non-linear viscoelasticity and wall slip regimes of aqueous foams

R.M. Guillermic, A. Saint-Jalmes

Institut de Physique de Rennes

S. Marze

LPS-Orsay

Foams : striking rheological properties

Foams = dispersion of gas into a liquid, stabilized by molecules adsorbed at

Shearing foams ? an everyday life experience (food, cosmetics, detergency...)

> As the deformation is increased : First elastic behavior, then plastic behavior with irreversible bubble rearrangements and finally the foam flows like a viscous liquid

> > A visco-elasto-plastic material ; though a foam is mostly made of gas

Experimental setup : rheometry coupled to Diffusive Wave Spectroscopy (DWS)

Foam parameters investigated:

 \bigcirc Liquid fraction, ε :

are varied simultaneously and inversely.

Our foam data can be compared to other systems and models by using

normalized stress, σ' : stress divided by the Laplace pressure, (Γ/R)

slip velocity is transposed in Capillary number $Ca = \mu V/\Gamma$

non-dimensional quantities :

dependence of F_i with shear rate : $\gamma_c = 0.25 = a$ correct value.

Steady-shear results with smooth surfaces : study of surface slip for 3D foams

Strong effect of the bottom plate roughness : stress σ vs shear rate

