Université de Rennes 1- Année 2016/2017-Licence 3

GEIS -GÉOMÉTRIE ET ISOMÉTRIES

Corrigé de l'examen 1ère session du 5 Janvier 2017

Questions de cours. (5P.) (i) Soient E un espace vectoriel euclidien de dimension finie, $f: E \to E$ une isométrie vectorielle et F un sous-espace vectoriel de E tel que f(F) = F. Montrer que $f(F^{\perp}) = F^{\perp}$.

Soient $x \in F^{\perp}$ et $y \in F$; comme $f \in O(E)$ et $f^{-1}(y) \in F$ on a : $\langle f(x)|y \rangle = \langle f(x)\rangle|f(f^{-1}(y))\rangle = \langle x|f^{-1}(y)\rangle = 0$. Ainsi, $f(F^{\perp}) \subset F^{\perp}$; comme f est une bijection linéaire, on a dim $f(F^{\perp}) = \dim F^{\perp}$ et il s'ensuit que $f(F^{\perp}) = F^{\perp}$.

(ii) Soit \mathcal{E} un espace affine de direction E et \mathcal{F} une partie de \mathcal{E} . Quand dit-on que \mathcal{F} est un sous-espace affine de \mathcal{E} ?

 \mathcal{F} est un sous-espace affine s'il existe un sous-espace vectoriel F de E et un point $A \in \mathcal{F}$ tel que $\{\overrightarrow{AM} \mid M \in \mathcal{F}\} = F$.

(iii) Soient \mathcal{E} un espace affine de direction E et $\underline{f}: \mathcal{E} \to \mathcal{E}$ une application affine telle que $E = \operatorname{Ker}(\overrightarrow{f} - Id_E) \oplus \operatorname{Im}(\overrightarrow{f} - Id_E)$. Enoncer le théorème de décomposition canonique de f.

Il existe une unique application affine $g: \mathcal{E} \to \mathcal{E}$ et un unique vecteur $v \in E$ avec les propriétés : $f = t_v \circ g$, g possède un point fixe et $v \in \operatorname{Ker}(\overrightarrow{f} - \operatorname{Id}_E)$.

(iv) Ecrire le tableau de toutes les isométries affines d'un plan affine euclidien \mathcal{P} .

$\det(\overrightarrow{f})$	Fix(f)	Nature de f
1	\mathcal{P}	$\operatorname{Id}_{\mathcal{P}}$
1	point A	rotation de centre A
1	Ø	translation $t_v, v \neq 0$
-1	droite \mathcal{D}	réflexion orthogonale autour de $\mathcal D$
-1	Ø	réflexion orthogonale glissée

Exercice 1. (4P.) Soient \mathcal{E} un espace affine euclidien de dimension 1 et de direction E.

(i) Déterminer O(E).

Soit u un vecteur unitaire de E. Comme dim E=1, $\{u\}$ est une base orthonormée de E. Soit $\varphi\in O(E)$; alors $\varphi(u)$ est un vecteur unitaire et donc $\varphi(u)=u$ ou $\varphi(u)=-u$; d'où $\varphi=\mathrm{Id}_E$ ou $\varphi=-\mathrm{Id}_E$. Comme on a toujours $\{\pm\mathrm{Id}_E\}\subset O(E)$, on a donc $O(E)=\{\pm\mathrm{Id}_E\}$.

(ii) Soit $f: \mathcal{E} \to \mathcal{E}$ une isométrie directe. Montrer que f est une translation

Par (i), on a $\overrightarrow{f} = \pm \operatorname{Id}_E$. Comme, par hypothèse, $\overrightarrow{f} \in O^+(E)$, on a det $\overrightarrow{f} = 1$, c-à-d $\overrightarrow{f} = \operatorname{Id}_E$. Par un résultat du cours, f est donc une translation.

(iii) Soit $f: \mathcal{E} \to \mathcal{E}$ une isométrie indirecte. Montrer que f possède un point fixe $A \in \mathcal{E}$ et que f est la symétrie centrale de centre A.

Par (i), on a $\overrightarrow{f}=\pm \mathrm{Id}_E$. Comme, par hypothèse, $\overrightarrow{f}\in O^-(E)$, on a det $\overrightarrow{f}=-1$, c-à-d $\overrightarrow{f}=-\mathrm{Id}_E$; en particulier, 1 n'est pas valeur propre de \overrightarrow{f} . Par un résultat du cours, f possède donc un unique point fixe $A\in\mathcal{E}$. Alors $f(A+v)=f(A)+\overrightarrow{f}(v)=A-v$ pour tout $v\in E$ et ceci signifie que f est la symétrie centrale de centre A.

Exercice 2. (6P.) Soit $\mathcal{E} = \mathbb{R}^3$ muni du repère orthonormé canonique $\mathcal{R} = (O; e_1, e_2, e_3)$. On considère l'application affine $f : \mathcal{E} \to \mathcal{E}$ définie par

$$f\begin{pmatrix} x\\y\\z\end{pmatrix} = \frac{1}{3}\begin{pmatrix} 2x+y-2z-2\\-2x+2y-z-1\\x+2y+2z+5\end{pmatrix}.$$

(i) Montrer que f est une isométrie.

L'application linéaire associée \overrightarrow{f} est donnée dans la base (e_1,e_2,e_3) par la matrice

$$A = \frac{1}{3} \left(\begin{array}{ccc} 2 & 1 & -2 \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{array} \right).$$

On vérifie que A est une matrice orthogonale, c-à-d $A^t A = I_3$.

(ii) Déterminer la nature géométrique et les éléments caractéristiques de l'application linéaire \overrightarrow{f} .

Tout d'abord, on vérifie que det A=1; donc \overrightarrow{f} est une isométrie directe.

L'espace Inv \overrightarrow{f} des vecteurs invariants de \overrightarrow{f} est l'ensemble des solutions $v=(x,y,z)\in\mathbf{R}^3$ de l'équation $\overrightarrow{f}(v)=v$, c-à-d du système homogène

$$-x + y - 2z = 0$$
$$-2x - y - z = 0$$
$$x + 2y - z = 0$$

dont les solutions sont les multiples de u=(1,-1,-1). Donc \overrightarrow{f} est une **rotation** autour de l'axe $D=\mathbf{R}u$ L'angle θ de cette rotation est donné par $2\cos\theta+1=\mathrm{trace}(A)=2$, c-à-d $\cos\theta=1/2$ et donc $\theta=\pm\pi/3$.

(iii) Déterminer l'ensemble des points fixes de f et en déduire la nature géométrique et les éléments caractéristiques de f.

L'espace Fix(f) des points fixes de f est l'ensemble des solutions $M=(x,y,z)\in \mathbf{R}^3$ de l'équation f(M)=M, c-à-d du système inhomogène

$$\begin{array}{l} -x+y-2z=2\\ -2x-y-z=1\\ x+2y-z=-5 \end{array}\;;$$

en ajoutant la 3e équation à la 1ère et en ajoutant 2 fois la 3e à la 2e, on obtient 3y-3z=-3 et 3y-3z=-9. Il n'y a donc pas de solution à ce système : $\operatorname{Fix}(f)=\emptyset$. Il s'ensuit que f est un **vissage.** L'axe de ce vissage est l'ensemble des points M=(x,y,z) tels que $\overrightarrow{Mf(M)}||u$ c-à-d tels que

$$\begin{pmatrix} -x+y-2z-2 \\ -2x-y-z-1 \\ x+2y-z+5 \end{pmatrix} || \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

ceci équivaut au système

$$\begin{array}{l} -x + y - 2z - 2 = 2x + y + z + 1 \\ x + 2y - z + 5 = -2x - y - z - 1 \end{array} \iff \begin{array}{l} 3x - 3z = 3 \\ 3x + 3y = -6 \end{array}$$

dont les solutions sont $\mathcal{D}=(0,-2,-1)+\mathbf{R}u$ qui est donc l'axe du vissage. E posant A=(0,-2,-1), le vecteur de translation du vissage est $\overrightarrow{Af(A)}=\frac{-2}{3}(1,-1,-1)$.

Exercice 3. (9P.) Soit \mathcal{E} un espace affine euclidien, de direction E de dimension finie. (On rappelle que la distance d(M, N) de deux points $M, N \in \mathcal{E}$ est définie par $d(M, N) = \|\overrightarrow{MN}\|$.)

Une bijection affine $s: \mathcal{E} \to \mathcal{E}$ est appelée similitude s'il existe un réel $\lambda > 0$, appelé $rapport\ de\ s$, tel que, pour tous points $M, N \in \mathcal{E}$, on a $d(s(M), s(N)) = \lambda d(M, N)$

(i) Soit $s: \mathcal{E} \to \mathcal{E}$ une similitude de rapport $\lambda > 0$. Montrer que, pour tout $u \in E$, on a $\|\overrightarrow{s}(u)\| = \lambda \|u\|$.

Soient $u \in E$ et $M \in \mathcal{E}$ quelconque; soit $N \in \mathcal{E}$ tel que $\overrightarrow{MN} = u$; alors, comme s est affine, on a $\overrightarrow{s(M)s(N)} = \overrightarrow{s}(\overrightarrow{MN})$ et donc $\|\overrightarrow{s}(u)\| = \|\overrightarrow{s}(\overrightarrow{MN})\| = \|\overrightarrow{s}(M)s(\overrightarrow{N})\| = d(s(M), s(N)) = \lambda d(M, N) = \lambda \|\overrightarrow{MN}\| = \lambda \|u\|$.

(ii) Soit $s: \mathcal{E} \to \mathcal{E}$ une application affine; on suppose qu'il existe $\lambda > 0$ tel que, pour tout $u \in E$, on a $\|\overrightarrow{s}(u)\| = \lambda \|u\|$. Montrer que s est similitude de rapport λ .

Soient $M, N \in \mathcal{E}$ et posons $u = \overrightarrow{MN}$. Comme s est affine, on a $\overrightarrow{s(M)s(N)} = \overrightarrow{s}(\overrightarrow{MN})$ et donc $d(s(M), s(N)) = \|\overrightarrow{s(M)s(N)}\| = \|\overrightarrow{s}(\overrightarrow{MN})\| = \|\overrightarrow{s}(u)\| = \lambda \|u\| = \lambda \|\overrightarrow{MN}\| = d(M, N)$; ceci montre que s est une similitude de rapport λ .

(iii) Soit $s: \mathcal{E} \to \mathcal{E}$ une similitude de rapport $\lambda > 0$. Montrer qu'il existe une unique isométrie vectorielle f de E telle que $\overrightarrow{s} = h_{\lambda} \circ f$, où h_{λ} est l'homothétie vectorielle de rapport λ .

On pose $f:=h_{\lambda}^{-1}\circ \overrightarrow{s}=h_{1/\lambda}\circ \overrightarrow{s};$ alors f est une bijection linéaire (comme composée de telles bijections) et on a $\overrightarrow{s}=h_{\lambda}\circ f$. Pour tout $u\in E$, on a, par (i), $\|f(u)\|=\|h_{1/\lambda}(\overrightarrow{s}(u))\|=\frac{1}{\lambda}\|\overrightarrow{s}(u)\|=\frac{1}{\lambda}\lambda\|u\|=\|u\|$. Ceci montre que f est une isométrie.

(iv) Montrer que l'ensemble $Sim(\mathcal{E})$ de toutes les similitudes de \mathcal{E} (de tous les rapports possibles) est un sous-groupe du groupe affine $GA(\mathcal{E})$. Tout d'abord, on a $Sim(\mathcal{E}) \neq \emptyset$ car $Id_{\mathcal{E}} \in Sim(\mathcal{E})$. Soit $s \in Sim(\mathcal{E})$, de rapport λ . Alors (cours) $\overrightarrow{s^{-1}} = \overrightarrow{s}^{-1}$. En appliquant (i), on a donc pour tout $u \in E : ||u|| = ||\overrightarrow{s}(\overrightarrow{s}^{-1}(u))|||\overrightarrow{s}(\overrightarrow{s^{-1}}(u))|| = \lambda ||\overrightarrow{s^{-1}}(u))||$ et ceci montre que s^{-1} est une similitude de rapport $1/\lambda$.

Soient $s_1, s_2 \in Sim(\mathcal{E})$, de rapports λ_1 et λ_2 . Alors (cours) $\overline{s_1 \circ s_2} = \overrightarrow{s_1} \circ \overrightarrow{s_2}$; en appliquant (i), on a donc pour tout $u \in E : \|\overrightarrow{s_1} \circ \overrightarrow{s_2}(u)\| = \|\overrightarrow{s_1} \circ \overrightarrow{s_2}(u)\| = \|\overrightarrow{s_1}(\overrightarrow{s_2}(u))\| = \lambda_1 \|\overrightarrow{s_2}(u)\| = \lambda_1 \lambda_2 \|u\|$ et ceci montre que $s_1 \circ s_2$ est une similitude de rapport $\lambda_1 \lambda_2$.

(v) Soit $s: \mathcal{E} \to \mathcal{E}$ une similitude qui n'est pas une isométrie. Montrer que s possède un unique point fixe dans \mathcal{E} . (Indication : on pourra montrer que 1 n'est pas une valeur propre de \overrightarrow{s} .)

Supposons, par l'absurde, que 1 est une valeur propre de \overrightarrow{s} . Il existe alors $u \in E, u \neq 0$ tel que $\overrightarrow{s}(u) = u$. En utilisant (i), on a donc $||u|| = ||\overrightarrow{s}(u)|| = \lambda ||u||$; comme $u \neq 0$, ceci implique que $\lambda = 1$. Mais alors, \overrightarrow{s} et donc s est une isométrie, ce qui est contraire à l'hypothèse.

Ainsi, 1 n'est pas une valeur propre de \overrightarrow{s} . Par un résultat du cours, s possède un unique point fixe

(vi) Montrer que tout similitude s de \mathcal{E} est la composée d'une homothétie et d'une isométrie.

Si s est une isométrie, il n'y a rien à démontrer. Supposons donc que s n'est pas une isométrie. Par (v), s possède un unique point fixe A. Soit $h=h_{A,\lambda}$ l'homothétie affine de centre A et de rapport $1/\lambda$ et posons $g=h^{-1}\circ s$. Alors $s=h\circ g$. Comme $\overrightarrow{g}=\overrightarrow{h}^{-1}\circ \overrightarrow{s}$, on a $\|g(u)\|=\frac{1}{\lambda}\|\overrightarrow{s}(u)\|=\|u\|$ pour tout $u\in E$; donc g est une isométrie.

(vii) On suppose que dim $\mathcal{E} = 2$ et que $s : \mathcal{E} \to \mathcal{E}$ est une similitude avec $\det(\overrightarrow{s}) > 0$. Montrer que s préserve les angles orientés de vecteurs : pour tous vecteurs unitaires $u, v \in E$, on a $(\overrightarrow{s}(u), \overrightarrow{s}(v)) = \widehat{(u, v)}$.

Par (iii), on a $\overrightarrow{s}=h_{\lambda}\circ f$ pour une isométrie vectorielle f et une homothétie vectorielle de rapport λ . Comme $\det(\overrightarrow{s})>0$, on a $\det(f)>0$, c-à-d $f\in O^+(E)$. Soit r l'unique élement de $O^+(E)$ tel que v=r(u). Comme h_{λ} commute avec toute application linéaire et comme $O^+(E)$ est commutatif, on a : $r(\overrightarrow{s}(u))=r(h_{\lambda}\circ f(u))=(r\circ h_{\lambda}\circ f)(u)=(h_{\lambda}\circ f\circ r)(u)=\lambda f(r(u))=\lambda f(v)=(h_{\lambda}\circ f)(v)=\overrightarrow{s}(v)$. Donc v=r(u) et $\overrightarrow{s}(v)=r(\overrightarrow{s}(u))$ et ceci montre que $(\overrightarrow{s}(u),\overrightarrow{s}(v))=\widehat{(u,v)}$.