Algèbre linéaire pour l'économie

Feuille de TD 3 : Espaces vectoriels, sous-espaces vectoriels, applications linéaires, sommes, produits

Séances des 30 septembre et 5 octobre 2015 environ

Exercice 1 Calculer noyau et image de l'application $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ définie par f(x, y, z) = (3x + y, y + z) pour $(x, y, z) \in \mathbb{R}^3$

Exercice 2 (Projecteurs) a) On suppose que l'espace vectoriel E s'écrit comme somme directe $E = F \oplus G$, où F et G sont des sous-espaces vectoriels de E. Tout élément $u \in E$ s'écrit de manière unique $u = u_F + u_G$, avec $u_F \in F$ et $u_G \in G$. Soit $p_F : u \to u_F$ la projection sur F parallèlement à G. Montrer que $p_F \circ p_F = p_F$. On appelle projecteur linéaire une application linéaire vérifiant cela $(f \circ f = f)$.

b) Soit $p: E \to E$ un projecteur linéaire, i.e. une application linéaire telle que $p \circ p = p$. Montrer qu'alors $E = F \oplus G$, avec F = Kerp et G = Imp et P est la projection sur P parallèlement à P.

Exercice 3 On note $\mathbb{R}_3[X]$ l'espace vectoriel des polynômes de degré au plus 3.

- a) Soit $F = \{P \in \mathbb{R}_3[X], P'(0) = 0\}$. Montrer que c'est un s-eV de $\mathbb{R}_3[X]$.
- **b)** Soit $V = \{P \in \mathbb{R}_3[X], (X+1)P'(X) (2-X^2)P''(X) = 0\}$. Montrer que V est un sous-espace vectoriel de $\mathbb{R}_3[X]$.

Exercice 4 Soit $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels.

- a) Montrer que c'est un espace vectoriel.
- b) Soit $f : \mathbb{R}[X] \to \mathbb{R}[X]$ l'application définie par f(P)(X) = P(X) XP'(X). Montrer que f est linéaire. Calculer son noyau et son image.

Exercice 5 Soient F, G, H des sous-espaces vectoriels de E. Comparer $F \cap G, F \cap H$, et $F \cap (G+H)$.

Exercice 6 a) Soient f, g deux applications linéaires de E dans E. Montrer que $Im(f \circ g) \subset Im(f)$. Donner un exemple où l'inclusion n'est pas une égalité et un exemple où c'est une égalité.

- b) De même, montrer que $Ker(f\circ g)\supset Kerg$, et donner des exemples où l'inclusion est/n'est pas une égalité.
- c) Montrer que si $g \circ f = Id_E$, alors $Ker(f) = \{0\}$ et Im(g) = E.