
Amenability of covers and
critical exponents

Dynamics of group actions
Cetraro, mai 2019

60 ans d’Yves Benoist

Work in collaboration with
Rémi Coulon, Rhiannon Dougall and Samuel Tapie



Critical exponents

A discrete group Γ acts on a hyperbolic space X (for ex. X = Hn).

The critical exponent of this action is

δΓ = lim sup
R→∞

1
R

log #{γ ∈ Γ, d(o, γo) ≤ R} .

Ro

X

∂X



Critical exponents

Coincides with

→ the dimension of the (radial) limit set Λrad(Γ) inside ∂X

→ the entropy of the geodesic flow on T 1(X/Γ)

Of course, if Γ′ < Γ, δΓ′ ≤ δΓ.

Question : When do we have equality δΓ′ = δΓ ?



Our result

Theorem : (Coulon-Dougall-Sch.-Tapie 2018) Let Γ be a discrete
group acting on a proper hyperbolic space X , with entropy gap at
infinity δ∞Γ < δΓ. Let Γ′ < Γ be a subgroup. Then

δΓ′ = δΓ iff Γ/Γ′ amenable .

Result already known in particular cases :
→ Brooks (81,85) : convex-cocompact actions on Hn, with δΓ > n/2
→ Grigorchuk, Cohen (80, 82) : action of a free group on its Cayley graph
→ Stadlbauer: convex-cocompact (and some geom. finite) actions on Hn

→ Dougall-Sharp : convex-cocompact actions in variable neg. curvature
→ Coulon-Dal’bo-Sambusetti : cocompact actions on CAT (−1)-spaces
→ Roblin (03) : amenability implies equality when Γ′ / Γ



Amenability

The group Γ′ is coamenable in Γ if the regular representation

ρ : Γ→ U(`2(Γ/Γ′))

defined by ρ(γ)(ϕ)(·) = ϕ(γ ·) almost admits invariant vectors :
for all ε > 0 and S ⊂ Γ finite, there exists ϕ ∈ `2(Γ/Γ′) such that
for γ ∈ S , ‖ρ(γ)ϕ− ϕ‖ < ε‖ϕ‖.

Typical amenable group : Z,Zd

Typical nonamenable group : Fn



(Non)-Amenable covers

Z-cover

And an attempt to draw a F2-cover of a compact hyperbolic surface



Entropy gap at infinity

The group Γ acts on X (for ex. X = Hn)
Let K ⊂ X be a compact set, o ∈ K . Define

ΓK = {γ ∈ Γ, [o, γo] ∩ ΓK ⊂ K ∪ γK} ⊂ Γ .

The entropy at infinity is

δ∞Γ = inf
K⊂X

δΓK
≤ δΓ .

The action of Γ on X admits a entropy gap at infinity when
δ∞Γ < δΓ.

We call these actions strongly positively recurrent actions.



Manifolds with(out) entropy gap at infinity

Typical examples without entropy gap : infinite covers.

Typical examples with entropy gap : compact or convex-cocompact
manifolds, geometrically finite locally symmetric manifolds,
Schottky products, Ancona surfaces.



Optimality of the assumptions

Result false without hyperbolicity :
Γ amenable group with exponential growth, X = Cay(Γ), Γ′ = {1}.
Then δΓ > 0 whereas δΓ′ = 0, and Γ/Γ′ = Γ is amenable

On higher rank symmetric spaces, if Γ/Γ′ is amenable, then
δΓ = δΓ′ (Glorieux-Tapie).

Result false without critical gap :
Let S = X/Γ be a negatively curved surface without critical gap.
For example, S is a Z-cover of a compact hyperbolic surface. Build
a F2-cover S ′ = X/Γ′ of S by cutting S along two disjoint
nonseparating closed curves. Then there is no critical gap :

δΓ ≥ δΓ̂
≥ δ∞

Γ̂
= δ∞Γ = δΓ .



Recall the Patterson-Sullivan construction

The Poincaré series

P(s) =
∑
γ∈Γ

e−sd(o,γo)

has critical exponent δΓ. For s > δΓ, build a measure on X ∪ ∂X

νs =
1

P(s)

∑
γ∈Γ

e−sd(o,γo)Dγo .

When s → δΓ, get ν on ∂X as any weak limit of νs . The measure
ν on ∂X is quasi-invariant under Γ.

The unit tangent bundle satisfies T 1X ' ∂X × ∂X \ Diag × R
Build a Γ-invariant product equivalent to ν × ν × dt
Get Bowen-Margulis measure mBM on T 1X/Γ (ergodic, mixing...)



Strategy of the proof

Step 1 : Twisted Poincaré series A(s) =
∑
γ∈Γ

e−sd(o,γo)ρ(γ). It has

a critical exponent δρ ∈ [δΓ′ , δΓ] such that for s > δρ,
A(s) ∈ B(`2(Γ/Γ′)).
Step 2 : Build a twisted Patterson-Sullivan measure aρ on ∂X with
(nonzero) values in B(`2(Γ/Γ′)), by taking limits of

1
‖A(s)‖

∑
γ∈Γ

e−sd(o,γo)ρ(γ)Dγo .

Step 3 : When δρ = δΓ and δ∞Γ < δΓ, get absolute continuity of aρ

w.r.t. the classical Patterson-Sullivan measure ν.
Step 4 : By an ergodicity argument, deduce that aρ = Ψ .ν where
Ψ ∈ B(`2(Γ/Γ′)) is a "multiplicative constant".
Step 5 : By construction of aρ and ν, Ψ "takes values" in the set
of almost invariant vectors.



Step 1 : The twisted Poincaré series
Study A(s) =

∑
γ∈Γ

e−sd(o,γo)ρ(γ).

The Hilbert space H = `2(Γ/Γ′,R) has a partial order compatible
with the norm : φ ≥ 0 if for all y ∈ Γ/Γ′, φ(y) ≥ 0.

Define the associated positive cone H+. A bounded operator on H
is positive if it preserves H+. All ρ(γ) are positive.

The Poincaré series A(s) is bounded if ∃M > 0, s.t. for all finite
S ⊂ Γ, ‖

∑
γ∈S e

−sd(o,γo)ρ(γ)‖ ≤ M. The critical exponent

δρ = inf{s ∈ R,A(s) is bounded}

is well defined. Easy to check that

δΓ′ ≤ δρ ≤ δΓ .

The assumption δΓ′ = δΓ is only used to guarantee that δρ = δΓ.



Step 2 : The twisted Patterson-Sullivan measure
Let H = `2(Γ/Γ′). Use a nonprincipal ultrafilter ω : P(N)→ {0, 1}.
Build a larger Hilbert space Hω = limωH, and extend ρ to
ρω : Γ→ U(Hω). We still have a partial order on Hω.
A sequence Φ = (φn) of almost invariant vectors in HN becomes an
invariant vector Φ under ρω on Hω.
Choose sn → δρ. Define

aρn =
1

‖A(sn)‖
∑
γ∈Γ

e−snd(o,γo)ρ(γ) Dγo .

For f ∈ C (X ∪ ∂X ),
∫
f daρn belongs to B(H), with norm uniformy

bounded in n.
Define aρ : C (X ∪ ∂X )→ B(Hω) positive, linear, continuous by

aρ(f ) := lim
ω

∫
f daρn ∈ B(Hω) .

Nonzero measure on ∂X with values in B(Hω)



Step 3 : Absolute continuity (I)
A shadow is Oo(B(y , r)) = {ξ ∈ ∂X , (oξ) ∩ B(y , r) 6= ∅}.

o

B(y, r)

Oo (B(y, r))

The classical Patterson-Sullivan measure ν is a weak limit of
1

P(s)

∑
γ∈Γ e

−sd(o,γo)Dγo .

Sullivan’s Shadow lemma says that ν(Oo(B(γo, r)) � e−δΓd(o,γo).

A half-Shadow lemma for aρ : ‖aρ(Oo(B(γo, r))‖ ≤ e−δΓd(o,γo).



Step 3 : Absolute continuity (II)

Absolute continuity on shadows
‖aρ(Oo(B(γo, r))‖ ≤ ν(Oo(B(γo, r)).

The entropy gap allows to show that points lying in infinitely many
shadows have full ν and aρ-measure.

Only but crucial place where we need the entropy gap.

By a Vitali type argument, we deduce that 0 6= aρ << ν.

For all φ ∈ H, aρ.φ << ν.
There exists a Radon-Nikodym derivative D(φ) ∈ L∞(X ∪ ∂X ,H),
such that ∫

f d(aρ.φ) =

∫
f D(φ) dν .



Step 4 : Ergodicity
∗ The map φ ∈ H → D(φ) ∈ L∞((∂X , ν),Hω) is linear and
satisfies

ρ(γ) ◦ D(φ) ◦ γ−1 = D(φ) .

∗ The map (ξ, η) ∈ (∂X )2 →< D(φ)(ξ),D(φ)(η) >Hω∈ R is a
Γ-invariant real-valued map.

→ The measure ν × ν on ∂X × ∂X is ergodic w.r.t. the Γ-action

Hint : T 1X ' ∂X × ∂X × R. The PS measure ν on ∂X allows to build
the Bowen-Margulis measure mBM ∼ ν × ν × dt on T 1X/Γ. By Hopf
argument, when X is a CAT (−1)-space, it is an ergodic invariant
measure for the geodesic flow. Also true for X Gromov-hyperbolic
(Bader-Furman strategy).

→ We deduce D(φ) is ν × ν-a.s. constant.



Step 5 : Conclusion

We already know that (for any φ ∈ Hω, say with ‖φ‖ = 1)

ρ(γ) ◦ D(φ) ◦ γ−1 = D(φ) .

Moreover, as a map defined on X ∪ ∂X , it is a.s. constant.

Therefore, for all γ ∈ Γ, we get the equality in Hω

ρ(γ).D(φ) = D(φ)

We got it !! D(φ) is our ρ-invariant vector in Hω.



More on the entropy gap
Show that ν and aρ are supported on Λrad(Γ) (same proof).

Λrad(Γ) ⊃ ΛK
rad(Γ) = {ξ ∈ Λ(Γ), [oξ) returns i.o. in Γ.K}

Define

UK (T ) = {y ∈ X ∪ ∂X , [oy) does not return in K until time T} .

K
T

points of
UT

K

ξ ∈ ΛK
rad (Γ)

Entropy gap δ∞Γ < δΓ allows to show ν(UT
K ) ≤ e(δΓK

−δΓ)T

Deduce

ν(∩T>0U
T
K ) = 0 and ν(Γ.(∩T>0U

T
K ) = 0

so that
ν(ΛK

rad(Γ) = 1



The "easy" direction

Kesten Criterion : any random walk on Γ/Γ′ has spectral radius = 1.

Build a sequence of random walks w.r.t. uniform spherical measures
on the spheres S(e, n).

Barta’s trick : estimate spectral radius on positive functions.

Estimate uniformly from above their spectral radius by
exp(n(δΓ′ − δΓ)).

Roblin needed Γ′ / Γ. We remove this assumption, but use δ∞Γ < δΓ



Thank you!

And

Joyeux Anniversaire!


