Université de Rennes 1 Année 2018/2019

Licence 3

PSIN/PRB - CC2 du 27/11/2018-Enoncé+Corrigé

Exercice 1 (3P.) On considère une urne contenant 5 boules, dont 3 sont blanches et 2 noires. On tire de l'urne successivement deux boules sans remise. Soient X₁ (respectivement X₂) la v.a.r égale à 1 si la 1e (respectivement la 2e) boule est blanche et 0 sinon.

Déterminer la loi conjointe de (X_1, X_2) ainsi que les lois de X_1 et de X_2 et présenter le résultat sous forme de tableau.

Solution : En utilisant la formule $\mathbf{P}(X_1=i, Y_j) = \mathbf{P}(X_1=i)\mathbf{P}(X_2=j|X_1=j)$, on a $\mathbf{P}(X_1=i, X_2=1) = \frac{3}{5} \times \frac{2}{4} = \frac{3}{10}$. $\mathbf{P}(X_1=i, X_2=0) = \frac{3}{5} \times \frac{2}{4} = \frac{3}{10}$. $\mathbf{P}(X_1 = 0, X_2 = 1) = \frac{2}{5} \times \frac{3}{4} = \frac{3}{10} \text{ et } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{, et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \text{ et on obtient le tableau suivant } \mathbf{P}(X_1 = 0, X_2 = 0) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10} \times \frac{$

	x ₂ /x ₁	1	0	P _{X2}
	1	3/10	3/10	6/10
Ì	0	3/10	1/10	4/10
	P_{X_1}	6/10	4/10	1

Exercice 2 (3P.) On considère deux v.a.r. X et Y avec {1,2} comme ensemble de

valeurs et dont la loi conjointe est résumée par le tableau suivant

	$Y \setminus X$	1	2
:	1	0	1/3
	2	1/3	1/3

Calculer la covariance Cov(X, Y) de X et Y. Les v.a.r X et Y sont elles indépen-

olution: La loi de X est donnée par P(X=1) = 0 + 1/3 = 1/3, P(X=2) = 1/3 + 1/3 = 2/3 et celle de Y par P(Y=1) = 0 + 1/3 = 1/3, P(Y=2) = 1/3 + 1/3 = 2/3.D'où E(X) = E(Y) = 5/3. D'autre part, par la formule de transfert, on a $E(XY) = 1 \times P(X = 1, Y = 1) + 2 \times P(X = 1, Y = 2) + 2 \times P(X = 2, Y = 1) + 4 \times P(X = 2, Y = 2) = 0 + 2/3 + 2/3 + 4/3 = 8/3.$

D'où Cov(X, Y) = E(XY) - E(X)E(Y) = 8/3 - 25/9 = -1/9; X et Y ne sont pas indépendantes, car $Cov(X, Y) \neq 0$.

Exercice 3 (7P.) Soient X₁ et X₂ deux v.a. r indépendantes suivant des lois géométriques $\mathcal{G}(p_1)$ et $\mathcal{G}(p_2)$, respectivement.

(i) Soit $n \in \mathbb{N}$. Donner une expression simple pour $P(X_1 > n)$.

$$\mathbf{P}(\mathbf{X}_1 > n) = \sum_{k=n+1}^{\infty} p_1 q_1^{k-1} = p_1 \sum_{k=n+1}^{\infty} q_1^{k-1} = p_1 q_1^n \sum_{k=0}^{\infty} q_1^k = p_1 q_1^n \frac{1}{1-q_1} = q_1^n.$$

Soit $U = \min\{X_1, X_2\}$.

(ii) Calculer P(U > n) pour $n \in \mathbb{N}$.

Solution: On a $\{U > n\} = \{\min\{X_1 > n, X_2 > n\} = \{X_1 > n, X_2 > n\}$ et donc $P(U > n) = P(X_1 > n, X_2 > n)$; par indépendance de X_1 et X_2 , il s'ensuit que $P(U > n) = P(X_1 > n)P(X_1 > n)$ et donc, en utilisant (i) avec $q_i = 1 - p_i$:

 $P(U > n) = (q_1 q_2)^n$.

(iii) Déterminer la fonction de répartition F_U de U.

Solution : Soit $x \in \mathbb{R}$. L'ensemble des valeurs de U étant \mathbb{N}^* , on a $\mathbb{F}_{\mathbf{U}}(x) = \mathbb{P}(\mathbf{U} \le x) = \mathbb{F}_{\mathbf{U}}([x])$, où [x] est la partie entière de x et donc, par (ii) et en posant $p := p_1 + p_2 - p_1 p_2$:

 $\mathrm{F}_{\mathbf{U}}(x) = \mathrm{F}_{\mathbf{U}}([x]) = 1 - \mathbf{P}(\mathbf{U} > [x]) = 1 - [(1-p_1)(1-p_2)]^{[x]} = 1 - (1-p)^{[x]}$

(iv) Déterminer la loi de U et la reconnaître.

Solution: L'ensemble des valeurs de U est \mathbf{N}^* et pour tout $n \in \mathbf{N}^*$, on a, avec (iii), $\mathbf{P}(\mathbf{U}=n) = \mathbf{F}_{\mathbf{U}}(n) - \mathbf{F}_{\mathbf{U}}(n-1) = (1-p)^{n-1} - (1-p)^n = (1-p)^{n-1}p$. Ceci montre que $\mathbf{U} \sim \mathcal{G}(p)$ avec $p = p_1 + p_2 - p_1p_2$.

(v) On considère deux composants électroniques dont on suppose que les durées de vie (mesurées en nombre de mois) sont des v.a.r. indépendantes suivant des lois géométriques de paramètres 1/3 et 1/4 respectivement. Ces composants sont montés en série dans un circuit. En moyenne, après combien de mois le circuit tombera-t-il en panne?

Solution : Comme les composants sont montés en série, la durée de vie du circuit est $U \sim \mathcal{G}(p)$ avec $q = p_1 p_2 - p_1 p_2 = 6/12 = 1/2$ et donc E(U) = 2; en moyenne, le circuit tombera en panne au bout de 2 mois.

Exercice 4 (9P.) Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et X une variable aléatoire sur Ω distribuée selon une loi exponentielle $\mathcal{E}(\lambda)$ de paramètre $\lambda > 0$. Soit $Y = X^2$.

(i) Déterminer la fonction de répartition F_Y de Y.

Solution : Pour tout $y \in \mathbb{R}$, on a $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^2 \le y)$ et donc $F_Y(y) = 0$ si y < 0 et $F_Y(y) = \mathbb{P}(X \le \sqrt{y}) = 1 - e^{-\lambda \sqrt{y}}$ pour $y \ge 0$.

(ii) Montrer que Y suit une loi continue dont on déterminera la densité g. Solution: Pour tout $y \ge 0$, on a (avec le changement de variable $x = \sqrt{t}$): $F_Y(y) = \mathbf{P}(X \le \sqrt{y}) = \lambda \int_0^{\sqrt{y}} e^{-\lambda X} dx = \lambda \int_0^y \frac{1}{2\sqrt{t}} e^{-\lambda\sqrt{t}} dt$. Donc Y est continue de densité g définie par $g(y) = \frac{\lambda}{2\sqrt{y}} e^{-\lambda\sqrt{y}} \mathbf{1}_{[0,+\infty[}(y)$.

Autre méthode : g s'obtient en dérivant F_γ.

(iii) Calculer **E**(Y).

Solution : On a, par la formule de Koenig :

$$\mathbf{E}(Y) = \mathbf{E}(X^2) = \mathrm{Var}(X) + \mathbf{E}(X)^2 = \frac{1}{\lambda^2} \, + \, \frac{1}{\lambda^2} \, = \, \frac{2}{\lambda^2} \, .$$

(iv) Soit A l'ensemble des $\omega \in \Omega$ tels que l'équation $t^2 - 2Y(\omega)t + 1 = 0$ possède deux solutions $t_1, t_2 \in \mathbf{R}$ avec $t_1 \neq t_2$. Déterminer $\mathbf{P}(A)$.

Solution : le trinôme du second degré $t^2 - 2Y(\omega)t + 1$ possède deux racines réelles distinctes si et seulement son discriminant $Y^2(\omega) - 1$ est > 0. On a donc $A = \{Y^2 > 1\}$. Comme $\{Y^2 > 1\} = \{X > 1\}$ et comme $P(X > 1) = 1 - F_X(1) = e^{-\lambda}$, on a donc $P(A) = e^{-\lambda}$.