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We demonstrate the self-propulsion of a volatile drop on the surface of a bath of an immiscible liquid.
Evaporative heat pumping is converted into directed motion through thermocapillary stresses, which arise
from the coupling between surface-tension-driven flows and temperature advection. A propulsive force
arises from convection-sustained temperature gradients along the drop interface, resulting in a warmer pool
of liquid being advected by the hydrodynamic flow in the underlying bath toward the back of the drop. The
dependence of the drop speed on the activity source, i.e., the evaporation flux, is derived with scaling
arguments and captures the experimental data.
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Drop evaporation is a key phenomenon in industrial and
healthcare applications such as inkjet printing, aerosol
dynamics, and disease transmission [1,2]. Evaporation is
also involved in everyday life phenomena, as the levitation
of droplets above a cup of hot tea [3,4], the Leidenfrost [5],
and the coffee-stain effects [6]. When evaporation is forced
by a hot substrate, drops may levitate [4,5,7] and even self-
propel on the asymmetric vapor layer separating them from
the substrate [8]. Drop self-propulsion may also occur in
liquid bulk due to surface-tension gradients located at the
drop’s interface and known as Marangoni gradients [9].
These gradients usually have solutal origin and are often
derived from theoretical postulates since they are difficult
to probe [10–14]. The free surface of a liquid bath is a
suitable platform for the self-propulsion of artificial bodies
[15–19], including drops [20–22], and enables direct
probing of flows [15,23,24] and concentration gradients
[18]. Furthermore, recent works demonstrated that when a
liquid-free surface hosts a volatile immiscible liquid,
evaporation is spontaneously converted into Marangoni
gradients [25,26].
In this Letter, we demonstrate that the evaporation of a

volatile drop floating on a liquid bath is converted into drop
propulsion. We benefit from the drop location at the
interface to experimentally characterize the surface temper-
ature field, and thus Marangoni gradients, hydrodynamic
flows, and evaporation flux, which is the activity source.
This allows us to rationalize the coupling between thermal
transfers and hydrodynamic flows that govern self-propul-
sion. Evaporative cooling engenders thermocapillary
stresses and propulsion is triggered by a thermocapillary
convective instability. Asymmetric stresses emerge on the
drop interface as a result of the nonlinear interplay between
Marangoni flow and temperature advection, which sponta-
neously breaks the symmetry of the drop temperature field.
Temperature gradients are convection sustained and give

rise to a propulsive force via the permanent advection of
warmer liquid from the underlying bath toward the back of
the drop.
The experimental system consists of a drop of volatile

liquid (liquid 1) floating on a bath of immiscible liquid
(liquid 2) (Fig. 1). We denote ρ1ðρ2Þ, γ1ðγ2Þ, and η1ðη2Þ the
density, surface tension, and dynamic viscosity of liquid 1
(liquid 2), respectively. γ12 is the interfacial tension
between liquid 1 and 2. We tested different liquid pairs
and drop sizes (Sec. I in [27]) and observed that all drops
initially stay still for ∼1 min, then spontaneously set
into motion with speed v ∼ 0.01–0.1 mms−1. As a result,
it may take several minutes to detect the drop displacement
with the naked eye. We focused on pancakelike drops with
R ∼ 1 cm and h ∼ 1 mm, where h is the drop thickness
(Fig. 1), the shape of which is due to the dominant effect of
gravity with respect to capillarity [35]. The bath depth was
fixed to H ¼ 10 cm.
We identified two propulsion behaviors differing in the

trajectory’s features. In the first, the drop motion is erratic
with persistence length l≲ R [Fig. 1(a)], where l defines
the typical distance over which the active particle loses
information about its initial orientation [36]. In the second,
the trajectory is straighter with l ≫ R and the drop achieves
a stationary speed after a transient acceleration phase
[Fig. 1(c)]. The second behavior is observed when a film
of liquid 2 coats the drop. This film substantially attenuates
surface temperature fluctuations, which are responsible for
the erratic motion in the first behavior (Sec. V and
Supplemental Movies 1, 2 in [27]). The presence of the
film thus makes the system more tractable both exper-
imentally and theoretically.
We focus on the second type of behavior and choose the

pair ethanol-silicone oil (liquid properties in Sec. I in [27]).
Thermal imaging and particle tracking velocimetry (PTV)
(Secs. III, IV in [27]) were used to characterize the system
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temperature and velocity fields during the static [Figs. 2(a)–
2(c)] and steady propulsion [Figs. 2(d)–2(f)] phases for
η2 ¼ 0.097 Pa s. Once the drop is deposited onto the bath,
the silicone-oil film develops on its surface within ∼100 ms
and ethanol pervaporates by diffusing through the film
[Fig. 2(c)]. The drop cools down and displays axisymmetric
flow and temperature fields [Figs. 2(a) and 2(b)], with

average radial temperature gradient ðTþþ − T−−Þ=R > 0,
where Tþþ − T−− ≃ 5 K [Figs. 2(b) and 2(c)]. Tþþ and
T−− denote the highest and lowest temperature in the
system throughout its dynamics. Two inward flows develop
close to the upper and lower interfaces and an outward flow
develops in the drop’s bulk [Figs. 2(a) and 2(c)]. Flow
reversal occurs at the drop’s axis of symmetry (Oz). In the
oil, the flow is inward near the drop’s lower interface and
deviates downward in the vicinity of the drop’s axis of
symmetry [Figs. 2(a) and 2(c)]. These flows are driven by
interfacial stresses arising from the variation of interfacial
tension with temperature along the radial direction. These
Marangoni stresses are denoted ∇ð0Þðγ12 þ γ2Þ and ∇ð0Þγ12
for the upper and lower interfaces, respectively, and are
directed toward the drop’s center [Fig. 2(c)]. The index (0)
refers to the flow generated by these stresses, which
remains the base flow throughout the drop dynamics.
About one minute after drop deposition, thermal images

reveal a symmetry breaking of the temperature field. A
crescentlike cold patch with average temperature T−−

appears in the vicinity of the drop horizontal contour
[Fig. 2(e)]. The angular extension of the patch, α, increases
with time up to a stationary value αmax [Fig. 3(c)]. PTV
shows that the zone of flow reversal shifts accordingly
[Figs. 2(d) and 2(f)]. Correspondingly, the drop starts
moving in the direction opposite to the displacement
of the patch, along the average temperature gradient
[x̂ direction in Figs. 2(e) and 2(f)].
In order to rationalize the mechanics of self-propulsion,

we note that the Reynolds number comparing advection to
viscous transport of momentum in the bath is Re ¼
ρ2vR=η2 ∼ 10−2 with η2 ¼ 0.1 Pa s. We thus use the
Stokes equation and describe the global flow during the
stationary propulsion [Figs. 2(d) and 2(f)] as the super-
position of an order (0) symmetric flow and an order
(1) perturbation flow. The order (1) flow is associated to the
average temperature difference ΔT ¼ Tþþ − Tþ ≃ 1 K
between the fore and the aft of the drop. ΔT induces
Marangoni stresses at the upper and lower interfaces that
drag liquid from the fore to the aft, and are responsible for
the displacement of the region of flow reversal [Fig. 2(f)].
We develop our model in the laboratory frame of

reference. In order to derive a scaling law for the drop
stationary speed, we consider the x component of the forces
experienced by a cylindrical control volume of radius R and
thickness h containing the drop [Figs. 2(e) and 2(f)]. These
forces arise as a result of the perturbative flow outside the
drop, which is the sum of two flows [Fig. 2(f)].
The first flow is the Stokes flow associated with the

motion of a viscous disc in a quiescent fluid without
Marangoni effect [37,38]. This yields the Stokes viscous
drag FSt ∼ −η2Rvs < 0 [39], with constant prefactor as
ðh=RÞ; ðη1=η2Þ ≪ 1 [37,38,40]. We denote uSt > 0 the
characteristic velocity of the Stokes flow in the x̂ direction
close to the lower interface in liquid 2 [Fig. 2(f)].

FIG. 2. Static symmetric (a)–(c) and propulsive asymmetric
(d)–(f) state of an ethanol drop on a bath of silicone oil. (a),(d)
Streamlines resulting from 15 sec of PTV (side view). (b),(e)
Surface temperature field (top view), with Tþþ > Tþ >
T− > T−−. (c),(f) Side view schematics. White arrows indicate
flows. Blue and red arrows indicate Marangoni stresses asso-
ciated to base and perturbed flow, respectively. (e),(f) Dashed
lines delimit the control volume used for the force balance. (a),(d)
R ¼ 4.0 mm. (b),(e) R ¼ 8.0 mm. η2 ¼ 0.097 Pa s.

(b) (d)

(a) (c)

FIG. 1. Self-propulsion behaviors of volatile drops on liquid
baths. First behavior: (a) the trajectory is erratic with l≲ R (top
view) when the drop is in contact with air; (b) schematic side
view, not to scale. Second behavior: (c) the trajectory is straighter
with l ≫ R (top view) when a film of liquid 2 covers the drop;
(d) schematic side view. (a) Drop of 90% v/v ethanol in water.
(c) Ethanol drop. (a),(c) Silicone oil bath with η2 ¼ 0.097 Pa s.
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The second flow is due to the Marangoni stresses at the
interface of a drop that is at rest with respect to the bath. We
denote ∇ð1Þγ2 and ∇ð1Þγ12 the gradients at the upper and
lower interfaces, respectively, which generate two forces.
A first force is the result of the inhomogeneous, radial,
and outwardly pulling tension γ2½TðθÞ� due to azimuthal
temperature variations. It applies to the closed contour C
[Fig. 2(e)] and reads

Fcam ¼
I
C
γ2 · x̂dl ¼

Z
S
∇ð1Þγ2 · x̂dS ∼ −

jdγ=dTjΔT
R

πR2;

ð1Þ

where S is the area of the upper side of the control volume
[Fig. 2(e)]. Here and in the following we assume jdγ=dTj ∼
jdγ2=dTj ∼ jdγ12=dTj [41] (Sec. I [27]). Fcam is the thermal
analog of the force that drives camphor boats towards zones
with lower surfactant concentration [42], but here Fcam < 0
opposes the drop motion.

A second force results from the Marangoni stress ∇ð1Þγ12
at the drop’s lower interface, which induces a viscous stress
response in the underlying bath that is oriented in the drop’s
direction of motion. The drop gains traction from the bath

in order to propel. We denote uð1ÞM < 0 the characteristic
velocity of the perturbed flow in the x̂ direction close to the
lower interface in liquid 2 [Fig. 2(f)]. This flow produces a

strain rate ∼juð1ÞM j=R [43] and the resulting force on the
lower side of the control volume reads

Fprop ∼ η2
juð1ÞM j
R

· πR2: ð2Þ

The problem is thus reduced to computing uð1ÞM . In our
experiments, viscous stress inside the drop is negli-
gible with respect to its counterpart in the outer
liquid, η1=h ≪ η2=R. Therefore, the continuity of stresses

at the lower interface yields uð1ÞM ∼ −jdγ=dxjR=η2 ∼
−jdγ=dTjΔT=η2 (Sec. VI in [27]). Substituting this expres-
sion in (2) we obtain Fprop ∼ jdγ=dTjΔTR > 0. Fprop has
the same scaling as Fcam, but opposite direction. Since the
drop is moving in the direction of Fprop, we may write
Fprop þ Fcam ∼ jdγ=dTjΔTR > 0. A scaling for the sta-
tionary speed is derived by balancing this expression with
FSt, which yields

vs∼
���� dγdT

����ΔTη2 : ð3Þ

In order to derive a scaling for ΔT, we analyze how
evaporation energy is converted into liquid motion. We
simultaneously measured the drop speed vðtÞ, the angular
extension of the cold patch αðtÞ, and the evaporation flux
JðtÞ for drop volume V ¼ 0.4 ml and η2 ¼ 0.097 Pa s
(Fig. 3). The drop is deposited on the bath at t ¼ 0 s and
starts moving at t ¼ 74 s. After a transient regime of
acceleration, the drop achieves a stationary speed vs. We
measure JðtÞ ¼ −dVðtÞ=dt=AðtÞ, where AðtÞ ¼ πR2ðtÞ is
the area and VðtÞ ¼ hAðtÞ is the drop volume (Sec. II [27]).
vðtÞ, αðtÞ and JðtÞ exhibit similar timescales of evolution
toward the stationary regime, which suggests that vðtÞ is
correlated to αðtÞ and JðtÞ.
We focus on the stationary regime and calculate how vs

scales with the thermal evaporation flux, ρ1LvJs, where Lv
is the latent heat of evaporation of ethanol. We perform a
thermal flux balance to relate ΔT to the heat flux of eva-

poration. uð1Þb ¼ uð1ÞM þ uSt < 0 is the characteristic velocity
of the perturbed flow in the x̂ direction. Heat transport in
the bath is governed by two processes, convection and
diffusion, the relative importance of which is quantified by
a thermal Péclet number for each component of the flow,

Peð0Þ ¼ Ruð0Þb =Dth and Peð1Þ ¼ Ruð1Þb =Dth. Dth ¼ λ2=ρ2Cp

is the thermal diffusion coefficient, with Cp and λ2 the

FIG. 3. Time evolution of drop speed, evaporation flux, and
temperature field. (a) Experimental drop speed vðtÞ (full circles),
with vs the stationary speed. The solid line results from (5)
combined with the evaporation flux JðtÞ in (b). (b) Experimental
evaporation flux JðtÞ (solid line) and angular extension αðtÞ (plus
symbol) of the cold patch. Js is the stationary evaporation flux
and αmax is the maximum angle. jdiffair is the diffusive evaporation
flux of an ethanol disk with radius R. (c) Temporal evolution of
the surface temperature field (Supplemental Movie 1 [27]). The
dashed line delimits the upper side of the control volume in the
transient regime. R ¼ 8.0 mm, η2 ¼ 0.097 Pa s.
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thermal capacity and conductivity of silicone oil. For

R ≈ 8 mm and measured velocities uð0Þb ≈ 0.13 mms−1

and uð1Þb ≈ 0.05 mms−1≈ for η2 ¼ 0.097 Pa s, we obtain
Peð0Þ ≈ 9 and Peð1Þ ≈ 4, which suggest that convection is
dominant. The temperature difference ΔT is sustained
by the cooling of fluid particles that move backward in
the vicinity of the drop’s upper interface, driven by the
thermal evaporative flux ρ1LvJs. This temperature differ-
ence induces thermal convection in the underlying bath,

ρ2CpΔTjuð1Þb j, from the fore towards the aft of the drop.
The heat flux balance reads

ρ2CpΔTjuð1Þb j ¼ cρ1LvJs; ð4Þ

where c represents the fraction of thermal evaporation flux
that is converted into the convective heat flux of the

perturbed flow. By substituting uð1Þb ≈ 0.05 mms−1, Js ¼
1.2 × 10−6 ms−1 and ΔT ≃ 1 K from experiments in (4),
we found c ¼ 0.08, which suggests that the evapora-
tion flux is not modified by the drop propulsion at leading
order. Furthermore, we note that uSt ∼ vs for Stokes flow
past a viscous body in the limit η1=η2 ≪ 1 [39]. Since

uð1ÞM and vs have the same scaling [cf. (3)] then

uð1Þb ∼ −jdγ=dTjΔT=η2. We thus obtain ΔT ∼ ½η2ρ1LvJs=
ρ2Cpjdγ=dTj�1=2, that combined with (3) yields the scaling
of the drop stationary speed with the stationary evaporation
flux vs ∼ ½ρ1jdγ=dTjLvJs=ρ2η2Cp�1=2.
We now focus on the transient regime, characterized by

an increasing angular extension αðtÞ of the cold crescent
over the typical time τ ∼ 100 s [Figs. 3(b) and 3(c)]. Since τ
is much larger than the timescale of the viscous diffusion
of momentum in the bath, τv ¼ ρ2R2=η2 ∼ 1 s, we con-
sider the velocity field in the bath as quasistationary.
Consequently, the scaling of vs can be extended to the
transient regime by considering a geometrical factor g½αðtÞ�
that takes into account the time evolution of the cold
crescentlike patch [Fig. 3(c)]. During the transient regime,
∇ð1Þγ2 and ∇ð1Þγ12 apply to the area StrðαÞ ¼ 2gðαÞR2 at the
upper and lower side, respectively, of a time-varying
control volume with gðαÞ ¼ α=2þ cosðα=2Þ sinðα=2Þ. Str
is a fraction of the total drop surface πR2 and its contour is
represented in Fig. 3(c). A force balance on the time-
varying control volume gives

vðtÞ ¼ βgðαÞ
�
ρ1jdγ=dTjLvJðtÞ

ρ2η2Cp

�
1=2

: ð5Þ

Using the experimental JðtÞ in Fig. 3(b) this expression
yields a reasonable fit to the experimental speed with β ¼
0.087 [red line in Fig. 3(a)]. For α ¼ αmax we recover the
stationary regime.
We now elucidate the nature of the activity source, i.e.,

the evaporation flux J. Drop evaporation is limited by vapor

transport in air. The measured evaporation flux exceeds
the diffusive flux of evaporation of an ethanol disk with
radius R, jdiffair ¼ 4D1ρsat=πRρ1 [44], where ρsat is the
saturation vapor density and D1 is the diffusion coefficient
of ethanol in air [Fig. 3(b)]. This suggests that both
diffusion and convection are involved in the evaporation
process [Fig. 4(b)]. The magnitude of the evaporative flux
is determined by the order (0) flows associated to the
temperature difference Tþþ − T−− ≃ 5 K, which differs by
no more than 1 K across bath viscosities. Convection in the
air is driven by the drop upper interfacial flow, the speed of
which can be tuned by varying the bath viscosity η2. We
measured the variation of Js and vs with η2 for drops with
radii R ¼ 4.0 mm and R ¼ 8.0 mm (Fig. 4). η2Js is an
affine function of η2 [inset Fig. 4(a)], thus Js ¼ aþ b=η2.
We identify a as the diffusive term and b=η2 as the
convective term. Their decoupling is typical for mass or
heat transfer from a body immersed in a flow with low Re
and Pe up to Oð1Þ [45]. The order of magnitude of the
fitting parameter a [Fig. 4(a)] is captured by jairdiff ¼ f6.4 ×
10−7; 3.2 × 10−7g ms−1 for R ¼ f4.0; 8.0g mm. The term
b=η2 results from a nontrivial coupling between the inner
and outer flow through Marangoni stresses at the drop
interface (Sec. VII [27]). The dependence on 1=η2 is a
signature of the dominant effect of outer shear stress over
inner drop recirculation on the interfacial velocity for
η2 ≫ η1. The combination of the fit Js ¼ aþ b=η2 with
(5) with fixed β ¼ 0.087 and gðαmaxÞ yields

vs ¼ βgðαmaxÞ
�
ρ1jdγ=dTjLvðaþ b=η2Þ

ρ2η2Cp

�
1=2

; ð6Þ

which captures the dependence of the stationary speed on
bath viscosity [Fig. 4(a)]. This result demonstrates that both
diffusion and convection are involved in the drop activity.
Furthermore, Eq. (6) captures the experimental data for
both radii. The dependence of drop speed on the radius is

(a) (b)

FIG. 4. Relation between drop speed vs and evaporation
flux Js in the stationary regime. (a) vs vs bath viscosity η2.
Lines represent the scaling in (6) combined with the fits in the
inset. Inset: lines represent fits of aη2 þ b. R ¼ 4.0 mm: (star
symbol), continuous lines and ða; bÞ ¼ ð4.1 × 10−7 ms−1;
9.2 × 10−8 mPaÞ. R ¼ 8.0 mm: (“o” symbol), dashed lines
and ða; bÞ ¼ ð3.3 × 10−7 ms−1; 7.1 × 10−8 mPaÞ. (b) Side view
schematic. White arrows indicate flows.
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contained in the evaporative flux Js, which decreases with
R. This is discussed in detail in the Supplemental Material
along with the dependence of self-propulsion on bath depth
(Secs. VIII, IX in [27]).
We investigated the spontaneous motion of a volatile

drop on a liquid bath. This system allows direct probing of
the physical origin of surface-tension gradients, which is
quite unique in the context of active drops [11–13] and has
allowed us to rationalize the propulsion mechanism. A
propulsive force results from Marangoni stresses that arise
at the drop’s lower interface from convection-sustained
temperature gradients. The direction of motion is opposite
to the interfacial tension gradients and thus to a Marangoni
surfer [17,42,46]. Since the drop develops tangential
stresses in order to propel, it can be considered a two-
dimensional squirmer [47–49]. A recent work has shown
that the combination of evaporation-induced wetting tran-
sition and Marangoni stresses of solutal origin triggers the
spontaneous emulsification of a volatile drop on the surface
of a liquid bath [26]. Spontaneous emulsification and self-
propulsion are the two essential ingredients for the design
of interfacial active emulsions [49].
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