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Abstract. We have performed forced drainage experiments on aqueous foams of bubble diametersD varying
from 0.18 to 8 mm, and made with different surfactant and protein solutions (providing different surface
viscoelastic properties). Changing bubble size or surface properties allows to evolve between two drainage
regimes, the respective dimensionless permeabilities also varying with these parameters. We show that
the bubble size and surface properties can be incorporated into a single surface mobility parameter that
controls the transition between the two drainage regimes. The permeability measurements indicate how do
the hydrodynamic resistances of the foam channels and nodes depend on surface mobility. Taking advantage
of the large range of experimental conditions, leading to a variation of the mobility parameter over more
than 3 decades, a simple and consistent description of both the drainage regimes and the transition in
between them is obtained. For the smallest bubbles (D < 0.5 mm) anomalous behaviors are observed
and discussed.

PACS. 82.70.Rr Aerosols and foams – 47.60.+i Flows in ducts, channels, nozzles, and conduits – 47.55.Mh
Flows through porous media

1 Introduction

An aqueous foam is a dispersion of a gas into a liquid,
in the presence of surfactant molecules stabilizing the air-
liquid interfaces [1]. Despite the presence of surfactants,
the stability of aqueous foams is limited, as they always
collapse after a certain time and vanish. Among the differ-
ent destabilizing effects occurring during a foam lifetime,
the gravitational drainage is probably the most critical
one, as it changes irreversibly the foam liquid content.
Due to gravity the liquid flows through a foam and accu-
mulates at its bottom, leading to a drier and more fragile
foam, for which other destabilizing effects such as coars-
ening and film rupture are more effective. Liquid content
variations also lead to changes of the foam mechanical,
optical and electrical macroscopic properties [1]. Regard-
ing the foam applications, one might want to make stable
foams, to avoid them, or to optimize one of their proper-
ties: in all these cases, knowing how do the foams drain is
always an important issue.
In the last ten years, foam drainage has been a very

active field, both theoretically and experimentally [1–31],
complementing the earliest works [32–34]. Two different
drainage regimes have been observed, at the macroscopic
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scale [2,8–10], as well as at the scale of a single foam chan-
nel [22,30,31], and related to opposite limits of the bub-
ble surface viscoelasticity. A first regime has been associ-
ated to the limit of rigid and solid-like surfaces, and the
other one to mobile fluid-like surfaces. In both of these
extreme cases, comparisons between data and drainage
models have shown that, for rigid surfaces, the main hy-
drodynamic dissipation is within the foam liquid channels
(the Plateau Borders, PBs) where the flow is Poiseuille-
like [3,5,14]; on the other hand, for mobile surfaces, the
flow in the PBs is more plug-like, so that the main vis-
cous dissipation is within the nodes (the junction of four
PBs) [8,11]. All the models are based on the same ingre-
dients, they consider the foam as a porous medium with
the liquid flowing in the network of PBs interconnected
at the nodes. However, the foam is a particular porous
medium since the PBs and nodes sizes depend on the liq-
uid content, so that the permeability is not constant and
is directly coupled to the foam liquid content. In these
models, the macroscopic drainage behavior is finally in-
ferred from microscopic flow descriptions at the scale of
the elementary structure (a PB, connected to a node).

Nevertheless, many questions remain unsolved regard-
ing a complete quantitative picture. The models only de-
scribe the extreme cases of surface mobility. The corre-
sponding features have been observed experimentally, but
it is still not clear which precise conditions and foam
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parameters are associated to each limit. The surface rhe-
ological properties appear to be important, but they are
described by several different parameters and it is not yet
clear which one is the most important in the drainage
problem. It also seems that other foam parameters play
a role in the selection of the flow regime, especially the
bubble size and the liquid fraction. Leonard and Lemlich
modeled the flow in a single PB and took into account
the coupling between the flow in the bulk and at the sur-
face. They introduced a simple “mobility parameter”, in-
corporating the PB size, the bulk and surface shear vis-
cosity. This parameter, describing the flow in PBs (from
Poiseuille like to plug-like one), may possibly be also rele-
vant for the transition between the macroscopic drainage
regimes [32]. This description in terms of surface mobility
parameter and the coupling between surface and bulk flow
in a PB have recently been studied in more details by nu-
merical simulations [35–37], but these ideas have not yet
really been quantitatively tested over a large range of ex-
perimental conditions. Moreover, quantifying the surface
mobility should also help to understand and describe the
drainage properties between the two extreme limits.
The quantitative aspects are obviously also important.

The values of the dimensionless permeability constants,
appearing in the drainage speed, have to be measured, and
their dependence with the experimental conditions iden-
tified. Indeed, experimentally and especially in the limits
of mobile surfaces, different values for a same permeabil-
ity constant have been measured, but for different bubble
sizes [11,23,27]. Predictions of these permeability values,
and of their relations to the hydrodynamic resistances of
each foam structures (PBs and nodes), strongly rely on
models for the PBs and node geometry. So, the compar-
isons with measurements can ultimately help to check the
validity of both these geometrical descriptions and con-
stants, and of the drainage models assumptions. An im-
portant related issue is then to finally identify to which
level of refinement one must describe the foam structure
to explain the drainage properties, and what is the effec-
tive role of each elements of the foam. Finally, it is also im-
portant to determine, regarding the application foreseen
(from long-lasting foams to fast-drainage ones), which are
the most efficient foam parameters to tune the timelife of
any foam.
In this paper, we first recall the theoretical back-

ground (models for the different limits of surface proper-
ties and introduction of the surface mobility parameter),
together with a possible approach to model the intermedi-
ate regime. We then present new results of forced drainage
experiments, where we have widely changed the bubble
diameter (by almost a factor 50), and the surface proper-
ties (by using different surface-active molecules). We then
show that for a large range of experimental conditions, a
coherent picture can be established.

2 Materials and setup

Most foams were made by the bubbling method, and the
turbulent mixing method was used to obtain the smallest

bubbles (diameter D = 0.18 mm) [7]. In the bubbling
method, the gas is injected inside the solution through
porous cylinders made of fritted glass. In order to change
the bubble size, different frit porosities (0 to 4) were used
(providing intermediate diameters, up to 3.5 mm). The
largest bubbles (diameter D from 4 mm to 8 mm) were
made with perforated homemade plugs. The bubble size
has thus be changed by almost a factor 50.

Sodium Dodecyl Sulfate (SDS) of high purity, do-
decanol and casein (milk protein) were purchased from
Sigma. Typical concentrations were: 10 g/L for SDS,
0.1 g/L for dodecanol, and 1.5 g/L for casein. All the
solutions were made with ultra-pure Milli-Q water. The
casein solution is made in a phosphate buffer in order to
fix the pH at 5.6. We measured the rheological properties
of all the solutions: the viscosities are equal to the one
of water for the surfactant solution, and 10% higher for
the casein solution. In order to produce the foam, we used
either a pure fluorinated gas (C2F6), or nitrogen loaded
with C6F14 vapor traces, to strongly reduce the coarsening
rates [38].

We performed forced drainage experiments, easier to
analyze than the free drainage experiments where long
experimental times are needed, and interpretation is more
difficult (problem with the initial vertical foam uniformity,
and with boundary conditions at the foam bottom). In a
forced drainage experiment, the foam is first allowed to
drain completely. This provides a reproducible and con-
trolled initial stage. Then, the surfactant solution is in-
jected at the top of the foam sample at a controlled flow
rate: due to gravity and capillarity, a liquid front prop-
agates downward in the foam at a constant velocity v,
leaving a constant liquid fraction ε above it. Results are
expressed via power law relationships between v and Q
(or ε): v ∼ Qα (meaning also v ∼ εβ with β = α/(1 − α)
as the liquid volume conservation implies Q/S = εv, with
S being the sample cross-section).

To localize the front and to measure its velocity, we
used a multiple light scattering technique in transmission
(analogous to the Diffusive Transmission Spectroscopy,
DTS [39]). In the multiple scattering regime, the light
transmission intensity It is simply related to the foam
liquid fraction: in a first approximation, it is inversely
proportional to

√
ε [40]. This means that qualitatively a

wet foam will transmit less light than a dryer one. One
can then easily detect differences in liquid fraction, like
drainage fronts, and their spatial and temporal evolution
with a CCD camera on one side of the sample, and a
white light illumination on the other [23]. This technique
is very simple and well adapted for measuring drainage
front velocities. It is also non intrusive as no additives
or probes within the sample are needed. As it based on
the random walk of photons through the foam, it is also
clear that artifacts at the wall are not important. In order
to accurately visualize the front, the only requirement is
that the foam must be thick enough to get enough scat-
tering events. Even if the asymptotic multiple scattering
regime is not completely obtained with a sample thickness
of typically 10 bubbles [39,40], it is already sufficient to
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detect differences in the transmitted intensity above and
below the front. We used foam cells having parallelepiped
shapes, with the same height (70 cm), but different width
and thickness t depending on bubble size (t > 10D). The
width of the cells was kept equal to 6t in order to min-
imize the photon leaks by the sides of the cells, and to
mimic an ideally infinite width. The front was followed
over at least 25 cm, and its precise position determined
by image treatment using a computer software developed
by IT-Concept. We verified the agreement between the
DTS measurements and those made by conductimetry
measurements with electrode arrays along the height of
the drainage cell. The resolution of light scattering tech-
nique is higher, allowing for instance to evidence the non-
symmetrical shape of the front.

3 Drainage models and definitions

A foam drainage equation describes the time and space
evolution of the foam liquid fraction ε(z, t). It predicts for
instance the relation between the front speed v and the
flow rate Q in a forced drainage experiment. All the mod-
els are based on the local description of the flow in a single
foam structural element (a PB and a node). The drainage
equation is obtained by averaging over the whole network
of PBs and nodes, neglecting the thin films. This last as-
sumption appears quite reasonable as the liquid within
the foam is almost only distributed within the PBs. In

the limit of low liquid fractions one can write: ε ≈ δ r
2

L2 ,
where L is the PB length, r its radius of curvature, and
δ = 0.17 [11]. In the following, the bubbles are replaced by
Kelvin cells (tetrakaidecahedra), for which D = cL, with
c ≈ 2.7 [11].
When the velocity is zero at the surface of the PBs

(rigid surfaces), the flow inside the PBs is Poiseuille-like.
In the forced drainage mode, the model leads to a front
velocity such as [2–4]

v = K0

c

ρgL2

µ
ε =

(

K0

c

ρgL2

µ

)1/2

(Q/S)1/2 , (1)

where ρ is the liquid density, g is the gravitational acceler-
ation, µ is the liquid bulk viscosity and K0

c a dimension-
less permeability. Following [11], we introduce a dimen-
sionless resistance R0

c , such as: R
0
c = 1/(3δK

0
c ) = A/K0

c ,
and A ≈ 2. K0

c is related to the peculiar shape of the PB
cross-section, and the calculation gives:K0

c = 6.610
−3 and

R0
c = 290 [2–4].
Leonard and Lemlich [32] considered the flow in a sin-

gle PB when the surfaces are not completely rigid, and
analyzed the coupling between bulk and surface flows.
Considering that the three corners of the PB are fixed,
as they are connected to the thin films, tangential shears
can then occur within the surfaces. They introduced the
surface shear viscosity µs and described the coupling with
the parameter M = µr

µs
, (this parameter was also used

later by Kraynik [33]). Note also that M is the inverse of
the Boussinesq number. Introducing the bubble diameter

inM , and in the limit of low liquid fraction (r = L
√

ε/δ),

the parameter M can be written as: M = µr
µs
= χµD

√

ε
µs
,

with χ = 1/(c
√
δ) ≈ 0.9. For low values ofM (high surface

viscosity, for instance), the coupling and surface mobility
are small, and the flow remains Poiseuille-like. Deviations
appear as soon as M is close to 0.1 [32,35,36]. Slightly
different forms for the correction have been found in the
numerical calculations [32,35,36]. For the purpose of this
paper, we have simplified these different results by sim-
pler forms, fitting their predicted curves from low M up
to M = 10. The front velocity can then be written:

v =
ρgL2

µ
K0

c (1+aM
b)ε =

ρgL2

µ
K0

c

(

1+a

(

χµD
√
ε

µs

)b)

ε,

(2)
with a = 1.55 and b = 0.75 for the expression given in [32,
35], and a = 2.4 and b = 1 for the expression given in [36].
We will use these two sets of numerical results for a and b
later in our data analysis. It turns out that this correction
has only small effects on the exponent α (or β), which
remains always close to 1/2 (or 1). In fact, α can only
increases up to 0.6 for very large M values. The main
effect of this correction is on the prefactor of the power
law curve: it increases significantly with M , meaning that
when the surfaces become more mobile, the hydrodynamic
resistance of the PBs decreases.
Another coupling has been proposed between the PB

bulk and surface flow, due to surface tension gradients [21].
This coupling can be described by a second mobility pa-
rameter N = µDeff

Er , where Deff is an effective surface dif-
fusion coefficient, and E the Gibbs elastic modulus of the
surface. If N is small, there is no surface flow and α = 0.5.
If N is large, surface flow is important, and it has been
predicted that the exponent α for forced drainage is equal
to 1/3. However, for this coupling, predictions for inter-
mediate N (such as Eq. (2) forM) are not available. Note
that the variations of M and N with bubble size are op-
posite.
In the limit of very mobile surfaces (largeM or N), the

flow is plug-like in the PBs, and it has been proposed that
the dissipation in the node becomes then predominant. In
that case, the front velocity is given by [8,11]

v = K0

n

ρgL2

µ
ε1/2 =

(

K0

n

ρgL2

µ

)2/3

(Q/S)1/3 . (3)

One can also define a dimensionless node resistance
R0
n, equal to: R

0
n = (2δa)/(3

√
δδnK

0
n) = B/K0

n, where
δa is the constant relating a PB cross-section to its ra-
dius of curvature (δa = 0.161) and δn the constant re-
lating the node volume to this same radius of curvature
(δn = 0.31) [11]. With these values B ≈ 0.9. The predic-
tion of the value of K0

n relies on complex numerical simu-
lations. It has been proposed that K0

n should be close to
K0
c [18,41], but no clear demonstration has been given yet.

Also, no complete description of the intermediate regimes
of surface mobility in the nodes (using M or N) exists
yet. In the limit of low surface mobility, the nodes can be
considered as small complementary parts of PBs, leading
to corrections in the PB effective length [18].
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The previous models described the drainage in the lim-
its of low or high surface mobilities. For the intermediate
regime, and following the previous approaches in terms
of PB and node hydrodynamic resistances, it has been
proposed to consider that PBs and nodes are resistors
mounted in series, whose resistances depend on the mo-
bility parameters M and/or N [29]. In the case of forced
drainage, one could then write

v =
ρgL2

µ
ε

(

1

1/Kc(M,N) +
√
ε/Kn(M,N)

)

=

ρgL2

µ
ε

(

1

(1/A)Rc(M,N) + (1/B)
√
εRn(M,N)

)

. (4)

The remaining issue is then to determine the depen-
dence of the resistances or permeabilities with surface mo-
bility, first validating then extending equation (2) that
only predict the variation of Kc with M . Equation (4) is
consistent with the two previous limits: for low surface
mobility (low M or N), the PBs resistance should be the
largest (Kc ¿ Kn), and one recovers equation (1); for
high surface mobility, Kc À Kn and equation (3) is recov-
ered. This equation allows to correctly analyze the forced
drainage data in the intermediate regime (where power
law adjustments with a single exponent, like v ∼ εβ ∼ Qα,
would have given 1/2 < β < 1 and 1/3 < α < 1/2).
It is important to recall that all these models rely on

several assumptions. The first one is that the liquid flows
only through the PB-node network, and that the liquid
volume in the thin films between bubbles remains neg-
ligible and play no role in the liquid transport. Leonard
and Lemlich showed that the films play however an impor-
tant role in the PB boundary conditions: they maintain
the velocity of the three corners of a PB equal to zero.
Observations of closed liquid circulations within the thin
films show that there is often an upward liquid flow in
the vicinity of the PB. Since the liquid moves downward
in the PB, there must be a point between films and PBs
where the velocity is zero. However, the exact description
of the film/PB connections, where pinching effects also oc-
cur [42], still need to be completely clarified. The second
important assumption in these models is that they are in
principle only valid in the limit of low liquid fraction (vol-
ume of the nodes small compared to the one of the PBs).
It is thus important to check experimentally the validity
of these models by varying the foam liquid fraction.

4 Forced drainage experiments

In forced drainage experiments, one can study the vari-
ation of the front velocity v with the flow rate Q of the
injected fluid; v is usually plotted versus Q/S which has
also the dimension of a velocity. Figure 1a presents forced
drainage curves for foams made with a SDS solution at dif-
ferent bubble diametersD, ranging from 0.18 mm to 8 mm
(the arrow points toward larger D). Figure 1b presents the
curves for the same range of diameters for the casein solu-
tion. Similar curves were obtained for the SDS-dodecanol
solutions (but for a smaller range of diameters).
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0.1

1

0.001 0.01

v
(c

m
/s

)

Q/S (cm/s)

(a)

0.001 0.01

Q/S (cm/s)

(b)

Fig. 1. Forced drainage curves at different bubble diameters,
ranging from 0.18 mm to 8 mm (the arrows indicate the in-
crease of diameter): (a) SDS foams and (b) casein foams. The
data are fitted with power laws. In each graph, alternative
empty and full symbols are just used to enhance the differ-
ences between the successive curves.

For a given Q/S, the smallest velocities correspond to
the smallest bubble diameter. This corresponds also to the
highest liquid fraction observed above the front, rising up
to 25%. Larger bubbles lead to larger drainage velocities,
and smaller liquid fractions, typically between 1 to 10%.
Note that we have been able to measure drainage velocities
ranging over more than 2 decades. The maximum injec-
tion rate and subsequent liquid fraction is determined by
the occurrence of a convective instability [43,44], above
which bubbles start to move, and no drainage front can
be observed. The corresponding liquid fraction threshold
decreases with increasing the bubble size.

The data show that, for given bubble size and Q/S,
the drainage velocities are always larger for SDS solutions
than for protein solutions. The difference is more impor-
tant for the smallQ/S. At largeQ/S the velocities become
closer and almost equal when the maximum liquid frac-
tion is attained (just before the convective instability [43,
44]). The curves of Figure 1a and 1b can be fitted to power
laws, and the variation of the corresponding exponents α
with bubble diameter are reported in Figure 2. For the
protein foams, α is always close to 1/2, consistent with
the rigid surfaces models (Eq. (1)): interfaces covered by
proteins are indeed expected to be very rigid, as proteins
are irreversibly adsorbed and form gel-like structures. For
SDS foams, where the bubble surfaces are expected to be
fluid-like, we find a more complex behavior: α is consis-
tent with the model of mobile surfaces for small and large
bubbles, but in between (around D = 1 mm) α increases
up to 0.4. This type of intermediate behavior is also seen
for the SDS/DOH foams: α varies between 1/3 and 1/2,
but the values are larger than for SDS foams at a given
bubble size (Fig. 2). SDS/DOH monolayers at the film
surfaces are expected to be more rigid than SDS ones, as
the DOH molecules can fill the gaps in between the SDS
ones, and then increase the surface compacity. So, there is
a relatively good correlation between the measured α and
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Fig. 2. Exponents α of the power law fits as a function of bub-
ble diameter, for SDS (crosses), SDS/DOH (white squares) and
casein foams (black squares). The two horizontal lines corre-
sponds to the theoretical values 1/2 and 1/3 (Eqs. (1) and (3)).
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Fig. 3. Dimensionless permeability Kc as a function of the
mobility M . The solid and dashed lines represent, respectively,
the models of [32] and [36]. The surface shear viscosity µs of
each solution is adjusted in order to fit with the two models.
Crosses are for SDS foams, white squares for SDS/DOH foams,
and black squares for the casein foams.

the surface properties, but the results also show that the
drainage regime depends on the bubble size.

Within a given drainage regime, the drainage veloc-
ity depends on the bubble size. We have extracted the
permeabilities Kc and Kn by fitting the data with equa-
tions (1) and (3) in the cases where α is close to 1/2 or
1/3, respectively (in practice, we fixed α = 0.5 or 0.34 in
order to obtain the permeabilities). For the intermediate
cases (α ≈ 0.4), we used equation (4) to extract a (Kc,
Kn) couple for each curve. It turns out that both Kc and
Kn are not constant, and depend strongly on the surface
properties and on the bubble size.

5 Interpretation and discussion

We have first compared the Kc values with the predic-
tions of the model from Leonard and Lemlich (Eq. (2)),
predicting the variation of Kc with M (i.e. with D, µ, µs
and ε). The volume fraction ε depends on the flow rate,
and is not constant along a drainage curve v(Q). The value
determined for Kc by fitting the curve with equation (1)
is therefore an average over a range of ε, and thus also a
range ofM . In order to ascribe a single value ofM to each
measurement, we have replaced the range of ε encountered

by its mean value εm: M = χµD
√

ε
µs

≈ χµD
√
εm

µs
. This sim-

plification looks reasonable: i) as already said, taking into
account the corrections due toM (Eq. (2)) does not signif-
icantly change the power law exponent α (v ∼ ε1 ∼ Q1/2),
ii)
√
ε changes only slightly with Q along an experimental

curve, and iii) the variations of M due to variations of
D and surface properties are much larger than those due
to ε. With this approximation, the Leonard and Lemlich
correction (Eq. (2)) is reduced to a change of the per-
meability in the equation (1), Kc = K0

c (1 + aM b). The
surface shear viscosities of the solutions used could not
be measured and were treated as adjustable parameters,
in order to find agreement between Kc measurements and
the predictions of [32] and [36] (in practice, each solu-
tions data set is independently adjusted to a virtually ideal
curve in between the two slightly different predicted ones).
It is actually possible to find a set of surface viscosities
(µs = 10

−2 g/s = 10−5 Pa · s ·m for the casein solution,
µs = 1.8 ·10−3 g/s = 1.8 ·10−6 Pa · s ·m for the SDS/DOH
solutions, and µs = 8 · 10−5 g/s = 8 · 10−8 Pa · s ·m for the
pure SDS solutions) for which all the permeabilities, once
plotted as a function of M , get rearranged and sorted
along a single continuous curve, in agreement with the
predictions (see Fig. 3). It turns out that these surface
viscosities are in good agreement with previous measure-
ments [45] and with similar estimations at the scale of a
single PB [30,31]. So, the observed increase of Kc is there-
fore likely due to the bulk/surface coupling described by
the parameter M . This means also that, quite unexpect-
edly, drainage experiments can be a valuable method to
determine shear viscosities (by quantifying the shift from
pure Poiseuille flows in the PBs). The value found for small
M is in good agreement with the theoretical prediction
K0
c , confirming that the limit of rigid surfaces is now well

understood.
Using the previously determined values of µs, we can

now plot and summarize all the results obtained for var-
ious bubble sizes and surface properties as a function of
M only (Fig. 4). Note that we are covering more than 3
orders of magnitude in M . Figure 4a represents the evo-
lution of α with M . As for the permeability Kc, the data
from the different solutions, follow now a single curve over
the whole range of M . This curve shows two well-defined
drainage regimes for small and large M , which are inter-
preted as regimes controlled either by the dissipation in
the PBs or in the nodes, respectively, and an intermediate
transition regime in between them, for 0.8 < M < 3.5. M
appears thus to be, over a very large range of experimental
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Fig. 4. Surface mobility dependence of the exponent α (a),
permeabilities Kc and Kn (b), and hydrodynamic resistances
Rc and Rn (c). The dashed lines indicate the transition range
for α (in a), corresponding well to the crossover of the resis-
tances (in c). The solid curve in (b) is after the model of [36].

conditions, the pertinent control parameter to determine
the actual type of drainage.
The parameter M depends also on the liquid fraction

(M ∼
√
ε); so, variations of only ε could then induce

drainage transitions, for constant D and surface proper-
ties. Theoretically, in a single forced drainage experiment,
the different regimes and the transition should thus be
found as Q is varied (meaning that the exponent α
could change from 1/2 to 1/3 along a curve). However,
in experiments, the variation of ε is too small to detect
changes of α.
In Figure 4b, we present together the values of Kn

and Kc. We have found that Kn remains always smaller
than Kc, and depends only slightly onM . There is a good
continuity between the values of Kc, Kn obtained in the
intermediate regime with equation (4) and those obtained
directly in the pure rigid or mobile surface regimes. This
result validates therefore the model of hydrodynamic resis-
tance in series and the analysis of the intermediate regime.
The permeabilities Kc and Kn are useful to describe

the drainage velocity. However, for a better understand-
ing of the drainage regimes, the resistances Rc and Rn are
the important quantities to be compared, as they repre-

sents the actual contributions of the PBs and nodes, once
normalized by their geometrical aspects. In Figure 4c, the
hydrodynamic resistances of the PBs and nodes, calcu-
lated from the permeabilities, are plotted versus M . When
M increases, the coupling between bulk and surface flow
in the PBs increases, and the surfaces loose their ability
to resist to the flow: the PB resistance decreases, accord-
ing to the Lemlich model. The flow in a PB is no longer
Poiseuille flow, the velocity is non-zero at the surface, but
the corners remain immobile, permitting the foam struc-
ture to be stable. The drainage regime remains controlled
by the PBs, up to the point where their resistance be-
come smaller than the resistance of the nodes. We have
found that there is a crossover range where the PB and
node contributions are actually equivalent. For larger M ,
the drainage is controlled by the dissipation in the nodes,
which slightly increases with M .

An important result is the consistency between the
drainage regime transition range (deduced from the
drainage curve exponent α, Fig. 4a), and the PB and node
resistances crossover range (deduced from the drainage
curve prefactors, Fig. 4c). We have found that the transi-
tion range seen in Figure 4a corresponds precisely to the
one seen in Figure 4c, where the PB and node resistances
are equal, and cross each other. More precisely, in the tran-
sition range, Rn is somewhat larger than Rc, and this is
consistent with equating hydrodynamic contributions of
the nodes and PBs in equation (4). Such an agreement
between the measurements validates our global interpre-
tation of these drainage regimes, as well as the description
of the PBs and node geometries (via the numerical con-
stants A and B used in the calculations of Rc and Rn).

The theoretical values of Kn (Rn) and their depen-
dence onM are not known, because the shape of the node
and the flow inside are quite complex to model for all the
surface mobilities. However, our results are in agreement
with recent simulations tending to show that Kn should
be of the same order as Kc [18,41] and that Rn should
increase with M . Further theoretical work is in progress
on these issues, and complete comparisons with the data
should be soon possible. It is interesting to note that in
the two extreme limits, our results show that Rc and Rn

are almost equal. Experimentally, in the limit of very mo-
bile surfaces, the values obtained here for Kn (Rn) are in
good agreement with previous measurements for similar
mobile surfaces and large bubbles [8–11].

We can also compare our measurements with those
made on a single PB and where surface mobilities where
deduced form the velocity profile [22]. In that work, a
Poiseuille velocity profile was found for protein solutions,
associated to a surface mobility M equal to 0.05, which
is in agreement with the results of Figure 4. For SDS,
an intermediate velocity profile, between a Poiseuille-like
and a plug-like one, was observed, and a corresponding
value ofM = 2 was deduced. Figure 4a shows thatM = 2
falls right into the intermediate regime, in agreement with
these results.

Let us finally discuss the results obtained for both pro-
tein and SDS at bubble diameter D < 0.5 mm, which
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do not fit with the above picture. As D decreases below
0.5 mm, we find that both Kc and Kn increase for the
protein and SDS foams. For the casein foams, with D =
0.45 mm, 0.3 mm and 0.18 mm, we found, respectively:
Kc = 10.1·10−3,Kc = 12.5·10−3 andKc = 14.2·10−3. For
the SDS foams and with these same three bubble sizes, we
foundKn = 8.2·10−3,Kn = 9.6·10−3 andKn = 13.1·10−3.
The exponent α remains close to 1/2 for the protein foams,
while it decreases back to 1/3 for the SDS (Fig. 2). Thus,
at small bubble sizes, the surface mobility appears to be
high again. This is in agreement with other studies where
this drainage regime has been found for small bubbles,
with Kn equal to 9 · 10−3 for D = 0.2 mm [27], in good
agreement with our data. Obviously the increase in Kc

can no longer be attributed to the variation of M (which
decreases with decreasing bubble size). The surface pa-
rameter N increases with decreasing bubble size, and the
bulk-surface coupling described by this parameter would
lead to a trend similar to the one observed here. How-
ever, the calculated value of N is always too small to ac-
count for a drainage regime transition [21] (N ∼ 10−3 for
our smallest bubbles). It is nevertheless striking to note
that similar transitions have been observed in thin film
drainage, occurring when N ∼ 10−5 [46,47]. When the
films diameter become small (typically below 0.5 mm),
the drainage becomes very fast, and dimples (instabilities
leading to non-homogeneous film thickness, thicker in the
center, thinner at the borders) are no longer observed [48].
This could change the hydrodynamic coupling between
films and PBs, relaxing local pinches and the condition
of zero surface velocity, allowing then the flow to evolve
towards a plug flow.

6 Conclusion

The reported forced drainage experiments demonstrate
that, over a very large range of experimental conditions,
the relevant drainage control parameter is the mobil-
ity parameter M , which incorporates bubble size, liquid
content and surface shear viscosity. Thanks to the large
range of experimental conditions investigated here, a sim-
ple and consistent picture of foam drainage emerges: PBs
and nodes can be considered as hydrodynamic resistors
mounted in series, which resistances depend on the surface
mobility. Foam drainage proceeds according to a balance
between resistances in the PBs and in the nodes. We have
found that a transition between drainage regimes occurs
in an intermediate range of surface mobility, correspond-
ing precisely to the point where the PBs and nodes re-
sistance are equivalent. The self-consistency of the results
first validates the usual assumptions made for modeling
foam drainage —especially the classical picture of a liq-
uid flow only through the network of PBs and nodes, with
negligible transport in the thin films (also confirmed by
recent numerical simulations [37])— and secondly, the ge-
ometrical constants used to describe PB and node geome-
tries. We also show that drainage experiments can be used
as a method for measuring surface shear viscosities. This

drainage picture fails in the case of extremely small bub-
bles, where it is possible that another bulk-surface cou-
pling, described by a parameter N , becomes important.
Understanding this behavior and the role of the bulk vis-
cosity [49] on the drainage transition (as it also appears in
M and N), and determining the complete surface mobility
dependence of the PBs and node resistances, remain im-
portant issues to be clarified for a complete understanding
of foam drainage.
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