?")
Let K C X be a compact set, o € K. Define

Tk ={yerl,[o,yo]nNTK C KU~yK} CT.
The entropy at infinity is

2 = inf or, < Or.
O = o e < B

The action of ' on X admits a entropy gap at infinity when
(5;30 < Or.

We call these actions strongly positively recurrent actions.



Manifolds with(out) entropy gap at infinity

Typical examples without entropy gap: infinite covers.
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Typical examples with entropy gap: compact or convex-cocompact
manifolds, geometrically finite locally symmetric manifolds,
Schottky products, Ancona surfaces.




Optimality of the assumptions

Result false without hyperbolicity :
I amenable group with exponential growth, X = Cay(I), ' = {1}.
Then dr > 0 whereas o =0, and '/’ =T is amenable

On higher rank symmetric spaces, if /[ is amenable, then
or = O (Glorieux-Tapie).

Result false without critical gap:

Let S = X/I" be a negatively curved surface without critical gap.
For example, S is a Z-cover of a compact hyperbolic surface. Build
a Fo-cover S' = X/I" of S by cutting S along two disjoint
nonseparating closed curves. Then there is no critical gap:

0 > 6 > 020 = 67° = dr .



Recall the Patterson-Sullivan construction

The Poincaré series

P(S) — Z e—sd(o,'yo)

yel

has critical exponent dr. For s > dr, build a measure on X U 90X
1
s _ —sd(o0,70)
v’ = P(s) Ze D, .
yel

When s — dr, get v on 0X as any weak limit of v°. The measure
v on OX is quasi-invariant under .

The unit tangent bundle satisfies T1X ~ 90X x X \ Diag x R
Build a M-invariant product equivalent to v x v x dt
Get Bowen-Margulis measure mgy on T1X /I (ergodic, mixing...)



Strategy of the proof

Step 1: Twisted Poincaré series A(s Z e59(070) 5(4). It has

yel
a critical exponent 6, € [0r/, dr] such that for s > d,,

A(s) € B(£2(T/T7)).
Step 2: Build a twisted Patterson-Sullivan measure a” on 9X with
(nonzero) values in B(¢2(I'/T")), by taking limits of

1 —sd(o,vy0
AE 2 PP
vyer

Step 3: When §, = dr and 0p° < Jr, get absolute continuity of a?
w.r.t. the classical Patterson-Sullivan measure v.

Step 4: By an ergodicity argument, deduce that a” = W . where
W € B(¢2(T/T")) is a "multiplicative constant".

Step 5: By construction of a” and v, ¥ "takes values" in the set
of almost invariant vectors.



Step 1: The twisted Poincaré series
Study A(s) = » e */(1%)p(y).

yel
The Hilbert space . = ¢?(T' /I, R) has a partial order compatible
with the norm: ¢ > 0 if for all y € T'/T7, ¢(y) > 0.

Define the associated positive cone H,. A bounded operator on H
is positive if it preserves H. All p(~y) are positive.

The Poincaré series A(s) is bounded if IM > 0, s.t. for all finite
SCT X es e—3d(070) p(~)|| < M. The critical exponent

0, = inf{s € R, A(s) is bounded}
is well defined. Easy to check that
o < (Sp <dr.

The assumption dr = ér is only used to guarantee that 0, = dr.



Step 2: The twisted Patterson-Sullivan measure

Let H = ¢2(['/T"). Use a nonprincipal ultrafilter w : P(N) — {0,1}.
Build a larger Hilbert space H,, = lim,, H, and extend p to

Pw T — U(Hy). We still have a partial order on H,,.

A sequence ® = (¢,,) of almost invariant vectors in H" becomes an
invariant vector ¢ under p, on H,,.

Choose s, — 6,,. Define

1
o — —spd(0,70) D
= TAG] ; e p(7) Dro

For f € C(X U8X), [ f daf; belongs to B(H), with norm uniformy
bounded in n.
Define a” : C(X U 0X) — B(H.,) positive, linear, continuous by

a’(f) = IiUrJn/fdaﬁ € B(Hw) -

Nonzero measure on 90X with values in B(H,,)



Step 3: Absolute continuity (1)
A shadow is Oo(B(y, r)) = {£ € X, (0€) N B(y, r) # 0}.

The classical Patterson-Sullivan measure v is a weak limit of
1 —sd(o0,70)
P(s) 2l € Dio.

Sullivan’s Shadow lemma says that v(O,(B(vo,r)) < e—ord(oy0)

A half-Shadow lemma for a”: [|a”(O(B(~yo, r))|| < e—ord(o,70)



Step 3: Absolute continuity (1)

Absolute continuity on shadows
1a°(Oo(B(v0, r))|| < v(Oo(B(v0,r)).

The entropy gap allows to show that points lying in infinitely many
shadows have full v and a”-measure.

Only but crucial place where we need the entropy gap.
By a Vitali type argument, we deduce that 0 # a” << v.

Forall p € H, a*.¢ << v.
There exists a Radon-Nikodym derivative D(¢) € L>°(X U 90X, H),
such that

/f d(a".¢) :/f D(¢) dv .



Step 4: Ergodicity

* The map ¢ € H — D(¢) € L*((0X,v), Hy) is linear and
satisfies

p(7) o D(¢)or~t = D(¢).
« The map (£,1) € (9X)2 —< D(4)(€), D(6)(n) >x,€ R is 3
-invariant real-valued map.

— The measure v x v on 90X x 0X is ergodic w.r.t. the I-action

Hint: T1X ~ X x X x R. The PS measure v on X allows to build
the Bowen-Margulis measure mgy ~ v x v x dt on T*X/I. By Hopf
argument, when X is a CAT(—1)-space, it is an ergodic invariant
measure for the geodesic flow. Also true for X Gromov-hyperbolic
(Bader-Furman strategy).

— We deduce D(¢) is v X v-a.s. constant.



Step 5: Conclusion

We already know that (for any ¢ € H,,, say with ||¢|| = 1)

p(7) o D(¢) oy~' = D(¢).

Moreover, as a map defined on X U dX, it is a.s. constant.

Therefore, for all v € ', we get the equality in H,,

We got it I D(¢) is our p-invariant vector in H,,.



More on the entropy gap
Show that v and a” are supported on A.,4(I") (same proof).

Nrad(T) D AK (M) = {€ € A(T), [0€) returns i.o. in T.K}
Define
Uk(T) ={y € XUIX,[oy) does not return in K until time T}.

Entropy gap 62° < dr allows to show v(U[}) < k=0T

Deduce
v(NTsoUF) =0 and v(I.(N7s0Uf) =0




The "easy" direction

Kesten Criterion : any random walk on I'/T” has spectral radius = 1.

Build a sequence of random walks w.r.t. uniform spherical measures
on the spheres S(e, n).

Barta's trick : estimate spectral radius on positive functions.

Estimate uniformly from above their spectral radius by
exp(n(drr — dr)).

Roblin needed " <. We remove this assumption, but use O < or



Thank you!

And

Joyeux Anniversaire!



