Feuille 5: Corrigé d'exercices

December 10, 2018

Exercice 1.

1. Pratiquons l'algorithme de Gauss-Jordan pour la matrice formée par les vecteurs

$$\begin{pmatrix}
v_1, v_2, v_3 : \\
\begin{pmatrix}
1 & 1 & -1 \\
-1 & 1 & 1 \\
1 & 0 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & -1 \\
0 & 2 & 0 \\
0 & -1 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & -1 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

(Les opérateurs sur les lignes sont:

$$L_1 + L_2; -L_1 + L_3 \rightarrow \frac{L_2}{2} \rightarrow -L_2 + L_1; L_2 + L_3 \rightarrow \frac{L_3}{3} \rightarrow L_1 + L_3$$

-) Il résulte qu'il y a 3 pivots dans la forme FREL, donc la famille v_1, v_2, v_3 sont libre et génératrice de \mathbb{R}^3 donc la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3
- 2. Notons $\mathcal{C} = \{(1,0,0),(0,1,0),(0,0,1)\}$ la base canoique de \mathbb{R}^3 . On a le diagramme commutatif suivant: (faites attention aux sens des flèches!).

$$(\mathbb{R}^{3}, \mathcal{C}) \xrightarrow{Mat_{\mathcal{CC}}(f)} (\mathbb{R}^{3}, \mathcal{C})$$

$$Mat_{\mathcal{BC}}(id_{\mathbb{R}^{3}}) \Big) \qquad \qquad \Big| Mat_{\mathcal{CB}}(id_{\mathbb{R}^{3}})$$

$$(\mathbb{R}^{3}, \mathcal{B}) \xrightarrow{Mat_{\mathcal{BB}}(f)} (\mathbb{R}^{3}, \mathcal{B})$$

Ici: $-Mat_{\mathcal{CC}}(f)$: la matrice de f par rapport à la base canonique \mathcal{C} de \mathbb{R}^3

- $Mat_{\mathcal{BB}}(f)$: la matrice de f par rapport à la base \mathcal{B} de \mathbb{R}^3 .
- $Mat_{\mathcal{BC}}(id_{\mathbb{R}^3})$: la matrice de passage de la base \mathcal{B} vers la base canonique \mathcal{C} .
- $Mat_{\mathcal{CB}}(id_{\mathbb{R}^3})$: la matrice de passage de la base \mathcal{C} vers la base canonique \mathcal{B} .

Cela implique:

$$Mat_{\mathcal{BB}}(f) = Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}).Mat_{\mathcal{CC}}(f).Mat_{\mathcal{BC}}(id_{\mathbb{R}^3})$$

• $Mat_{\mathcal{BC}}(id_{\mathbb{R}^3})$ est la matrice de passage de la base \mathcal{B} vers la base canonique \mathcal{C} , Par définition, on a:

$$v_1 = (1, -1, 1) = 1.e_1 - 1.e_2 + 1.e_3$$

 $v_2 = (1, 1, 0) = 1.e_1 + 1.e_2 + 0.e_3$
 $v_3 = (-1, 1, 2) = -1.e_1 + 1.e_2 + 2.e_3$

Par conséquent, $Mat_{\mathcal{BC}}(id_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$

- Par l'hypothèse: $Mat_{\mathcal{CC}}(f) = M = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}$
- Calculons $Mat_{\mathcal{CB}}(id_{\mathbb{R}^3})$, on sait que $Mat_{\mathcal{CB}}(id_{\mathbb{R}^3})$ est la matrice inverse de la matrice $Mat_{\mathcal{BC}}(id_{\mathbb{R}^3})$, autrement dit:

$$Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}) = (Mat_{\mathcal{BC}}(id_{\mathbb{R}^3}))^{-1}$$

Pratiquons l'algorithme de Gauss Jordan pour la matrice étendue de la matrice $Mat_{BC}(id_{\mathbb{R}^3})$:

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 1 & 0 \\ 0 & -1 & 3 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & -1 & 3 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{1}{2} & \frac{-1}{2} & 0 \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 3 & \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{1}{2} & \frac{-1}{2} & 0 \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{-1}{6} & \frac{1}{6} & \frac{1}{3} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{-1}{6} & \frac{1}{6} & \frac{1}{3} \end{pmatrix}$$

$$\text{Par suite, } (Mat_{\mathcal{BC}}(id_{\mathbb{R}^3}))^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix} = Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}).$$

Finalement,

$$\begin{aligned} Mat_{\mathcal{BB}}(f) &= Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}).Mat_{\mathcal{CC}}(f).Mat_{\mathcal{BC}}(id_{\mathbb{R}^3}) \\ &= \begin{pmatrix} \frac{1}{3} & \frac{-1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{-1}{6} & \frac{1}{6} & \frac{1}{3} \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

D'où la matrice de f dans la base \mathcal{B} est $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

3. Fixon un vecteur quelconque $v \in \mathbb{R}^3$ de coordonnées (x,y,z) dans la base \mathcal{B} , c'est à dire: $v = x.v_1 + y.v_2 + z.v_3$. Puisque la matrice de f dans la base \mathcal{B} est $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, les coordonnées de f(v) dans la base \mathcal{B} sont calculés comme suit:

$$\left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} -x \\ y \\ z \end{array}\right)$$

c'est à dire $f(v) = (-x) \cdot v_1 + y + v_2 + z \cdot v_3$. Il résulte que

$$\frac{v + f(v)}{2} = \frac{x \cdot v_1 + y \cdot v_2 + z \cdot v_3 + (-x) \cdot v_1 + y + v_2 + z \cdot v_3}{2} = y \cdot e_2 + z \cdot e_3$$

Remarquons que les vecteurs $y.e_2 + z.e_3$ appartient au plan P d'équation x = 0 dans la base \mathcal{B} . Par conséquent, $\frac{v+f(v)}{2}$ appartient à P et f est la symétrie par rapport au plan P d'équation x = 0 dans la base \mathcal{B} .

Exercice 2.

Notons $\mathcal{E} = (e_1, e_2, e_3)$ la base de \mathbb{R}^3 et $\mathcal{F} = (f_1, f_2)$ la base de \mathbb{R}^2 .

1. On a le diagramme suivant:

$$(\mathbb{R}^{3}, \mathcal{E}) \xrightarrow{Mat_{\mathcal{E}\mathcal{F}}(g)} (\mathbb{R}^{2}, \mathcal{F})$$

$$Mat_{\mathcal{E}'\mathcal{E}}(id_{\mathbb{R}^{3}}) \uparrow \qquad \qquad \downarrow Mat_{\mathcal{F}\mathcal{F}}(id_{\mathbb{R}^{2}})$$

$$(\mathbb{R}^{3}, \mathcal{E}') \xrightarrow{at_{\mathcal{E}'\mathcal{F}}(g)} (\mathbb{R}^{2}, \mathcal{F})$$

Par suite,

$$Mat_{\mathcal{E}'\mathcal{F}}(g) = Mat_{\mathcal{F}\mathcal{F}}(id_{\mathbb{R}^2}).Mat_{\mathcal{E}\mathcal{F}}(g).Mat_{\mathcal{E}'\mathcal{E}}(id_{\mathbb{R}^3})$$

-Notons $\mathcal{E}'=(e_1^{'},e_2^{'},e_3^{'})$ la nouvelle base de \mathbb{R}^3 . Par dfinition la matrice de passage de \mathcal{E}' à \mathcal{E} est :

$$Mat_{\mathcal{E}'\mathcal{E}}(id_{\mathbb{R}^3} = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

-
$$Math_{\mathcal{F}\mathcal{F}}(id_{\mathbb{R}^2}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. Donc,

$$Mat_{\mathcal{E}'\mathcal{F}}(g) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 1 \\ -1 & 0 & 5 \end{pmatrix}$$

2. Notons $\mathcal{F}' = (f_1', f_2')$.

$$(\mathbb{R}^{3}, \mathcal{E}) \xrightarrow{Mat_{\mathcal{E}\mathcal{F}}(g)} (\mathbb{R}^{2}, \mathcal{F})$$

$$Mat_{\mathcal{E}'\mathcal{E}}(id_{\mathbb{R}^{3}}) \uparrow \qquad \qquad \downarrow Mat_{\mathcal{F}\mathcal{F}'}(id_{\mathbb{R}^{2}})$$

$$(\mathbb{R}^{3}, \mathcal{E}') \xrightarrow{Mat_{\mathcal{E}'\mathcal{F}'}(g)} (\mathbb{R}^{2}, \mathcal{F}')$$

Par suite,

$$Mat_{\mathcal{E}'\mathcal{F}'}(g) = Mat_{\mathcal{F}\mathcal{F}'}(id_{\mathbb{R}^2}).Mat_{\mathcal{E}\mathcal{F}}(g).Mat_{\mathcal{E}'\mathcal{E}}(id_{\mathbb{R}^3})$$

- La matrice de passage de la base \mathcal{F}' à la base \mathcal{F} est

$$Mat_{\mathcal{F}'\mathcal{F}}(id_{\mathbb{R}^2} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix}$$

 $Mat_{\mathcal{F}\mathcal{F}'}(id_{\mathbb{R}^2})$ est la matrice inverse de $Mat_{\mathcal{F}'\mathcal{F}}(id_{\mathbb{R}^2})$. Pratiquons GJ:

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & \frac{-1}{2} & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 & 0 \\ \frac{1}{2} & \frac{-1}{2} & 0 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & -1 & -1 & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$
 D'où,

$$Mat_{\mathcal{F}\mathcal{F}'}(id_{\mathbb{R}^2}) = (Mat_{\mathcal{F}'\mathcal{F}}(id_{\mathbb{R}^2}))^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Finalement,

$$Mat_{\mathcal{E}'\mathcal{F}'}(g) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3 & 6 \\ 1 & 3 & -4 \end{pmatrix}.$$

Exercice 3. 1. Calculons $f(e_1) = (1, 1, 1), f(e_2) = (-1, 0, 1), f(e_3) = (1, 2, 3), f(e_4) = (1, -1, -3)$. Donc la matrice de f dans la base canonique est

$$\left(\begin{array}{cccc}
1 & -1 & 1 & 1 \\
1 & 0 & 2 & -1 \\
1 & 1 & 3 & -3
\end{array}\right)$$

2. Remarque: L'image de f est un sous espace vectoriel de \mathbb{R}^3 engendé par $f(e_1), f(e_2), f(e_3), f(e_4)$: $Imf = Vect(f(e_1), f(e_2), f(e_3), f(e_4))$. Pratiquons GJ:

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 2 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Dans la forme FREL, il y a 2 pivots se trouvant à deux premières colonnes, il s'ensuit que $f(e_1), f(e_2)$ sont libres et de plus $f(e_3) = 2f(e_1) + f(e_2), f(e_4) = -f(e_1) - 2f(e_2)$, par suite

$$Im f = Vect(f(e_1), f(e_2), f(e_3), f(e_4)) = Im(f(e_1), f(e_2))$$

-La famille $f(e_1), f(e_2)$ est libre et génératrice de Imf donc c'est une base de Imf. - Posons v = (0, 0, 1), montrons que la famille $\{f(e_1), f(e_2), v\}$ est libre: En effet, par GJ

$$\begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Il y a 3 pivots dans la forme FREL donc $\mathcal{B} = \{f(e_1), f(e_2), v\}$ est libre et cela forme une base de \mathbb{R}^3 .

3. $Ker(f) = \{(x, y, z, t) \in \mathbb{R}^4 : f(x, y, z, t) = 0\}$, autrement dit, un vecteur (x, y; z, t) appartient à Ker(f) si et selement si il est solution du système linéaire:

$$\begin{cases} x - y + z + t = 0 \\ x + 2z + t = 0 \\ x + y + 3z - 3t = 0 \end{cases}$$

L'algorithme de Gauss-Jordan en question 2, on a :

$$\begin{cases} x + 2z - t = 0 \\ y + z - 2t = 0 \end{cases} \Leftrightarrow \begin{cases} x = -2z + t \\ y = -z + 2t \end{cases}$$

D'où: $Ker(f) = \{(-2z+t, -z+2t, z, t), z, t \in \mathbb{R}\} = \{z.(-2, -1, 1, 0) + t.(1, 2, 0, 1), z, t \in \mathbb{R}\} = Vect(((-2, -1, 1, 0), (1, 2, 0, 1)).$ Par suite la famille $\{(-2, -1, 1, 0), (1, 2, 0, 1)\}$ est une famille génératrice de Ker(f).

Montrons que cette famille est libre: supposons $x.(-2,-1,1,0) + y.(1,2,0,1) = 0 \Longrightarrow x = y = 0$ donc $u_1 = (-2,-1,1,0), u_2 = (1,2,0,1)$ sont libres et forment une base de Ker(f).

4. Pratiquons GJ pour la famille (e_1, e_2, u_1, u_2) , on a 4 pivots dans la forme FREL, donc c'est une famille libre et génératrice de \mathbb{R}^4 donc c'est une base de \mathbb{R}^4 . Calculons la matrice de f dans les base $\mathcal{E} = (e_1, e_2, u_1, u_2)$ et \mathcal{B} en question 2. On a le diagramme suivant:

 $Mat_{\mathcal{EB}}(f) = Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}).Mat_{\mathcal{CC}}(f).Mat_{\mathcal{EC}}(id_{\mathbb{R}^4}).$

$$\operatorname{Où} Mat_{\mathcal{EC}}(id_{\mathbb{R}^4}) = \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \operatorname{et} Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}) = (Mat_{\mathcal{BC}}(id_{\mathbb{R}^3}))^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1}.$$

Pratiquons GJ:

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 2 & 1 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix}$$

Donc $Mat_{\mathcal{CB}}(id_{\mathbb{R}^3}) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}$. Finalement la matrice de f dans les bases \mathcal{E} et \mathcal{B} est:

$$Mat_{\mathcal{EB}}(f) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$

Exercice 4. 1. Pratiquez GJ

2. Notons $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\mathcal{E} = (\epsilon_1, \epsilon_2, e_1)$ la nouvelle base. Par l'hypothèse, on a :

$$f(\epsilon_1) = \epsilon_2 = (1, 2, 1) = 1.e_1 + 2e_2 + 1.e_3$$

 $f(\epsilon_2) = \epsilon_2 = (1, 2, 1) = 1.e_1 + 2e_2 + 1.e_3$
 $f(e_1) = e_1 + e_2 = e_1 + e_2 + 0e_3$.

Par conséquent, la matrice de $f: (\mathbb{R}^3, \mathcal{E}) \to (\mathbb{R}^3, \mathcal{C})$ est $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. On a le diagramme suivant:

$$(\mathbb{R}^{3}, \mathcal{E}) \xrightarrow{A} (\mathbb{R}^{3}, \mathcal{C})$$

$$P \downarrow Q$$

$$(\mathbb{R}^{3}, \mathcal{C}) \xrightarrow{at_{\mathcal{C}C}(f)} (\mathbb{R}^{3}, \mathcal{C})$$

Il s'ensuit que la matrice de f dans la base canonique \mathcal{C} est $Mat_{\mathcal{CC}}(f) = Q.A.P$. Ici $Q = Mat_{\mathcal{CC}}(id_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice de passage de \mathcal{C} vers elle même et $P = Mat_{\mathcal{CE}}(id_{\mathbb{R}^3})$ est est la matrice de passage de \mathcal{C} vers \mathcal{E} et on peut la calculer par GJ: c'est la matrice inverse de la matrice $Mat_{\mathcal{EC}}(id_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \to P =$

$$\left(\begin{array}{ccc} 0 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{array}\right).$$

Réponse:
$$Mat_{\mathcal{CC}}(f) = Q.A.P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Remarque: Vous pouvez la calculer comme suit: La matrice de f dans la base canonique est formée par les coordonnées des vecteurs $f(e_1), f(e_2), f(e_3)$ dans la base canonique. Or :

$$f(e_1) = e_1 + e_2 = (1, 1, 0)$$

$$e_2 = -\epsilon_1 + \epsilon_2 \Longrightarrow f(e_2) = f(-\epsilon_1) + f(\epsilon_2) = -f(\epsilon_1) + f(\epsilon_2) = -\epsilon_2 + \epsilon_2 = (0, 0, 0)$$

$$f(e_3) = 2\epsilon_1 - \epsilon_2 - e_1 \Longrightarrow f(e_3) = 2f(\epsilon_1) - f(\epsilon_2) - f(e_3) = (2, 4, 2) - (1, 2, 1) - (1, 1, 0) = (0, 1, 1).$$
 D'où le résultat.

3. Réponse $Mat_{\mathcal{E}\mathcal{E}}(f) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Exercice 5. 1. Réponse: $\begin{pmatrix} 1 & 1 & 0 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

2. Pratiquez GJ pour montrer que v_1, v_2, v_3 est une base de \mathbb{R}^3 . $\mathcal{B} = (v_1, v_2, v_3)$ la nouvelle base, \mathcal{C} la base canonique

$$(\mathbb{R}^{3}, \mathcal{C}) \xrightarrow{Mat_{\mathcal{CC}}(f)} (\mathbb{R}^{3}, \mathcal{C})$$

$$P \cap \qquad \qquad \downarrow P^{-1}$$

$$(\mathbb{R}^{3}, \mathcal{B}) \xrightarrow{Mat_{\mathcal{BB}}(f)} (\mathbb{R}^{3}, \mathcal{B})$$

$$P = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}$$
 (attention: Pratiquez GJ pour calculer P^{-1})

$$Mat_{\mathcal{BB}}(f) = P^{-1}.Mat_{\mathcal{CC}}(f).P = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}.\begin{pmatrix} 1 & 1 & 0 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.\begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

Exercice 8. 1. $\begin{pmatrix} -1 & 1 & 1 \\ -2 & 1 & 1 \\ -6 & 2 & 4 \end{pmatrix}$

2. $\mathcal{B} = (v_1, v_2, v_3)$ la nouvelle base, \mathcal{C} la base canonique

$$(\mathbb{R}^{3}, \mathcal{C}) \xrightarrow{Mat_{\mathcal{CC}}(f)} (\mathbb{R}^{3}, \mathcal{C})$$

$$P \downarrow \qquad \qquad \downarrow P^{-1}$$

$$(\mathbb{R}^{3}, \mathcal{B}) \xrightarrow{At_{\mathcal{BB}}(f)} (\mathbb{R}^{3}, \mathcal{B})$$

$$P = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 2 & 2 & 5 \end{pmatrix} \text{ et par GJ on peut calculer: } P^{-1} = \begin{pmatrix} 3 & -1 & -1 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}.$$

$$Mat_{\mathcal{BB}}(f) = P^{-1}.Mat_{\mathcal{CC}}(f).P = \begin{pmatrix} 3 & -1 & -1 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}.\begin{pmatrix} -1 & 1 & 1 \\ -2 & 1 & 1 \\ -6 & 2 & 4 \end{pmatrix}.\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 2 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 9. 1. Pratiquez Gauss-Jordan, Ker(f) = Vect(v), où $v = \frac{4}{3}e_1 + \frac{2}{3}e_2 + e_3 \in E$.

2. Réponse
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Exercice 10. 1. On a:
$$f(e_1) = -e_1 + e_2 + e_3 = (-1, 1, 1), f(e_2) = (-2, 0, 2), f(e_3) = (-4, 1, 4)$$
, par conséquent, la matrice de f dans la base canonique est: $\begin{pmatrix} -1 & -2 & -4 \\ 1 & 0 & 1 \\ 1 & 2 & 4 \end{pmatrix}$

- 2. $Im(f) = Vect(f(e_1), f(e_2), f(e_3))$, puis vous pratiquez GJ pour la famille $f(e_1), f(e_2), f(e_3)$, vous trouvrez une base de Im(f), c'est $\{f(e_1), f(e_2)\}$. L'equation de Im(f) est x + z = 0 (revoir l'exo 3.1b de la feuille 4).
- 4. Ker(f-3Id) = Vect((-1,0,1)) et $v_1 = (-1,0,1)$ est une base de Ker(f-3Id). $Ker(f) = Vect((-1,\frac{-3}{2},1))$ et $v_2 = (-1,\frac{-3}{2},1)$ est une base de Ker(f). On peut ajouter $v_3 = (0,0,1)$ pourque (v_1,v_2,v_3) soit une base de \mathbb{R}^3 . Puis vous faites un diagramme pour calculer la matrice de f dans cette base. (Réponse: $\begin{pmatrix} 3 & 0 & \frac{14}{3} \\ 0 & 0 & \frac{-2}{3} \\ 0 & 0 & 0 \end{pmatrix}$) (attention: si vous choisissez une autre vecteur v_3 , vous aurez un autre résultat!)

Exercice 11. 1.
$$\begin{pmatrix} 2 & -1 & 2 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$

$$2. \left(\begin{array}{rrr} 4 & 3 & -3 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{array}\right)$$

Exercice 12. 1.
$$M = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$
, $M^2 = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix}$.

2. $Ker(u) = \{(x, y, z) : u(x, y, z) = 0\} = Vect((1, -2, 1));$ La matrice de u^2 dans la base canonique est M^2 et $Ker(u^2) = \{(x, y, z) : u^2(x, y, z) = 0\} = Vect((-1, 1, 0), (-1, 0, 1)).$ $Im(u) = Vect((u(e_1), u(e_2), u(e_3)) = Vect((2, -3, 1), (1, -1, 0), (0, 1, -1)),$ puis vous pratiquez GJ pour trouver une base de Im(u): Im(u) = Vect((2, -3, 1), (1, -1, 0)).De même, $Im(u^2) = Vect((u^2(e_1), u^2(e_2), u^2(e_3)) = Vect((1, -2, 1), (1, -2, 1), (1, -2, 1)) = Vect((1, -2, 1)).$ On a $Ker(u) = Im(v^2)$, $Im(u) = Ker(u^2)$.

$$3. \ N = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{array} \right).$$

4.
$$S = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \Rightarrow S^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow S^{-1} = S$$
, d'où $S^{-1}MS = N$

Exercice 15. 1. $\mathbb{R}_{\leq 3}[X]$ est un \mathbb{R} -sous espace vectoriel de $\mathbb{R}[X]$ contenant des polynomês de degrée ≤ 3 . Pour montrer que φ est un endomorphisme de $\mathbb{R}_{\leq 3}[X]$, on doit montrer 2 choses:

- Si $P(X) \in \mathbb{R}_{\leq 3}[X]$, alors $\varphi(P)(X) \in \mathbb{R}_{\leq 3}[X]$, autrement dit, $\varphi(P)(X)$ est un polynôme de degrée ≤ 3
- φ est linéaire

En effet, prenons $P(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3, Q(X) = b_0 + b_1 X + b_2 X^2 + b_3 X^3 \in \mathbb{R}_{\leq 3}[X]$ et $\lambda \in \mathbb{R}$.

On a:

$$P'(X) = a_1 + 2a_2X + 3a_3X^2$$

 $\Rightarrow \varphi(P)(X) = P(X) - X.P(X) = a_0 + a_1X + a_2X^2 + a_3X^3 - X.(a_1 + 2a_2X + 3a_3X^2) = a_0 - a_2X^2 - 2a_3X^3$. Cela implique que $\varphi(P)(X)$ est un polynôme de degrée ≤ 3 , donc $\varphi(P)(X) \in \mathbb{R}_{\leq 3}[X]$.

De même, $\varphi(Q(X) = b_0 - b_2 X^2 - 2b_3 X^3$. Par suite: $-\varphi(P)(X) + \varphi(Q)(X) = a_0 - a_2 X^2 - 2a_3 X^3 + b_0 - b_2 X^2 - 2b_3 X^3 = (a_0 + b_0) - (a_2 + b_2)X^2 - 2(a_3 + b_3)X^3 = \varphi(P + Q)(X)$.

 $-\lambda \cdot \varphi(P)(X) = \lambda(a_0 - a_2X^2 - 2a_3X^3) = \varphi(\lambda \cdot P)(X)$. Cela montre que φ est linéaire. Par conséquent φ est un endo de $\mathbb{R}_{\leq 3}[X]$.

2.

$$Ker(\varphi) = \{P(X) = a_0 + a_1X + a_2X^2 + a_3X^3 : \varphi(P)(X) = a_0 - a_2X^2 - 2a_3X^3 = 0\}$$
$$= \{P(X) = a_0 + a_1X + a_2X^2 + a_3X^3 : a_0 = a_2 = a_3 = 0\}$$
$$= \{a_1X, a_1 \in \mathbb{R}\} = Vect(X).$$

3. Rappel: Si $P(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3$, alors $\varphi(P)(X) = a_0 - a_2 X^2 - 2a_3 X^3$.

-
$$P(X) = 1, \varphi(P)(X) = 1$$

- $P(X) = X, \varphi(P)(X) = 0$
- $P(X) = X^2, \varphi(P)(X) = -X^2$
- $P(X) = X^3, \varphi(P)(X) = -2X^3$

Par suite, la matrice de φ dans la base canonique est

$$M = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -2 \end{array}\right)$$

4. Pratiquez GJ pour la matrice M, rang(M)= nombre de pivots= 3. Ou bien vous pouvez appliquer le théorème du rang: $\dim(Ker(\varphi)) + \dim(Im(\varphi)) = \dim(\mathbb{R} \leq 3[X] = 4 \rightarrow \dim(Im(\varphi)) = 4 - \dim(Ker(\varphi)) = 4 - 1 = 3$. d'où $rang(M) = \dim(Im(\varphi)) = 3$.