Groupes de Lie - Devoir Maison préliminaire

Algèbre linéaire

Avant de commencer, êtes vous parfaitement au clair sur les points suivants :

- 1. Valeur propre, vecteur propre
- 2. sous-espace propre, sous-espace caractéristique, sous-espace stable
- 3. polynôme minimal et caractéristique
- 4. endomorphisme diagonalisable.

Exercice 1 (Echauffement) Soit E un espace vectoriel réel ou complexe de dimension finie. Un endomorphisme f de E dans E est dit semi-simple si tout sous-espace de E stable par f admet un supplémentaire stable.

- 1. Montrez que si E est un \mathbb{R} -espace vectoriel muni d'un produit scalaire euclidien, et que f est symétrique, alors f est semi-simple.
- 2. Montrez que si E est un \mathbb{C} espace vectoriel muni d'un produit scalaire hermitien, et que f est hermitien, alors f est semi-simple.
- 3. Montrez que si E est un \mathbb{C} -espace vectoriel, un endomorphisme est semi-simple si et seulement si il est diagonalisable.
- 4. Si E est un \mathbb{R} -espace vectoriel, donnez des exemples d'endomorphismes semi-simples non diagonalisables.
- 5. Donnez des exemples d'endomorphismes non semi-simples (sur \mathbb{R} ou \mathbb{C})

Exercice 2 (Diagonalisation simultanée) Soit E un espace vectoriel réel ou complexe. Soient f_1, \dots, f_k des endomorphismes de E qui commutent deux à deux. Montrez que si $f_1, \dots f_k$ sont diagonalisables, alors ils sont simultanément diagonalisables, i.e. il existe une base dans laquelle ils sont tous diagonalisables.

Indication: montrez que les espaces propres de f_1 sont stables par les f_i , $2 \le i \le k$, et faites une récurrence sur la dimension.

Exercice 3 (La décomposition D+N) Soit E un espace vectoriel réel ou complexe. Soit $f: E \to E$ un endomorphisme dont le polynôme caractéristique est scindé, i.e de la forme $P(X) = \prod_{k=1}^{r} (X - \lambda_k Id)_k^{\alpha}$. Montrez que f s'écrit de manière unique sous la forme f = d + n, avec:

- *d un endomorphisme diagonalisable
- * n un endomorphisme nilpotent, i.e. dont le polynôme caractéristique est de la forme X^d .
- * nd = dn
- *n et d sont des polynômes en f

Indication: il est judicieux de décomposer E en somme de sous-espaces caractéristiques et de considérer les projecteurs sur ces sous-espaces.

En vidéo, https://www.youtube.com/watch?v=5QnLCcX-vkI

Exponentielle de matrices

Avant de commencer, êtes-vous au point sur l'exponentielle réelle ou complexe? C'est la série entière définie par $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. Si vous avez besoin de rappels, allez relire les deux premières pages de Rudin, Analyse réelle ou complexe.

Exercice 4 (Exponentielle de matrices) Considérons l'algèbre $M_n(\mathbb{C})$ munie d'une norme quelconque. Rappelons que l'espace vectoriel normé $M_n(\mathbb{C})$ est complet. Définissons

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} \,,$$

pour tout $A \in M_n(\mathbb{C})$. Montrez les points suivants.

- * Cette expression définit une fonction continue de $M_n(\mathbb{C})$ dans $M_n(\mathbb{C})$.
- $* \exp(0) = Id$
- $* (\exp(X))^* = \exp(X^*)$
- * $\exp(X)$ est inversible d'inverse $\exp(-X)$
- * Si $\alpha, \beta \in \mathbb{C}$ alors $\exp((\alpha + \beta)X) = \exp(\alpha X) \exp(\beta X)$
- * Si AB = BA, alors $\exp(A + B) = \exp(A) \exp(B) = \exp(B) \exp(A)$.
- * Si $C \in GL_n(\mathbb{C})$, alors $\exp(CXC^{-1}) = C\exp(X)C^{-1}$.
- * L'application $c_X: t \in \mathbb{R} \to \exp(tX) \in M_n(\mathbb{C})$ est une courbe C^{∞} , de dérivée en $t = t_0$ $c'_X(t_0) = X \exp(t_0X)$.

Exercice 5 (Calculs d'exponentielles de matrices) Calculez l'exponentielle de A dans les cas suivants.

- *A est une matrice diagonale.
- *A est une matrice diagonalisable.
- *A est nilpotente.

$$*A_1 = \begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix},$$

Exercice 6 (Décomposition polaire) Nous voulons montrer que toute matrice $A \in GL_n(\mathbb{C})$ s'écrit de manière unique sous la forme A = UP, avec U une matrice unitaire $(U^*U = I_n)$ et P une matrice hermitienne positive, et étudier quelques cas particuliers.

- 1. Soit Q une matrice hermitienne positive (i.e. $Q^* = Q$ et les valeurs propres de Q sont positives. Montrez qu'il existe une unique racine carrée hermitienne positive de Q, i.e. une matrice hermitienne positive dont le carré vaut Q.
- 2. Si $A \in M_n(\mathbb{C})$ s'écrit sous la forme A = UP, avec $U^*U = I_n$ et P une matrice hermitienne positive, vérifiez que $P^2 = A^*A$.
- 3. Déduisez-en le résultat voulu (existence et unicité de la décomposition polaire)
- 4. On admet (voir la définition du log matriciel, par ex Hall, ch.2) que toute matrice hermitienne positive P s'écrit sous la forme $P = e^X$, avec X une matrice hermitienne.
- 5. Lorsque $A \in GL_n(\mathbb{R})$, montrez que cette décomposition donne $A = R \exp(X)$ avec $R \in O_n(\mathbb{R})$ et X une matrice réelle symétrique.
- 6. Lorsque $A \in SL_n(\mathbb{C})$, montrez que $A = Ue^X$ avec $U \in SU(n)$ et X une matrice hermitienne de trace nulle.
- 7. Lorsque $A \in SL_n(\mathbb{R})$ montrez que $A = Re^X$ avec $R \in SO(n)$ et X réelle symétrique de trace nulle.

Références possibles:

- R. Mansuy et R. Mneimné, Algèbre linéaire
- W. Rudin, Analyse réelle et complexe
- B. Hall, Lie Groups, Lie Algebras, and Representations

_