Université de Rennes 1-Année 2017/2018L3-Probabilités -DM1 à rendre le 8 février en TD

Exercice 1. Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé.

(i) Montrer par récurrence sur $n \geq 1$ que, pour toute famille $A_1, \ldots, A_n \in \mathcal{F}$, on a :

$$\mathbf{P}(\bigcup_{i=1}^{n} A_i) = \sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{1 \le i_1 < i_2 \dots < i_k \le n} \mathbf{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) \right)$$

(ii) Application: n personnes déposent leurs chapeaux dans un vestiaire; à la sortie, chacun prend un chapeau au hasard. Expliciter l'espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$ qui modélise cette expérience aléatoire. Déterminer la probabilité p_n de l'évènement « au moins une personne récupère son propre chapeau ». Quelle est la limite $\lim_{n\to+\infty} p_n$?

Exercice 2. Soient $(\Omega, \mathcal{F}, \mathbf{P})$ un espace probabilisé et $A_1, \ldots, A_n \in \mathcal{F}$ des évènements mutuellement indépendants. Pour chaque $i = 1, \ldots, n$, soit $B_i = A_i$ ou $B_i = A_i^c$.

- (i) Montrer que $B_1, \ldots, B_n \in \mathcal{F}$ sont des évènements mutuellement indépendants.
- (ii) Montrer que la probabilité qu'aucun des A_i ne soit réalisé est inférieure à $\exp(-\sum_{i=1}^n \mathbf{P}(A_i))$.

Exercice 3. Un joueur jette simultanément trois dés. A l'issue du jeu, il gagne une somme X égale à la somme des points marqués.

- (i) Déterminer la loi de la v.a.r X ainsi que sa fonction de répartition F_X . Tracer le graphe de F_X .
- (ii) Calculer l'espérance et la variance de X.