Géométrie différentielle. Feuille de TD 7: Champs de vecteurs

Exercice 1 (Champs de vecteurs constants sur le tore) Soit $X : (x, y) \mapsto (a, b)$ un champ de vecteurs constant sur \mathbb{R}^2 .

- 1. Montrer que X induit un champ de vecteurs sur le tore $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ qu'on notera encore X. Est-il complet ?
- 2. Montrer que si $\frac{a}{b}$ est rationnel, alors les courbes intégrales de X sur le tore sont compactes.
- 3. Montrer que si $\frac{a}{b}$ est irrationnel, alors toutes les courbes intégrales sont non-compactes et dense dans \mathbb{T}^2 .
- 4. À quelle condition X induit-il un champ de vecteur sur la bouteille de Klein K (définie dans la feuille 6)? Que peut-on alors dire des courbes intégrales de X sur K?

Exercice 2 (Champs de vecteurs linéaires du plan) Soit $A \in M_2(\mathbb{R})$. On définit le champ de vecteurs X_A sur \mathbb{R}^2 par

$$X_A: \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \to A. \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \simeq T_{\left(\begin{array}{c} x \\ y \end{array} \right)} \in \mathbb{R}^2$$

1. Représenter X_A dans chacun des cas suivants :

$$A = \pm I_2, \ A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right), \ A = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \ A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \ A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \ A = \left(\begin{array}{cc} 1/10 & -1 \\ 1 & 1/10 \end{array} \right)$$

- 2. Esquisser l'allure des courbes intégrales de X_A dans chacun des cas ci-dessus,
- 3. Soit $P \in GL_2(\mathbb{R})$. Quel est le lien entre les courbes intégrales de X_A et $X_{PAP^{-1}}$?
- 4. En déduire l'expression d'un champ de vecteurs linéaire sur \mathbb{R}^2 dont les orbites (sauf $\{0\}$) sont des ellipses mais pas des cercles
- 5. De manière générale, décrire l'allure des courbes intégrales de X_A , soit encore le portrait de phases, en fonction du spectre de A

Exercice 3 (Champs de vecteurs sur la sphère, dynamique Sud-Nord) On considère S^2 munie des deux cartes $\pi_N: U_N \to \mathbb{R}^2$ et $\pi_S: U_S \to \mathbb{R}^2$ données par les projections stéréographiques de pôles Nord et Sud. On note pour tout $t \in \mathbb{R}$, h_t l'homothétie de \mathbb{R}^2 de rapport e^t et de centre l'origine.

- 1. Montrer que $\pi_N^{-1} \circ h_t \circ \pi_N$ se prolonge de manière unique en un difféomorphisme g_t de S^2 et que pour tout $(t,s) \in \mathbb{R}^2$, $g_t \circ g_s = g_s \circ g_t = g_{t+s}$.
- 2. montrer que les seuls points fixes de g_t sont les pôles.
- 3. Montrer que pour tout $x \in S^2$, on a

$$\lim_{t \to +\infty} g_t(x) = N \text{ et } \lim_{t \to -\infty} g_t(x) = S.$$

4. Vérifier que pour $(t,x) \in \mathbb{R} \times S^2 \to g_t(x)$ est le flot du champ de vecteurs X sur S^2 donné pour tout $x \in S^2$ par la projection orthogonale sur $T_x S^2$ du vecteur (0,0,1).

Exercice 4 (Rotation de la sphère) Donner un champ de vecteurs sur S^2 dont le flot au temps 1 coincide avec la rotation d'angle $\theta \in [0, 2\pi]$ autour de l'axe nord-sud orienté de bas en haut. Si R_{θ} est la rotation d'angle θ on se demandera ce qu'est $\pi_N R_{\theta} \pi_N^{-1}$.

Exercice 5 (Crochet de champs de vecteurs linéaires) Soit $A \in M_n(\mathbb{R})$ et X_A le champ de vecteurs sur \mathbb{R}^n défini par $X_A(x) = A.x \in \mathbb{R}^n \simeq T_x\mathbb{R}^n$. Soient $A, B \in M_n(\mathbb{R})$.

- 1. Ecrire X_A et X_B en coordonnées, et calculer $[X_A, X_B]$. Vérifier en particulier qu'il s'agit aussi d'un champ de vecteurs linéaire.
- 2. Retrouver ce résultat en utilisant $[X,Y] = \frac{d}{dt}(\varphi_X^t)^*(Y)_{|t=0}$.

Exercice 6 (Coordonnées cartésiennes/polaires) 1. Définir deux champs de vecteurs X_r et X_θ sur $\mathbb{R}^2 \setminus \{0\}$ tq en tout point, (X_r, X_θ) forme une base orthonormée directe et X_r est radial (i.e. $X_r(x)$ est colinéaire à x). Calculer leurs flots et leur crochet de Lie $[X_r, X_\theta]$.

- 2. Soit $\psi: \mathbb{R}_+^* \times [0, 2\pi[\to \mathbb{R}^2 \setminus (] \infty, 0] \times \{0\})$ l'application $\psi(r, \theta) = (r\cos\theta, r\sin\theta)$. Si f est une fonction C^{∞} sur \mathbb{R}^2 , on note $\tilde{f}(r, \theta) = f \circ \psi(r, \theta)$. Par abus de notation, on note parfois $f(r, \theta)$ pour $f \circ \psi(r, \theta)$, et $\frac{\partial}{\partial r} f$ désigne la fonction $\frac{\partial}{\partial r} (f \circ \psi)(r, \theta)$.
 - Si (x, y) et (r, θ) désignent les coordonnées polaires et cartésiennes d'un point M de $\mathbb{R}^2 \setminus (]-\infty, 0] \times \{0\}$), calculer les coordonnées de $\frac{\partial}{\partial r}$ et $\frac{\partial}{\partial \theta}$ dans la base $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y})$. Calculer le crochet de Lie $[\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}]$. Quel est le lien entre X_r, X_θ d'une part et $\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}$ d'autre part.

Exercice 7 (Champs de vecteurs invariants à gauche sur un groupe de Lie) Un groupe de Lie G sera pour nous l'un des sous-groupes fermés de $GL(n,\mathbb{R})$ qui sont à la fois des groupes et des variétés, et dont la multiplication et le passage à l'inverse sont C^{∞} .

Un champ de vecteur sur G invariant à gauche, est un champ de vecteur X sur G tq pour tout $g \in G$, $L_q^* : X = X$, où $L_g : G \to G$ est la multiplication à gauche par $g : x \to g.x$.

- 1. Rappeler pourquoi $SL_2(\mathbb{R})$ est une variété, quelle est sa dimension et son espace tangent en l'identité, noté $\mathfrak{sl}_2(\mathbb{R}) = T_e SL_2(\mathbb{R})$ (on l'appelle l'Algèbre de Lie de $SL_2(\mathbb{R})$).
- 2. Déterminer une base de $\mathfrak{sl}_2(\mathbb{R})$.
- 3. En déduire l'ensemble des champs de vecteurs sur $SL_2(\mathbb{R})$ invariants à gauche.
- 4. Mêmes questions pour le groupe de Lie $SO_3(\mathbb{R})$.

Exercice 8 (Espace tangent des sphères de dimension impaire) 1. Soit $n \in \mathbb{N}$, montrer que l'ensemble des champs de vecteurs sur S^n s'identifie naturellement à

$$\{f \in C^{\infty}(S^n, \mathbb{R}^{n+1}); \forall x \in S^n, \langle x, f(x) \rangle = 0\}.$$

- 2. Pourquoi $TS^1 \simeq S^1 \times \mathbb{R}$?
- 3. Montrer que les sphères de dimension impaire admettent un champ de vecteur qui ne s'annule jamais. (On pourra utiliser le fait que $S^{2n+1} \subset \mathbb{C}^{n+1}$.)
- 4. On veut maintenant montrer que le fibré TS^3 est trivial, i.e. que TS^3 est difféomorphe à $S^3 \times \mathbb{R}^3$, et que les projections naturelles $TS^3 \to S^3$ et $S^3 \times \mathbb{R}^3 \to S^3$ coincident, modulo ce difféomorphisme. Montrer le résultat en utilisant le difféomorphisme-isomorphisme $S^3 \simeq SU(2,\mathbb{C})$
- 5. Montrer que S^3 admet 3 champs de vecteurs qui forment une famille libre en tout point.
- 6. En déduire un difféomorphisme entre le fibré tangent TS^3 et $S^3 \times \mathbb{R}^3$ (on dit alors que le fibré tangent est trivial).