1 - (Shift and $\times 2$-map) Let $X = S^1$ be equipped with the Lebesgue measure λ and $T : X \to X$ defined by $Tx = \{2x\}$. Let (Σ^+, μ, σ) be the one-sided Bernoulli shift, where $\Sigma^+ = \{0, 1\}^\mathbb{N}$ is equipped with the measure $\mu = \nu^\otimes \mathbb{N}$ defined on the σ-algebra generated by the cylinders, ν is the probability $(1/2, 1/2)$ on $\{0, 1\}$ and σ is the shift $\sigma((a_i)_{i \in \mathbb{N}}) = (a_{i+1})_{i \in \mathbb{N}}$.

(i) Show that the systems (X, λ, T) and (Σ^+, μ, σ) are isomorphic

(ii) Determine the periodic points of σ and T.

2 - (Shift and Baker transformation) Let $X = S^1 \times S^1$, equipped with the Lebesgue measure λ. Let $T : X \to X$ be the baker transformation. Let $\Sigma = \{0, 1\}^\mathbb{Z}$ and $\varphi : \Sigma \to X$ the map defined by $\varphi(a) = (x, y)$ with

$$x = \sum_{i=0}^{\infty} \frac{a_{-i}}{2^{i+1}}, \quad y = \sum_{i=1}^{\infty} \frac{a_i}{2^i}$$

for $a = (a_i)_{i \in \mathbb{Z}} \in \Sigma$.

Show that φ is an isomorphism between the two-sided Bernoulli shift (Σ, μ, σ) and (X, λ, T), where Σ is equipped with the measure $\mu = \nu^\otimes \mathbb{Z}$ defined on the σ-algebra generated by the cylinders with ν the probability $(1/2, 1/2)$ on $\{0, 1\}$ and σ is the shift $\sigma((a_i)_{i \in \mathbb{Z}}) = (a_{i+1})_{i \in \mathbb{Z}}$.

3 - (Gauß map) Let $T : [0, 1] \to [0, 1]$ be the Gauß map defined by

$$T(x) = \begin{cases} \{\frac{1}{x}\} = \frac{1}{x} - \left[\frac{1}{x}\right] & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

($\{y\}$ and $[y]$ denote the fractional and integer part of $y \in \mathbb{R}$, respectively).

Denote by λ the Lebesgue measure $[0, 1]$ and let μ be the probability measure on $[0, 1]$ with density $\frac{1}{\log 2(1+x)}$ with respect to λ.

(i) Show that $T^{-1}(]a, b[) = \bigcup_{n=1}^{\infty} \frac{1}{n+b} - \frac{1}{n+a} [\text{ for every } 0 \leq a < b \leq 1.$
(ii) Show that the Lebesgue measure \(\lambda \) is not \(T \)-invariant (Hint: you may consider \(T^{-1}[0,1/2[) \)).

(iii) Show that \(\mu(T^{-1}([a,b[)) = \mu([a,b[) \) for every \(0 \leq a < b \leq 1 \) and deduce that \(\mu \) is \(T \)-invariant.

4 - (Skew products) Let \((X,\mathcal{B},\mu,T) \) be a probability measure preserving dynamical system. Let \(\rho : X \to S^1 \) be a measurable map. Let \(\tilde{X} = X \times S^1 \), \(\tilde{\mu} = \mu \otimes \lambda \) and \(\tilde{T} : \tilde{X} \to \tilde{X} \) given by \(\tilde{T}(x,y) = (Tx, y + \rho(x)) \).

(i) Show that \(\tilde{T} \) preserves \(\tilde{\mu} \).

(ii) Show that \((\tilde{X},\tilde{T}) \) is an extension of \((X,T) \) (that is, \((X,T) \) is a factor of \((\tilde{X},\tilde{T}) \)).

(iii) Let \(X = S^1 \), \(T = R_{\alpha} \) for \(\alpha \) irrational and \(\rho(x) = x \). Show that \((\tilde{X},\tilde{T}) \) is ergodic.

5 - (Ergodic theorem for finite systems) Let \(X = \{x_1,\ldots,x_r\} \) be a finite set and \(\sigma : X \to X \) a permutation of \(X \). Let \(f : X \to \mathbb{C} \) and \(x \in X \).

(i) Assume that \(\sigma \) is a cycle. Show that \(\lim_{N \to +\infty} \frac{1}{N} \sum_{n=0}^{N-1} f(\sigma^n(x)) = \frac{1}{r} (f(x_1) + \cdots + f(x_r)) \).

(ii) Let \(\sigma \) be arbitrary. Determine the limit \(\lim_{N \to +\infty} \sum_{n=0}^{N-1} f(\sigma^n(x)) \).

6 - (L\(^p\) ergodic theorem) Let \((X,\mathcal{B},\mu,T) \) be a probability measure preserving dynamical system. Let \(p \in [1,\infty[\). For \(f \in L^p(X,\mu) \) and \(N \in \mathbb{N}^* \), let \(f_N^+ \in L^p(X,\mu) \) be given by \(f_N^+(x) = \frac{1}{N} \sum_{n=0}^{N-1} f(T^nx) \).

(i) Show that, for every \(f \in L^p(X,\mu) \), there exists a \(T \)-invariant function \(f^* \in L^p(X,\mu) \) such that \(\lim_{N \to +\infty} \|f_N^+ - f^*\|_p = 0 \).

[Hint: For \(p < 2 \), use the density of \(L^2(X,\mu) \) in \(L^p(X,\mu) \) and for \(p > 2 \) the density of \(L^\infty(X,\mu) \) in \(L^p(X,\mu) \).]

(ii) Does (i) remains true in the case \(p = +\infty \)?

7 - (Torus translation) For \(d \geq 1 \), let \(X = S^1 \times \cdots \times S^1 \) be the torus of dimension \(d \), equipped with the Lebesgue measure \(\lambda \). Let \(\alpha_1,\ldots,\alpha_d \in \mathbb{R} \). Define \(T : X \to X \) by

\[
T(x_1,\ldots,x_d) = (x_1 + \alpha_1,\ldots,x_d + \alpha_d) \mod 1.
\]

Show that \(T \) is ergodic if and only if \(1,\alpha_1,\ldots,\alpha_d \) are linearly independent over \(\mathbb{Q} \).