M3-Probabilités Feuille 2 Théorème de Dynkin, Fonctions de répartitions

Exercice 1. Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} , positives, Lebesgue-intégrables, d'intégrales égales à 1. Supposons que pour tout intervalle $I \subset \mathbb{R}$, $\int_I f \, d\lambda = \int_I g \, d\lambda$. Montrez que $f = g \, \lambda$ -p.p.

Exercice 2. Montrer qu'une intersection de λ -systèmes est un λ -système.

Exercice 3. Soient $(\Omega_1, \mathcal{A}_1)$ et $(\Omega_2, \mathcal{A}_2)$ 2 espaces mesurables.

Nous étudions la mesurabilité des sections d'un ensemble de l'espace mesurable produit $(\Omega, \mathcal{A}) = (\Omega_1 \times \Omega_2, \mathcal{A}_1 \bigotimes \mathcal{A}_2)$ (i.e. $\mathcal{A}_1 \bigotimes \mathcal{A}_2$ est la tribu engendrée par les pavés $A_1 \times A_2$ avec $A_1 \in \mathcal{A}_1$ et $A_2 \in \mathcal{A}_2$).

Pour $A \in \mathcal{A}$ et $\omega_1 \in \Omega_1$, définissons la section

$$A_{\omega_1} = \{ \omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A \}.$$

Introduisons

$$\mathcal{M} = \{ A \in \mathcal{A} : \forall \omega_1, A_{\omega_1} \in \mathcal{A}_2 \},$$

$$\mathcal{E} = \{ A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \}.$$

- a) Montrer que \mathcal{E} est stable par intersection finie.
- b) Soit $A = A_1 \times A_2$. Déterminer A_{ω_1} pour tout $\omega_1 \in \Omega_1$. En déduire que $\mathcal{E} \subset \mathcal{M}$.
- c) Montrer que \mathcal{M} est un λ -système.
- d) En déduire que si $A \in \mathcal{A}$, toute section A_{ω_1} est \mathcal{A}_2 -mesurable.

On considère maintenant deux probabilités, P_1 et P_2 , sur $(\Omega_1, \mathcal{A}_1)$ et $(\Omega_2, \mathcal{A}_2)$.

e) Soit $F_A: \Omega_1 \to \mathbb{R}$ l'application définie par $F_A(\omega_1) = \int_{\Omega_2} \mathbf{1}_{A_{\omega_1}}(\omega_2) dP_2(\omega_2) = P_2(A_{\omega_1})$. Soit

$$\mathcal{N} = \{ A \in \mathcal{A}, F_A \text{ est } \mathcal{A}_1 \text{ mesurable} \}.$$

Montrez que \mathcal{N} contient \mathcal{E} , puis que \mathcal{N} est un λ -système. Déduisez-en que pour tout $A \in \mathcal{A}_1 \otimes \mathcal{A}_2$, l'application $\omega_1 \mapsto \int_{\Omega_2} \mathbf{1}_{A_{\omega_1}} dP(\omega_2)$ est \mathcal{A}_1 -mesurable.

f) Soit $\tilde{P}(A) := \int_{\Omega_1} F_A(\omega_1) dP_1(\omega_1)$. Montrez que \tilde{P} est une mesure de probabilité sur $\mathcal{A}_1 \otimes \mathcal{A}_2$, qui coïncide avec $P = P_1 \otimes P_2$ sur \mathcal{E} . En déduire le théorème de Fubini-Tonelli.

Exercice 4. Soit $\Omega =]0,1] \times]0,1]$ et \mathcal{F} la tribu constituée des ensembles de la forme $B \times]0,1]$, $B \in \mathcal{B}(]0,1]$). On définit une probabilité P sur \mathcal{F} par $P(B \times]0,1]) = \lambda(B)$ pour tout $B \in \mathcal{B}(]0,1]$). Mpntrer que $P_*(]0,1] \times \{1/2\}) = 0$ et $P^*(]0,1] \times \{1/2\}) = 1$.

Exercice 5. Soit E un ensemble à N éléments, les sommets. Une puce se déplace aléatoirement de sommet en sommet. A chaque saut, la probabilité d'aller du sommet i au sommet j est notée p_{ij} , de sorte que $\sum_{j=1}^{N} p_{ij} = 1$. La matrice $P = (p_{ij})$ est appelée matrice markovienne. La position initiale de la puce est aléatoire. La probabilité qu'elle soit au point i est notée π_i , de sorte que $\sum_{i=1}^{N} \pi_i = 1$. On note $\Omega = \{1, \ldots, N\}^{\mathbb{N}}$ l'ensemble de toutes les trajectoires possibles de la puce. On définit P_n sur $\{1, \ldots, N\}^n$ par $P_n((a_1, \ldots, a_n)) = \pi_{a_1} p_{a_1, a_2} \ldots p_{a_{n-1}, a_n}$. Vérifier que la famille $(P_n)_{n \in \mathbb{N}}$ définit une probabilité P sur Ω muni de la tribu engendrée par les cylindres.

Exercice 6. a) Soit $(A_{\beta})_{\beta \in B}$ une famille d'événements deux à deux disjoints sur un espace de probabilité (Ω, \mathcal{A}, P) . Montrer que si $P(A_{\beta}) > 0$ pour tout $\beta \in B$, alors l'ensemble d'indices B est fini ou dénombrable.

- b) Soit F la fonction de répartition d'une probabilité sur $(\mathbb{R}, \mathcal{B})$. Montrer que F est continue ssi $P(\{x\}) = 0$ pour tout x réel.
- \mathbf{c}) En déduire que le nombre de points de discontinuité de la fonction de répartition F d'une probabilité est fini ou dénombrable. Peut-il être infini ?
 - \mathbf{d}) En déduire que F est continue sur un ensemble dense.

Exercice 7. Soit F la fonction définie sur \mathbb{R} donnée par

$$F(x) = \frac{1}{4} 1_{[0,\infty[}(x) + \frac{1}{2} 1_{[1,\infty[}(x) + \frac{1}{4} 1_{[2,\infty[}(x).$$

Montrer que c'est la fonction de répartition d'une probabilité P sur \mathbb{R} que l'on déterminera. Trouver la probabilité des événements suivants : A =]-1/2, 1/2[, B =]-1/2, 3/2[, C =]2/3, 5/2[, D = [0, 2[et $E =]3, \infty[$.

Exercice 8. Soit F la fonction définie sur \mathbb{R} donnée par

$$F(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} 1_{\left[\frac{1}{i}, \infty\right[}(x).$$

Montrer que c'est la fonction de répartition d'une probabilité P sur \mathbb{R} que l'on déterminera. Trouver la probabilité des événements : $A = [1, \infty[$, $B = [1/10, \infty[$, $C = \{0\}$, D = [0, 1/2[, $E =] - \infty, 0[$ et $F =]0, \infty[$.

Exercice 9 (Escalier du diable). a) Soit P une probabilité sur \mathbb{R} admettant une densité f. Montrer que $P(\{x\}) = 0$ pour tout x.

b) Représenter graphiquement la suite de fonctions $(F_n)_{n\in\mathbb{N}}$ définies sur \mathbb{R} par la relation de récurrence :

$$F_0(x) = \begin{cases} 0 & \text{si} & x \le 0 \\ x & \text{si} & x \in [0, 1] \\ 1 & \text{si} & x \ge 1 \end{cases}$$

et

$$\forall n \in \mathbb{N}, \quad F_{n+1}(x) = \frac{1}{2} (F_n(3x) + F_n(3x - 2)).$$

- c) Montrer que la série de fonctions $\sum G_n$ où $G_n = F_{n+1} F_n$ converge normalement sur \mathbb{R} .
- d) En déduire que la suite (F_n) converge uniformément vers une fonction F croissante et continue sur \mathbb{R} .
 - e) En déduire que F est la fonction de répartition d'une probabilité P sur (\mathbb{R},\mathcal{B}) .
 - f) Montrer que P(K) = 1 où K désigne l'ensemble triadique de Cantor.
 - g) En déduire que la réciproque du résultat montré à la question 1. est fausse.
 - h) Montrer que F' = 0 λ -presque partout.
 - i) En déduire que

$$F(1) - F(0) \neq \int_{[0,1]} F'(x) dx.$$

Exercice 10 (Simulation). La fonction RANDOM permet à l'aide d'un ordinateur de tirer des nombres aléatoires suivant la loi uniforme sur [0,1]. On veut une méthode de tirage de nombres répartis aléatoirement suivant une loi de probabilité μ sur \mathbb{R} de fonction de répartition F.

- 1. Montrer que si F est continue et strictement croissante, la variable aléatoire $F^{-1}(U)$ répond au problème.
- **2.** Cas général. a) Pour $t \in]0,1[$, on pose $G(t) = \inf\{x \in \mathbb{R}, F(x) \geq t\}$. Montrer que G est bien définie (G est appelée fonction pseudo inverse de <math>F).
- **2.b)** Déterminer la loi de G(U) et conclure.
- **3. a)** Soit X une v.a.r. de fonction de répartition F_X continue. Donner la loi de $F_X(X)$ (on pourra commencer par supposer F_X strictement croissante.)
- **3.b)** Le résultat trouvé en **3.** a) reste-t-il vrai si F_X n'est pas continue?

Exercice 11. Soient F_1 et F_2 deux fonctions de répartition bornées sur \mathbb{R} . Etant donnée une fonction de répartition F, nous noterons μ_F la mesure déterminée par $\mu_F(]a,b]) = F(b) - F(a)$.

- 1) Pourquoi μ_F est-elle uniquement déterminée par la formule ci-dessus?
- 2) Montrer que la composée $F_1 \circ F_2$ est également une fonction de répartition.
- 3) Supposons de plus que F_2 est continue est strictement croissante. Montrer que $\mu_{F_1} = \mu_{F_1 \circ F_2} \circ F_2^{-1}$, i.e. que μ_{F_1} est l'image de $\mu_{F_1 \circ F_2}$ sous F_2 .
- 4) En déduire que pour toute fonction φ borélienne bornée, on a

$$\int \varphi \, d\mu_{F_1} = \int \varphi \circ F_2 \, d\mu_{F_1 \circ F_2} \,,$$

soit autrement dit (notation de Stieljes)

$$\int \varphi(y)d\mu_{F_1}(y) = \int \varphi \circ F_2(x) d\mu_{F_1 \circ F_2}(x).$$

5) Que se passe-t-il si on affaiblit les hypothèses sur F_2 ?