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It is well known, since the seminal work of Mysels et al. [Soap Films: Study of Their
Thinning and a Bibliography (Pergamon Press, New York, 1959)], that the thinner parts
of a foam film go up by gravity, whereas the thicker parts go down. Preparing a foam film
in a controlled way, so that the top part of the film is much thicker than the bottom part
at initial time, we show that this situation is indeed unstable under gravity. The observed
instability is identified as a Rayleigh-Taylor-like instability and studied in the linear regime.
The wavelength and the growth rate are measured as a function of the effective gravity, and
as a function of the thick film extension. We theoretically derive the dispersion relation
for the instability, taking into account finite size effects. The fastest mode is analytically
determined and is in qualitative agreement with the experimental observations.
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I. INTRODUCTION

Inside an aqueous foam, gas bubbles are packed and separated by thin liquid films. The existence
of such a foam directly relies on the ability to stabilize these films at a finite thickness. For that
purpose, surfactants need to be added to the aqueous phase: They can then adsorb on the gas-liquid
interfaces and eventually provide some stabilizing mechanisms.

In parallel, both when a foam ages and when it flows, the arrangement of the bubbles does not
remain still, and bubbles keep swapping their relative positions. This implies that the liquid films
are contracted, elongated, deformed and that some films vanish while others are created. As a con-
sequence, some liquid flows are induced inside the films, and the liquid is dynamically distributed
between the films and the menisci to which they are connected (also known as “Plateau borders”).

The liquid flow in such surfactant-stabilized films has some specific features. On one hand, the
liquid is strongly confined between the two interfaces covered by surfactants, and any flow relatively
to these interfaces is highly dissipative; this effect appears to be a key element for understanding the
high effective viscosity of liquid foams [1,2]. On the other hand, the in-plane mobility of the liquid
is very high, so that turbulent flows can be easily induced in dedicated experimental configurations.
In consequence, surfactant-stabilized liquid films have been used as a model system to reach high
Reynolds numbers and to study turbulence in 2D [3,4].

For all these reasons, understanding all the equilibrium and dynamical properties of an aqueous
foams requires to unravel the interactions and flows acting at the scale of the liquid films. Many
experimental results have been collected by monitoring a single liquid film. A large literature is
available on horizontal films held on solid frames, especially in the framework of the “thin film
balance” apparatus [5,6]. With this setup, one can focus on the small thickness regime (due to
high capillary suction by the meniscus), and on the repulsive and attractive forces between the two
surfactant-covered layers. Over the years, such experiments have brought many new insights on the
required conditions for film stability, as well as on confinement effects (like stratification [5,6]).
However, gravity plays no role in these horizontal films, and only smooth radial flows—due to
capillary suction towards the surrounding meniscus—can be monitored. Thus, this setup is not suited
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for investigating flows induced during fast dynamical changes of film area, like those occurring
during bubble swapping.

On the opposite, other experiments have been performed on single vertical films, most generally
held on large (centimeters) solid frames. In such conditions, the gravitational drainage of a film
can be studied [7–11]. Subtle effects, like “pinching” or “marginal regeneration” [7,12], have then
been evidenced, illustrating the nontrivial flows occurring in such vertical films. It is indeed well
known since the seminal work of Mysels [7] that thinner parts of a foam film move up by gravity,
whereas the thicker parts go down. A continuous injection of surfactant solution inside a vertical
film can also be done to sustain high film thickness of a few microns. As pointed out previously,
2D turbulence has actually been studied with such sustained vertical films [3,4]. Nevertheless, these
films are then far from those found in usual foams, both in terms of size, thickness and velocity
scales.

More recently, to fill the gap between a single isolated film and a 3D opaque foam, experiments
have been performed on system which can be considered as the elementary building blocks of a
foam, meaning a few films connected to one (or a few) meniscus [13–20]. The main goal is then to
identify nontrivial features occurring at the connections between free films and menisci. Together
with the fact that these clusters of films are relatively easy to build, one of their advantages is that
they allow to visualize and to monitor the various flows, deformations and out-of-equilibrium film
thicknesses [21]. Another advantage is that these elementary clusters can be activated on purpose:
one can trigger reorganization of films, control flows in films, etc. Also—as shown in the following
article—one can also easily change the setup orientation to tune the effects of gravity. In parallel,
by continuing to study such clusters of films and menisci, one can also expect to shed light on the
efficiency of these elementary building blocks to mimic 3D foams. In fact, how far one can transpose
the observations made on film clusters to any foams remains to be fully elucidated, especially in
terms of bubble sizes, liquid fractions, or chemical formulation.

Here, we present results performed on a new type of film/meniscus cluster, and allowing us to
prepare one of the foam film in a controlled way, so that the top part of this film is initially much
thicker than the bottom part. We show that this situation is indeed unstable under gravity and we
identify this instability as a Rayleigh-Taylor instability [22]. The wavelength and the growth rate
are measured in the linear regime as a function of the effective gravity, and as a function of the film
extension. We built a model involving viscous, gravitational, and inertial contributions. The fastest
mode is analytically determined and is in qualitative agreement with the experimental observations.

II. EXPERIMENTAL SETUP

The setup and the reference frame are schematized in Fig. 1. A horizontal free meniscus of width
w = 5 cm is connected to three flat rectangular foam films. For one of these films, denoted by F
in the following, the edge parallel to the free meniscus can translate along the lateral edges, and its
position is controlled by a piezo translation stage. Its area is thus w×L(t ) with L(t ) the distance
between the moving edge and the free meniscus. The two other films F ′ and F ′′ are of area w×Llat,
with Llat = 13 mm.

We define as x the meniscus direction, and as (x, z) the plane of the film of interest F . We use
two variants of the same setup. The first one (setup A) is on a table which inclination θ can be
controlled in the range [0−9◦], so that the direction z makes an angle θ with the horizontal. With
these conventions, the projection of the gravity vector on the film plane is −ḡez, with ḡ = g sin θ .
In the second one (setup B), the film F is placed vertically, with the free meniscus at the top, so
θ = π/2. We describe below the protocol for setup (A), the one for setup (B) being similar.

We used two different foaming solutions. Solution Sa is made of sodium dodecyl sulfate (SDS)
at 5.6 g/L and glycerol at 15% of volume. In solution Sb we added dodecanol at 0.05 g/L. The
bulk viscosity is η = 1.5×10−3 Pa s, the density is ρ = 1.05×103 kg/m3 and the surface tension is
γ = 29 mN/m for the Sa and 30 mN/m for Sb [23]. The films are prepared by immersing the frame
into a vessel containing the foaming solution and by removing slowly the vessel. The film drains
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FIG. 1. Scheme of the experimental setup and notations used in the text. Light blue represent the three foam
films connected along the free meniscus (dark blue). They are supported by a deformable metallic frame : the
red lines are the immobile edges and the black line is the mobile edge (at its initial position). The deformable
film F is illuminated with the white light WL and recorded in reflection with the color camera CC. The whole
setup is on a table which can be tilted by an angle θ .

during 15 s, then is extended at t = 0, by moving the piezo stage at velocity Um = 80 mm/s, so that
L(t ) varies from L0 = 6 mm to L0 + �L = 19 mm. The film F is observed at a frame rate of 60 Hz
with a color camera Imaging Source DFK 23 UM021, with 1280×960 pixels. The incident light is
in the (x, y) plane and the camera is at the mirror position.

A spectral camera Resonon Pika L has also been used to record the light spectrum reflected by
the film F , along a line perpendicular to the free meniscus. As discussed in Sec. II B, this provides
the film thickness.

A. Qualitative description of the flow

An example of film evolution during and after the displacement of its moving edge is shown in
Fig. 2, for the case of setup (B). The images are all cropped just below free meniscus (see the few
black lines at the top of the images). This meniscus remains almost at a constant position during
the deformation. The moving edge appears in black at the bottom of the film. It begins to move at
image (a) and stops at image (d).

The shape of the film F remains flat and rectangular and its area wL(t ) increases at the rate
imposed by the linear stage motion. As already shown in Ref. [17], this area variation is first insured
by an extension of the foam film initially present (denoted as the initial film in the following), which
lead to the increase of the surface tension. When the film tension becomes large enough, the initial
film becomes able to pull on the meniscus and to extract volume and interface from this reservoir:
New pieces of film, hereafter called the Frankel’s films, are extracted from the menisci bounding the
deformed film [7].

Consistently, the initial film is first stretched and gets thinner between images (a) and (d). Colors
indicate for example a thickness of 450 nm in (b) (dark blue) and 350 nm in (d) (yellow). In image
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FIG. 2. Images of the film at the times [0, 67, 83, 167, 250, 284, 384, 1467] ms, in the vertical case, solution
Sb. In the z direction, the whole height is shown, from the moving meniscus at the bottom [see the white arrow
on images (a–d)] to the free meniscus at the top of the image. In the x direction, the image is cropped in
the central part of the film, and only 10.3 mm are visible. The remaining part of the film evolves similarly,
excepted close to the lateral sides. The bottom edge moves over 13 mm during the first 100 ms [images (a–d)],
at a velocity of 80 mm/s.

(c) the gray bands appearing at the top and bottom are the Frankel’s films extracted from the menisci.
They are thus much thicker than the initial film and a sharp frontier separates them from it.

The Frankel’s film extracted from the bottom meniscus (located on the moving edge) remains
stable, whereas the one extracted from the top meniscus (the free one) destabilizes after a fraction
of second. Its frontier with the initial film exhibits a relatively regular and sinusoidal shape for a
while [image (d)] and then produces drop-like structures reminiscent of a usual Rayleigh-Taylor
instability [images (e) and (f)]. These drops of thick film eventually detach from the top Frankel’s
film and fall through the initial film until they merge with the bottom Frankel’s film [images (g)
and (h)].

In this paper, we focus on the linear regime of the gravitational destabilization of the top Frankel’s
film. Note that, even before the motor motion, some spots move up in the film by a process known as
marginal regeneration [7]. They are thinner than the surrounding film and produced at the frontier
between the menisci and the thin film, by marginal pinching [12]. As the thickness difference is
small, their upward velocity is smaller than the velocity of the instability, as observed qualitatively
by following patterns in Fig. 2. They do not influence the dynamics of interest.

B. Image processing and geometrical characterizations

The thicknesses of both the initial film and the Frankel’s film are deduced from the data obtained
with a spectral camera. This camera makes the image of a line L perpendicular to the free meniscus
and measures the spectrum of the light reflected by each point of L: the intensity I of the light of
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FIG. 3. Initial film thickness profile. (Top) Raw image obtained with the spectral camera, just after
stretching the film. The total height in the z direction is 19 mm, and the wavelength λ varies from 375 nm
at the top to 1010 nm at the bottom. The gray level is the light intensity (in arbitrary unit). The central part
corresponds to the initial thin film and the two lateral parts are the thicker parts of the film, which have been
extracted from the menisci. (Middle) Film thickness profile extracted from the top image. (Bottom) Sketch of
the film profile and notations used in the text.

wavelength λ j , in the range [375–1010], reflected by the piece of film at the position zi and of size
dz dx is recorded by the pixel (i, j) of the 2D sensor. The distance dx is fixed by the width of a slit
in the camera and dz = 54 μm is the spatial resolution. The light trajectory is in the plane (y, z)
and the incidence angle on the film is φ = 45◦. The lamp is a usual halogen lamp. A typical image
obtained after motor motion for the case θ = 9◦ is shown in Fig. 3(a).

We measure the thickness profile h(z) on the last image before the destabilization becomes visible
using the relation

I (λ) ∝ 1 − cos

[
4πhn

λ

(
1 − sin2 φ

n2

)1/2]
, (1)

with n the optical index of the solution.
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FIG. 4. Determination of the wavelength. The red line is the frontier between the initial film and the top
Frankel’s film, as detected by the image processing. The wavelength is the average distance between two
successive minima x j and x j+1 of the curve.

As shown in Fig. 3(b), the thin and thick parts of the film are separated by a sharp transition
occurring over a distance δ ∼ 100 μm where the thickness is not resolved because the gradient is
too large. The average thicknesses in the thin and thick parts are denoted respectively by h1 and h2.

The experiments with the vertical setup have been performed without the spectral camera and
the thicknesses are deduced from the observed colors, compared to a color chart. The Frankel’s film
thickness gradient is higher is this configuration and the thickness may vary from roughly 600 nm
close to the frontier with the thin film to 2 μm close to the top meniscus. For comparison with the
theory, we use the rough estimate h2 ≈ 1.5 μm.

The destabilization process is quantified using the color camera. We call I1 the first image where
oscillations are visible, and I0 the last image before I1. The height of the initial film and of the top
Frankel’s films in I0 are called d1 and d2 [see Fig. 3(c)].

The frontier between the top Frankel’s film and the initial film is automatically detected using
a matlab routine (see Fig. 4). The extrema of the frontier are then identified, and the experimental
wavelength λexp is defined as the average distance (along x) between minima.

Few minima are followed between I1 and the following image I2 to determine the growth rate
n. We assume that the position along z of a minimum obeys zm(t ) = a exp(nt ), with a the initial
noise (a < 0 in this case) and n the growth rate. We thus define the experimental value of the growth
rate as

nexp = 1

t2 − t1
ln

[
zm(t2)

zm(t1)

]
. (2)

III. EXPERIMENTAL RESULTS

Linear regime: Wavelength and growth rate

The first series of data have been obtained with the solution Sa, on the inclined table (setup A).
In this series the film thicknesses and initial sizes are kept as constant as possible and the effective
gravity is varied. At the onset of the instability, we have h1 = 0.4 ± 0.1 μm, h2 = 1.2 ± 0.2 μm,
d1 = 8 ± 0.7 mm, and d2 = 4.2 ± 0.7 mm. The observed wavelength is shown in Fig. 5 as a
function of the effective gravity ḡ: the wavelength slightly decreases when the angle increases. The
data are rather dispersed, and we checked that this variability was not correlated with the fluctuations
of the system characteristics: In Fig. 5, we show that d2, given by the color chart, is not correlated
to the wavelength, at a given angle. Similarly the film thickness variations cannot explain the data
dispersion.

In Fig. 5, we show that the growth rate increases with the effective gravity. Finally, as expected,
the frontier between the thin and thick films is stable when the film is perfectly horizontal (θ = 0).

Very similar results are obtained with the solution Sb (with dodecanol) in almost the same
conditions, as shown in Fig. 6. In that second series, h1 = 0.5 ± 0.1 μm, h2 = 3 ± 0.5 μm, and
d2 = 3 ± 0.3 mm.

The vertical setup (setup B) has been used with solution Sb. In that case, the effective gravity is
fixed, and we modify the characteristics of the thin and thick films by changing the motor velocity
from Um = 5 mm/s to the maximal rate Um = 112 mm/s. As the stretching of the initial film and
the extraction of the Frankel’s film are two competing effects occurring simultaneously during and
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FIG. 5. Behavior in the linear regime for solution (Sa). (Top) Wavelength as a function of the effective
gravity; (bottom) growth rate of the instability. The solid lines are the scaling laws given respectively by
Eq. (10) with the prefactor 3 (instead of the expected 19.5) and by Eq. (11) with the prefactor 1/3.5 (instead of
the expected 1/2.8). The color indicates the value of the thick film height d2, in mm.

after linear stage motion, the various geometrical parameters h1, h2, d1 and d2 can not be varied
independently.

The obtained parameter range is [0.2–1.2] mm for d2 and [0.3–0.7] μm for h1. We only have an
estimation for h2, which is in the range 1–2 μm. The thin film height is always much larger than d2

and plays no role. Figure 7 shows the wavelength and the growth rate as a function of the thick film
height d2. The color indicates the thin film thickness h1, with an error bar of 100 nm.

These experimental data are discussed in Sec. V, and compared to the model developed below.

IV. THEORY: LINEAR STABILITY ANALYSIS

A. Model assumptions

The Frankel’s film extracted at the bottom is stable. It plays no role in the instability and will
not be taken into account in the model, which will focus on the coupling between the thick film
at the top, of thickness h2 ≈ 2 μm and height d2 (region 2 of the film) and the thin film at the
bottom, of thickness h1 ≈ 0.5 μm and height d1 (region 1). The thicknesses are always much larger
than 100 nm and the disjoining pressure is thus negligible. The fluctuations of h1 or h2 with time
and space are much smaller than the thickness difference h2 − h1, so a uniform thickness will be
assumed in each region. The transition between one region to the other occurs on a typical length δ of
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FIG. 6. Behavior in the linear regime for solution (Sb). (Top) Wavelength as a function of the effective
gravity; (bottom) growth rate of the instability. The solid lines are the scaling laws given respectively by
Eq. (10) with the prefactor 4.5 (instead of the expected 19.5) and by Eq. (11) with the prefactor 1/4 (instead of
the expected 1/2.8). The color indicates the value of the thick film height d2, in mm.

the order of 100 μm (see Fig. 3 and Ref. [17]). This length is smaller than the observed wavelength
and a sharp transition is therefore assumed between both regions. The frontier is located along the
line z = d (x, t ) which will be predicted by the model.

The fluid dynamics is governed by the lubrication equations and the velocity and pressure fields
V and P thus obey, in each part of the film,

Vi = 1

η

(
y − hi

2

)2

(∇P + ρg) + vi, (3)

with vi the interfacial velocity in the domain i. The pressure gradients ∇P are governed by the
Laplace pressure and are localized at the frontier between both films, where the interface curvature
is non zero. They scale as γ (h2 − h1)/δ3 ∼ 104 m2/s, and are thus comparable to the gravity term ρg
in the frontier vicinity. The induced Poiseuille flow (occurring in the film even before the instability
begins to develop) scales as (ρg + ∇P)h2/η ∼ 10 μm/s, whereas the observed velocities are of
the order of 10 mm/s: the velocities are thus dominated by the interfacial velocities vi. In the
following, we neglect this Poiseuille contribution and assume that the velocity is uniform across
the film thickness and is equal to vi(x, z, t ), and that the pressure is homogeneous and equal to the
air pressure. One important consequence is that an elementary piece of film of volume hidxdz, taken
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FIG. 7. Experimental wavelength (top) and growth rate (bottom) as a function of d2, for solution Sb with
the vertical setup. The thin film thickness h1, expressed in μm, is given by the color chart. (Top) Dashed line:
scaling law (12); solid line: scaling law (10) with the prefactor 3.12 (instead of the expected 19.5). (Bottom)
Dashed line: scaling law (13); solid line: scaling law (11) with the prefactor 1/5.6 (instead of the expected
1/2.8).

either in the thin or in the thick film, is a closed material system. Especially, there is no liquid flux
across the frontier d between both film regions.

We assume that the instability can be described using an inextensible interface model. This
assumption implies that each piece of film dxdz keeps a constant thickness with time.

Finally, the instability begins to grow during the Frankel’s film extraction, so the reference
state, characterized by d1 and d2, depends on time. However, in the following, we make the crude
assumption that the instability time scale is much smaller than the extraction time scale and that d1

and d2 can be assumed to be constant. To summarize, the main physical processes can be reproduced
assuming that the parts of film (1) and (2) are of constant and uniform thickness h1 and h2, and of
constant area wd1 and wd2.

The evolution of the frontier is governed by the gravity ḡ, the surface tension of the film σ (taking
into account both interfaces) and the shear viscosity of the film μs,i = ηhi + 2ηs. The interface
viscosity is typically of the order of ηs ≈ 10−6kg s−1 [23], much larger than ηh ∼ 10−9kg s−1. The
film shear viscosity can thus be approximated by μs = 2ηs in both parts of the film.

B. Reference state

In the reference state, the frontier d0(x) between parts (1) and (2) of the film is a horizontal
straight line and the reference for z is chosen so that d0(x) = 0. The interface velocities are vanishing
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FIG. 8. Various forces acting on systems (1) and (2), limited by the red rectangles respectively in the left
and right schemes. (Left) The force balance on system (1) involves surface tension and gravity, as viscous
forces compensate on both sides. (Right) On system (2), gravity force is reduced by a larger amount of thin
film, and interfacial viscous forces and inertia need to be considered.

and the whole system is at rest. As the Laplace and disjoining pressures are negligible in the film,
the pressure in the liquid phase is the atmospheric pressure, taken as a reference pressure. The force
balance in the z direction on a piece of film dx dz therefore implies only the tension and the gravity:

0 = ∂σ

∂z
− ρhḡ. (4)

We thus get

σ 0
1 = ρḡh1z + 2γ0 and σ 0

2 = ρḡh2z + 2γ0 (5)

in the reference state, with γ0 the interface tension reference, taken arbitrary at z = 0. It is analog to
a hydrostatic pressure in a 3D problem.

C. Scaling laws

To determine the stability of the reference state, a frontier shape d (x, t ) = ε ent eikx is assumed.
Before dealing with the full linear stability analysis we first derive scaling laws for n(k) based on
simple force balances.

We first deal with system (1) shown in Fig. 8 (left), made of a piece of film of size λ×λ across
the frontier, with λ = 2π/k the perturbation wavelength.

In both parts of the film, all horizontal oscillations of the physical quantities damp exponentially
with z over a distance comparable to the wavelength. For this scaling law analysis, let us boldly
assume that they are independent of x at z = ±λ, i.e., at the top and bottom boundaries of
system (1).

The surface tension is denoted by σ + �σ at the top boundary and σ at the bottom.
The mass of the system is (disregarding any numerical prefactor) m = λ2ρ(h1 + h2). The

acceleration is vanishing by symmetry: the left part moves down and the right part moves up.
Similarly, periodicity implies that the viscous forces on both sides compensate each other. Finally,
the resulting force due to the surface tension is λ�σez and the weight is −λ2ρḡ(h1 + h2)ez. The
force balance on the system thus imposes

�σ ∼ λρḡ(h1 + h2). (6)
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FIG. 9. Origin of the line tension. We consider the frontier width, measured in the plane normal to the
frontier: The width ds measured along the interface shape is slightly larger than the width δ measured in the
film plane. It induces a resulting force T oriented along the frontier tangent.

The equilibrium relation Eq. (4) thus remains true in the out of equilibrium case, far enough from
the frontier.

We now focus on subsystem (2), made of the right part of the previous system, moving
upwards [see Fig. 8 (right)]. The surface tension contribution is still Fσ = λ�σ , but it now slightly
overcompensates the gravity Fg = −λρḡ[h1(λ + ε) + h2(λ − ε)]. Using Eq. (6), the resulting force
can be expressed as Fσ + Fg = λρḡε(h2 − h1).

One damping term is the film inertia, scaling as λ2ρ(h1 + h2) n2ε. Another arises from the
interfacial viscous forces: On both lateral sides of the system (length of order λ), the velocity
gradients scale as nε/λ [see Fig. 8 (right)] and the resulting force thus scales as −μsnε.

From the thickness profiles, we can define a line tension T between domains (1) and (2) (see
Fig. 9). Its order of magnitude can be determined from the area excess induced by the frontier. As
the thickness varies from h1 to h2 over a distance δ perpendicular to a local line element d�, the area
of this transition region is aint = d�(δ2 + (h2 − h1)2)1/2 ∼ d�δ[1 + (h2 − h1)2/(2δ2)]. The excess
area due to the thickness variation is thus (h2 − h1)2/(2δ) per unit length. The resulting line tension
T scales as σ (h2 − h1)2/δ ∼ 10−10N, and the associated force on the system includes the slope ε/λ

and scales as −εσ (h2 − h1)2/(λδ) [see Fig. 8 (right)].
This line tension term dominates at very small wavelength. Balancing the gravity excess and the

line tension, we show that it ensures the stabilization of perturbations having a wavelength smaller
than λc, with

λc =
[
σ (h2 − h1)

ρḡδ

]1/2

. (7)

All length scales smaller than this cutoff are stable. At small angles, λc is in the range
500 μm−1 mm for ḡ between 0.2 and 1.6 m2/s, and for the vertical case λc ∼ 200 μm. In both
cases it is five times smaller than the observed wavelengths. Note that for λ ∼ δ ∼ 100 μm, the
model of sharp frontier is not valid anymore, and a more refined model would be needed to take the
tension into account in a relevant way.

The damping induced by the friction on air can also become relevant, as it is the case for giant
films [24]. Assuming that the air in contact with the film is at rest at the instability onset, we can
estimate its contribution. The thickness of the laminar visco-inertial boundary layer in air scales
as δa = [μa/(ρan)]1/2 ∼ 1 mm and the induced friction on the system is Ff ∼ λ2μanε/δa. The
ratio between this viscous force and the inertial term is ρaδa/(ρh), as expected by considering the
boundary layer in air as an added mass to the system. This ratio remains slightly lower than 1 for
our experimental values of the parameters.

Finally, in this first attempt to rationalize our observations with a semianalytical model, we chose
to keep it as simple as possible and to neglect the line tension and the friction on air. We consequently
keep only two damping terms, the interfacial viscous forces and the inertia, scaling respectively as
λ0 and λ2 to balance the driving force, which is the excess of gravity force, scaling as λ1. The
potential influence of the neglected terms is discussed qualitatively in Sec. V.
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FIG. 10. Value of n as a function of the wavelength with ρ = 103 kg/m−3, h1 = 0.5 10−6m, h2 = 2 10−6m,
μs = 10−7kg/s, and ḡ = 9.8. Black solid line: solution of the equation set [Eqs. (25)–(27), (30), and (35)–(36)];
becomes blue and red lines: asymptotic scaling laws given by Eqs. (8) and (9), respectively. The fastest mode
is represented by the black dot, close to the intersection of both asymptotes. The gray dashed line is at the
abscissa d2 and the large wavelengths at the right of this line are forbidden. If this cutoff at d2 occurs at a
wavelength smaller than the fastest one, then the gray dot represents the actual fastest mode.

Just above λc, the instability is damped by the viscosity and the growth rate is obtained by
balancing gravity and interfacial viscosity terms

nvisq ∼ (h2 − h1)λρḡ

μs
. (8)

Similarly, in the large λ limit, the damping term is the inertia and the growth rate scales as

ninert =
[

(h2 − h1)ḡ

(h1 + h2)λ

]1/2

. (9)

The full numerical prediction, based on the approximations discussed above and on the equations
established in the next paragraph, is shown in Fig. 10. The power laws given by Eqs. (8) and (9)
are recovered at small and large λ, respectively. There is a direct parallel with the usual Rayleigh-
Taylor instability in 3D systems, surface tension playing the role of the pressure and film thickness
replacing the density.

The fastest growth rate nth,1 is obtained for the wavelength λth,1 verifying nvisq ∼ ninert. Using the
prefactors obtained by comparison with the numerical prediction (see Fig. 11), we get

λth,1 � 19.5

[
μ2

s(
h2

2 − h2
1

)
ρ2ḡ

]1/3

, (10)

and

nth,1 � 1

2.8

[
(h2 − h1)2ḡ2ρ

(h2 + h1)μs

]1/3

. (11)

For μs = 10−7kg s−1, h2 = 2 μm, and h1 = 0.5 μm, we find λth,1 of the order of a few
millimeters, which may be comparable to the thick film height d2. We thus expect a cutoff at d2 of the
scaling for λ: Wavelengths larger than d2 cannot grow, so if λth,1 > d2, then the fastest wavelength
scales as d2 and its growth rate is controlled by Eq. (8) (see Fig. 10). This imposes, for the cases
λth,1 > d2,

λth,2 � 3.8d2, (12)
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FIG. 11. Theoretical fastest wavelength (top) and associated time scale (bottom) as a function of the upper
film size d2. The parameters are h1 = 0.5 μm, h2 = 2 μm, μs = 10−7 kg s−1, and an infinite value of d1. The
angle θ , governing the apparent gravity, verifies sin θ = 0.01, 0.1, 1, respectively, for the red, magenta, and
blue lines. (Top) Horizontal dashed lines: 19.5λth,1 [Eq. (10)]; black dashed line: 3.8λth,2 [Eq. (12)]. (Bottom)
Dashed lines: 2.8/nth1 [Eq. (11)]; dot-dashed lines: 10.5/nth2 [Eq. (13)]. Solid lines are the numerical solutions
λnum and nnum of the full system [Eqs. (25)–(27), (30), and (35)–(36)]. The prefactors of the scaling laws
Eqs. (10)–(13) are fitted on these numerical solutions.

and

nth,2 � 1

10.5

(h2 − h1)d2ρḡ

μs
. (13)

Here again, the prefactors result from fits of the numerical solutions (see Fig. 11).

D. Equations in the bulk

These scaling laws clearly identify the physical processes, which are modeled below. The
stability analysis of the usual Rayleigh-Taylor instability have been done for 2D systems in [25].
We re-establish the dispersion relation here, in the context of soap films, and extend it to finite-size
systems.

We define the interface velocity vi = (ui,wi ) and the film tension σ = σ 0 + δσ , with σ 0 given
by Eq. (5).
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The assumption of inextensible interfaces leads to

∂xu + ∂zw = 0. (14)

The force balance written on a film piece dxdz of thickness h (of value either h1 or h2) is,
projected in the x and z directions

ρh(∂t u + u∂xu + w∂zu) = ∂xσ + μs(∂xxu + ∂zzu), (15)

ρh(∂tw + u∂xw + w∂zw) = ∂zσ + μs(∂xxw + ∂zzw) − ρḡh. (16)

At leading order (i.e., order 0 in ε) we recover the equilibrium equation for the reference state
Eq. (4) and, at order 1 in ε, Eqs. (15), (16), and (14) become, respectively,

ρhnu = ikδσ + μs(−k2u + ∂zzu), (17)

ρhnw = ∂zδσ + μs(−k2w + ∂zzw), (18)

iku = −∂zw. (19)

Substituting δσ and u in Eqs. (17)–(19), we get an equation on w only:

μs∂4zw − (ρhn + 2k2μs)∂zzw + (μsk
4 + ρhnk2)w = 0, (20)

whose solutions are, in domains j = 1 or 2,

w j = Aje
kz + Bje

−kz + Cje
qj z + Dje

−q j z, (21)

with

q j =
(

ρh jn

μs
+ k2

)1/2

, (22)

and Aj , Bj , Cj , and Dj coefficients we need to determine from the boundary conditions.
The x component of the velocity and the dynamical surface tension in each domain can be

expressed as a function of w from Eqs. (17) and (19):

u = i

k
∂zw, (23)

δσ = ρhn

k2
∂zw + μs

k2
(k2 − ∂zz )∂zw. (24)

The second relation is obtained by substituting Eq. (23) in Eq. (17).

E. Boundary condition at the interface

The normal velocity continuity at the frontier w1(d ) = w2(d ) leads to

A1 + B1 + C1 + D1 = A2 + B2 + C2 + D2, (25)

and the tangential velocity continuity u1(d ) = u2(d ) provides, using Eq. (23),

kA1 − kB1+q1C1 − q1D1 = kA2 − kB2 + q2C2 − q2D2. (26)

The continuity of the tangential stress μs(∂zu1 + ∂xw1) = μs(∂zu2 + ∂xw2) is

2k2(A1 + B1) + (
q2

1 + k2
)
(C1 + D1) = 2k2(A2 + B2) + (

q2
2 + k2

)
(C2 + D2). (27)

Finally, disregarding the role of the line tension, the continuity of the normal stress imposes

2μs∂zw1 + ∂zσ1ε + δσ1 = 2μs∂zw2 + ∂zσ2ε + δσ2. (28)
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This expression involves ε because ∂zσ is of order 0. Its value is obtained from the kinematic
condition ∂t d = w1 = w2:

nε = w1. (29)

The value of δσ is given by Eq. (24). After some reorganization proposed in Ref. [25] and given in
Appendix A, the condition becomes

0 = A1

(
R

2
− α1

)
+ B1

(
R

2
+ α1

)
+ C1

R

2
+ D1

R

2

+ A2

(
R

2
+ α2

)
+ B2

(
R

2
− α2

)
+ C2

R

2
+ D2

R

2
, (30)

with

R = ḡk

n2

h2 − h1

h1 + h2
, (31)

αi = hi

h1 + h2
. (32)

F. Limit of large d1 and d2

The velocity remains finite so A2 = 0, B1 = 0, C2 = 0, and D1 = 0. The system is then

A1 + C1 − B2 − D2 = 0,

kA1 + q1C1 + kB2 + q2D2 = 0,

2k2A1 + (
q2

1 + k2
)
C1 − 2k2B2 − (

q2
2 + k2

)
D2 = 0,

A1(R − 2α1) + C1R + B2(R − 2α2) + D2R = 0, (33)

in agreement with the system Eq. (111) in Ref. [25], for a problem in bulk, without surface tension.
This system has nontrivial solutions only if its determinant is zero, which imposes, as established

in Appendix B,

0 = (R − 1)(q1α2 + q2α1 − k) − 4kα1α2. (34)

This is Eq. (113) in Ref. [25].
With the parameters of Fig. 10, the model predicts that the most unstable wavelength is 1.5 cm,

to be compared with the 3 mm experimentally observed. As already seen with the scaling laws, we
have to consider the finite size of the system: there is a cutoff on the wavelength when the height of
one region (d1 or d2) is too small.

G. Finite value of d2

For finite-size systems, conditions must be imposed at the positions d1 and d2. As we have
d1 � d2, we only consider the finite value of d2. The precise condition at the boundary with the
free meniscus is actually a complicated problem. The Laplace pressure becomes important close
to the meniscus and the equations of motion used here fail. For the sake of simplicity, we simply
impose vanishing tangential and normal velocities. This leads to, at z = d2:

A2ekd2 + B2e−kd2 + C2eq2d2 + D2e−q2d2 = 0, (35)

kA2ekd2− kB2e−kd2 + q2C2eq2d2− q2D2e−q2d2 = 0. (36)

We thus obtain a system with six equations and six unknown Eqs. (25)–(27), (30), and (35)–(36).
For a given set of physical parameters, and for a suited range of k, we determine numerically the
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FIG. 12. Theoretical growth rate as a function of the experimental value shown in Figs. 5 (◦), 6 (•), and
7 (×). The theoretical value is determined by numerical resolution of the system, using the experimental values
of d2, h2, and h1 (we used h2 = 1.5 μm for the vertical series). The other parameters are ρ = 103 kg/m3 and
μs = 0.8 10−7 kg/s. The line corresponds to nth = nexp.

value of n(k) for which the system determinant vanishes. We adapt the range of k to make sure that
n(k) has a maximum nmax(kmax) in that range. We solved the problem for the parameter sets h1 =
0.5 μm, h2 = 2 μm, μs = 10−7 kg s−1, for three values of the effective gravity, and for d2 between
1 and 100 mm. The corresponding wavelengths λ = 2π/kmax and characteristic times τ = 1/nmax

are shown in Fig. 11: As expected, the scaling laws previously established are recovered in the limit
of small and large d2.

V. COMPARISON WITH THE EXPERIMENTAL DATA

To compare our predictions with the experimental data, we took into account in the model, for
each experimental data, the measured value of the parameters h1, h2, d2, and ḡ. For setup (A),
the only unknown parameter is the interfacial shear viscosity μs. For setup (B) (without spectral
camera), the thickness h1 has been deduced from the comparison of the foam film color and a
reference color chart with an uncertainty of ±100 nm. The error bar on h2 is larger, but counting
the interference fringes indicates a value in the range [1–2] μm. The thickness h2 = 1.5 μm has
been used in the model. The comparison between the growth rates obtained theoretically and
experimentally is shown in Fig. 12 and shows a reasonable agreement for μs = 0.8 10−7 kg s−1, for
both solutions. The order of magnitude of this viscosity is the expected one for the SDS solution.
Indeed ηs = μs/2 = 0.6 ± 0.4 10−7 kg s−1 has been found in Ref. [23]. A slightly larger value was
expected for the solution with dodecanol.

Then, using μs = 0.8 10−7 kg s−1, the experimental data of Figs. 5, 6, and 7 can be compared to
the scaling laws Eqs. (10) and (11) at large d2 (solid lines in the figures) and Eqs. (12) and (13) at
small d2 (dashed lines in the figures). In Figs. 5 and 6, we observe no correlation between d2 and
λ, which indicates that the large d2 scaling should be used. Consistently, we show in Figs. 5 and
6 that the variations of λ and n are compatible respectively with the scalings g−1/3 [Eq. (10)] and
g2/3 [Eq. (11)]. Similarly, the wavelengths of Fig. 7 are compatible with a scaling as d2 [Eq. (12)] at
small d2 and a constant value [Eq. (10)] at large d2.

However, the prefactors used for these fits differs from the predicted ones. Especially the power
law Eq. (10) is predicted to have a prefactor of the order of 20, whereas a prefactor of the order of 4
is systematically needed to fit the data of Figs. 5, 6, and 7. As λ is of the order of 2 or 3 times d2, the
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FIG. 13. Theoretical wavelength as a function of the experimental value shown in Figs. 5 (◦), 6 (•), and
7 (•) with the same parameters as in Fig. 12. (Top) The color chart shows the effective gravity value in m/s2,
red corresponding to 9.8 m/s2. (Bottom) The color chart shows the Frankel’s film height d2 in mm.

finite-size effect should be nonnegligible and the measured value for λ should be in contrast smaller
than the asymptotic prediction of Eq. (10), as shown in Fig. 11.

Finally all the measured wavelengths are plotted as a function of the full numerical prediction in
Fig. 13. It confirms that the model is not fully quantitative and that the transition from the large to
the small film height regime is not entirely understood.

As the predicted exponents of the film thicknesses and of the interfacial viscosity are small,
the discrepancy can not be attributed to the uncertainty on these quantities. The line tension
stabilizes the short wavelengths, and taking it into account would lead to a larger theoretical fastest
wavelength, thus increasing the disagreement with the model. The friction on air, in contrast, would
decrease the growth rate in Eq. (9) and would thus lead to a smaller theoretical wavelength in
Fig. 10. Another possible reason for the overestimation of the wavelength by the model is that
the system is not steady. The thick film height d2 varies during the instability development and
the observed wavelength may thus be the fastest mode associated to an earlier value of d2. As λth

increases with d2, this effect is compatible with the observed overestimation. Finally, the boundary
condition at the top used in the model, i.e., a vanishing velocity, may be oversimplified. The normal
velocity at the top meniscus must be small, but the tangential velocity at the meniscus may be
nonnegligible. A part of the meniscus is indeed set into motion in the x direction, by viscous friction
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on the film. The typical length δm of this domain can be determined from the balance between its
inertia ρhδmnu and the viscous force μsu/δ2

m. This leads to δm ∼ [μs/(ρhδmn)]1/2. At the distance
δm from the film, the thickness scales as δ2

m/rm (with rm the meniscus radius) so we obtain the power
law δm ∼ [μsrm/(ρn)]1/4 ∼ 300 μm. A more physical tangential boundary condition, expressing
the tangential stress continuity at the frontier between the meniscus and the thick film, may thus be
∂zu = u/δm. It reduces to the condition u = 0 at small δm and to the alternative limit ∂zu = 0 at large
δm. This weaker constraint at the upper boundary would reduce the influence of the finite film size
on the fastest wavelength and may lead to a better agreement with our observations.

VI. CONCLUSION

In this paper, we describe quantitatively for the first time the Rayleigh-Taylor instability arising
in foam film when a thick film is produced on top of a thin film. As this situation is induced by any
extension of a nonhorizontal film, it should also happen in a 3D foam when local deformations
are induced by coarsening or external shear. This process should potentially influence the film
thickness distribution in 3D foams, and thus the gas diffusion from one bubble to the other and
so the coarsening rate, or the energy dissipation induced by film shearing, and thus the apparent
viscosity. It is also an original example of purely 2D instability, whose nonlinear evolution may be
worth a more extensive study.
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APPENDIX A: NORMAL STRESS CONTINUITY

The normal stress in each domain is K = 2μs∂zwi + ∂z,iσε + δσi, so

k2K = 2k2μs∂zwi + ρghik2

n
wi + ρhin∂zwi + μs(k

2 − ∂zz )∂zwi

= ρghik2

n
(Ai + Bi + Ci + Di ) + (3k2μs + ρhin)(kAi − kBi + qiCi − qiDi )

− μs
(
k3Ai − k3Bi + q3

i Ci − q3
1Di

)
. (A1)

The condition Eq. (28) is thus, using μs(q2
i − k2) = ρhn in each phase,

0 = A1

(
ρgh1k2

n
+ 2k3μs + ρh1nk

)
+ B1

(
ρgh1k2

n
− 2k3μs,1 − ρ1h1nk

)

+ C1

(
ρgh1k2

n
+ 2k2q1μs

)
+ D1

(
ρgh1k2

n
− 2k2q1μs

)

− A2

(
ρgh2k2

n
+ 2k3μs + ρh2nk

)
− B2

(
ρgh2k2

n
− 2k3μs − ρh2nk

)

− C2

(
ρgh2k2

n
+ 2k2q2μs

)
− D2

(
ρgh2k2

n
− 2k2q2μs

)
. (A2)

Making finally the transformation Eq. (A2) − ρgk2/(2n)(h1 + h2) Eq. (25) − 2k2μs Eq. (26), we
get Eq. (30).
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APPENDIX B

The determinant of the system Eq. (33) can be reduced by the transformation C2 → C2 − C1,
C3 → C3 + C1 and C4 → C4 − C3, leading to

1 0 0 0

k q1 − k 2k q2 − k

2k2μs μs
(
q2

1 − k2
)

0 −μs
(
q2

2 − k2
)

X α1 R − (α1 + α2) α2

=
q1 − k 2k q2 − k

ρα1n 0 −ρα2n

α1 R − 1 α2

The condition Eq. (34) is finally obtained by a development of the determinant along the last
line.

[1] S. Cohen-Addad, R. Höhler, and O. Pitois, Flow in foams and flowing foams, Annu. Rev. Fluid Mech. 45,
241 (2013).

[2] N. D. Denkov, S. Tcholakova, K. Golemanov, K. P. Ananthapadmanabhan, and A. Lips, Viscous Friction
in Foams and Concentrated Emulsions under Steady Shear, Phys. Rev. Lett. 100, 138301 (2008).

[3] J. M. Chomaz and B. Cathalau, Soap films as two-dimensional classical fluids, Phys. Rev. A 41, 2243
(1990).

[4] H. Kellay, Hydrodynamics experiments with soap films and soap bubbles: A short review of recent
experiments, Phys. Fluids 29, 111113 (2017).

[5] V. Bergeron, Forces and structure in thin liquid soap films, J. Phys.: Condens. Matter 11, R215 (1999).
[6] C. Stubenrauch and R. V. Klitzing, Disjoining pressure isotherms of thin liquid films—New concepts and

perspectives, J. Phys.: Condens. Matter 15, R1197 (2003).
[7] K. J. Mysels, K. Shinoda, and S. Frankel, Soap Films: Study of Their Thinning and a Bibliography

(Pergamon Press, New York, 1959).
[8] H. N. Stein, On marginal regeneration, Adv. Colloid Interface Sci. 34, 175 (1991).
[9] V. Carrier, S. Destouesse, and A. Colin, Foam drainage: A film contribution? Phys. Rev. E 65, 061404

(2002).
[10] N. Adami and H. Caps, Capillary-driven two-dimensional buoyancy in vertical soap films, Europhys. Lett.

106, 46001 (2014).
[11] J. Seiwert, R. Kervil, S. Nou, and I. Cantat, Velocity Field in a Vertical Foam Film, Phys. Rev. Lett. 118,

048001 (2017).
[12] A. Aradian, E. Raphaël, and P.-G. de Gennes, “Marginal pinching” in soap films, Europhys. Lett. 55, 834

(2001).
[13] S. A. Koehler, S. Hilgenfeldt, E. R. Weeks, and H. A. Stone, Foam drainage on the microscale: II. Imaging

flow through single plateau borders, J. Colloid Interface Sci. 276, 439 (2004).
[14] O. Pitois, C. Fritz, and M. Vignes-Adler, Liquid drainage through aqueous foam: Study of the flow on the

bubble scale, J. Colloid Interface Sci. 282, 458 (2005).
[15] O. Pitois, N. Louvet, and F. Rouyer, Recirculation model for liquid flow in foam channels, Eur. Phys. J. E

30, 27 (2009).
[16] A.-L. Biance, A. Delbos, and O. Pitois, How Topological Rearrangements and Liquid Fraction Control

Liquid Foam Stability, Phys. Rev. Lett. 106, 068301 (2011).
[17] J. Seiwert, M. Monloubou, B. Dollet, and I. Cantat, Extension of a Suspended Soap Film: A Homogeneous

Dilatation Followed by New Film Extraction, Phys. Rev. Lett. 111, 094501 (2013).
[18] C. Derec, V. Leroy, D. Kaurin, L. Arbogast, C. Gay, and F. Elias, Propagation of a transverse wave on a

foam microchannel, Europhys. Lett. 112, 34004 (2015).
[19] A. Cohen, N. Fraysse, and C. Raufaste, Drop coalescence and liquid flow in a single plateau border,

Phys. Rev. E 91, 053008 (2015).

124001-19

https://doi.org/10.1146/annurev-fluid-011212-140634
https://doi.org/10.1146/annurev-fluid-011212-140634
https://doi.org/10.1146/annurev-fluid-011212-140634
https://doi.org/10.1146/annurev-fluid-011212-140634
https://doi.org/10.1103/PhysRevLett.100.138301
https://doi.org/10.1103/PhysRevLett.100.138301
https://doi.org/10.1103/PhysRevLett.100.138301
https://doi.org/10.1103/PhysRevLett.100.138301
https://doi.org/10.1103/PhysRevA.41.2243
https://doi.org/10.1103/PhysRevA.41.2243
https://doi.org/10.1103/PhysRevA.41.2243
https://doi.org/10.1103/PhysRevA.41.2243
https://doi.org/10.1063/1.4986003
https://doi.org/10.1063/1.4986003
https://doi.org/10.1063/1.4986003
https://doi.org/10.1063/1.4986003
https://doi.org/10.1088/0953-8984/11/19/201
https://doi.org/10.1088/0953-8984/11/19/201
https://doi.org/10.1088/0953-8984/11/19/201
https://doi.org/10.1088/0953-8984/11/19/201
https://doi.org/10.1088/0953-8984/15/27/201
https://doi.org/10.1088/0953-8984/15/27/201
https://doi.org/10.1088/0953-8984/15/27/201
https://doi.org/10.1088/0953-8984/15/27/201
https://doi.org/10.1016/0001-8686(91)80050-T
https://doi.org/10.1016/0001-8686(91)80050-T
https://doi.org/10.1016/0001-8686(91)80050-T
https://doi.org/10.1016/0001-8686(91)80050-T
https://doi.org/10.1103/PhysRevE.65.061404
https://doi.org/10.1103/PhysRevE.65.061404
https://doi.org/10.1103/PhysRevE.65.061404
https://doi.org/10.1103/PhysRevE.65.061404
https://doi.org/10.1209/0295-5075/106/46001
https://doi.org/10.1209/0295-5075/106/46001
https://doi.org/10.1209/0295-5075/106/46001
https://doi.org/10.1209/0295-5075/106/46001
https://doi.org/10.1103/PhysRevLett.118.048001
https://doi.org/10.1103/PhysRevLett.118.048001
https://doi.org/10.1103/PhysRevLett.118.048001
https://doi.org/10.1103/PhysRevLett.118.048001
https://doi.org/10.1209/epl/i2001-00356-y
https://doi.org/10.1209/epl/i2001-00356-y
https://doi.org/10.1209/epl/i2001-00356-y
https://doi.org/10.1209/epl/i2001-00356-y
https://doi.org/10.1016/j.jcis.2003.12.060
https://doi.org/10.1016/j.jcis.2003.12.060
https://doi.org/10.1016/j.jcis.2003.12.060
https://doi.org/10.1016/j.jcis.2003.12.060
https://doi.org/10.1016/j.jcis.2004.08.187
https://doi.org/10.1016/j.jcis.2004.08.187
https://doi.org/10.1016/j.jcis.2004.08.187
https://doi.org/10.1016/j.jcis.2004.08.187
https://doi.org/10.1140/epje/i2009-10502-y
https://doi.org/10.1140/epje/i2009-10502-y
https://doi.org/10.1140/epje/i2009-10502-y
https://doi.org/10.1140/epje/i2009-10502-y
https://doi.org/10.1103/PhysRevLett.106.068301
https://doi.org/10.1103/PhysRevLett.106.068301
https://doi.org/10.1103/PhysRevLett.106.068301
https://doi.org/10.1103/PhysRevLett.106.068301
https://doi.org/10.1103/PhysRevLett.111.094501
https://doi.org/10.1103/PhysRevLett.111.094501
https://doi.org/10.1103/PhysRevLett.111.094501
https://doi.org/10.1103/PhysRevLett.111.094501
https://doi.org/10.1209/0295-5075/112/34004
https://doi.org/10.1209/0295-5075/112/34004
https://doi.org/10.1209/0295-5075/112/34004
https://doi.org/10.1209/0295-5075/112/34004
https://doi.org/10.1103/PhysRevE.91.053008
https://doi.org/10.1103/PhysRevE.91.053008
https://doi.org/10.1103/PhysRevE.91.053008
https://doi.org/10.1103/PhysRevE.91.053008


EVGENIA SHABALINA et al.

[20] J. Seiwert, J. Pierre, and B. Dollet, Coupled vibrations of a meniscus and liquid films, J. Fluid Mech. 788,
183 (2016).

[21] A. Bussonnière, E. Shabalina, X. Ah-Thon, M. L. Fur, and I. Cantat, Dynamical coupling between
connected foam films by interface transfer across the menisci, arXiv:1902.07076.

[22] G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes,
Proc. R. Soc. London A 201, 192 (1950).

[23] W. Drenckhan, H. Ritacco, A. Saint-Jalmes, A. Saugey, P. McGuinness, A. Van der Net, D. Langevin, and
D. Weaire, Fluid dynamics of rivulet flow between plates, Phys. Fluids 19, 102101 (2007).

[24] M. A. Rutgers, X. I. Wu, R. Bhagavatula, A. A. Petersen, and W. I. Goldburg, Two-dimensional velocity
profiles and laminar boundary layers in flowing soap films, Phys. Fluids 8, 2847 (1996).

[25] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Courier Corporation, North Chemlsford,
MA, 2013).

124001-20

https://doi.org/10.1017/jfm.2015.674
https://doi.org/10.1017/jfm.2015.674
https://doi.org/10.1017/jfm.2015.674
https://doi.org/10.1017/jfm.2015.674
http://arxiv.org/abs/arXiv:1902.07076
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1063/1.2757153
https://doi.org/10.1063/1.2757153
https://doi.org/10.1063/1.2757153
https://doi.org/10.1063/1.2757153
https://doi.org/10.1063/1.869105
https://doi.org/10.1063/1.869105
https://doi.org/10.1063/1.869105
https://doi.org/10.1063/1.869105

