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Sound propagation in liquid foams: Unraveling the balance between physical
and chemical parameters
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We present experimental results on the propagation of an ultrasonic wave (40 kHz) in liquid foams, as a function
of the foam physical and chemical parameters. We have first implemented an original setup, using transducers in a
transmission configuration. The foam coarsening was used to vary the bubble size (remaining in the submillimeter
range), and we have made foams with various chemical formulations, to investigate the role of the chemicals at
the bubble interfaces or in bulk. The results are compared with recently published theoretical works, and good
agreements are found. In particular, for all the foams, we have evidenced two asymptotic limits, at small and
large bubble size, connected by a nontrivial resonant behavior, associated to an effective negative density. These
qualitative features are robust whatever the chemical formulation; we discuss the observed differences between
the samples, in relation to the interfacial and bulk viscoelasticity. These results demonstrate the rich and complex
acoustic behavior of foams. While the bubble size remain here always smaller than the sound wavelength, it turns
out that one must go well beyond mean-field modeling to describe the foam acoustic properties.
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I. INTRODUCTION

Aqueous foams are natural and self-organized hierarchical
materials. They consist of packed gas bubbles separated by a
continuous fluid network [1–3]. From the bubble point of view,
there are no spatial arrangements, and the resulting material is
amorphous. On the opposite, the liquid network surrounding
the bubbles is self-organized with a well-controlled geometri-
cal structure [1–3]. To minimize the interfacial energy, which
is proportional to the area of the gas-liquid interfaces, the
fluid is finally distributed within films, liquid channels (called
“Plateau borders,” PBs), and nodes of different geometries and
sizes, and corresponding to minimal surfaces. The films are
the liquid lamellae separating the bubbles and are connected
to the PBs, as the main elements of the network. These PBs
are then connected to each others by the nodes. The important
point is that the sizes are drastically different: films are flat
lamellae of less than 1 micron thick, while Plateau borders
have a pipe shape and have sections of characteristic length
scale of typically tens to hundreds of microns. The nodes have
the same characteristic size as the PBs but are tetrahedral in
shape. Most of the liquid is contained within the PBs and
the nodes; though they contain a negligible amount of liquid,
the films are crucial as their stability controls the whole foam
stability.

The liquid fraction of the foam, �, is defined as the volume
of liquid divided by the volume of foam. A low liquid fraction
implies a network with long and slender PBs and films covering
a large part of the bubble area. Oppositely, wet foams have
small area of films between bubbles, as swollen PBs and
nodes widely cover the bubbles. Back to the bubble point of
view, the liquid fraction describes how packed the bubbles are.
Together with the size of the bubble, the liquid fraction is a key
parameter of a foam, as most of the foam properties depend
on it. Moreover, the liquid fraction and the bubble size are not
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constant with time. Foams are out-of-equilibrium materials
that drain and coarsen, resulting in a decrease of liquid fraction
and increase of bubble size with time. Therefore, bubbles are
getting more and more packed with time, as well as the liquid
network gets emptied.

At the macroscopic scale, the foam can then be considered
as a soft poroelastic material, as a result of the liquid and
gas distribution at the scale of the bubble and liquid network.
But, depending on its liquid fraction, bubble size, chemical
formulation, and external forcing, a foam can behave more like
a liquid or a solid. Because of this wide and adjustable pallet
of behaviors, foams have been chosen as the most efficient
template in many applications [1,3].

However, despite this wide use, many issues are still
pending. First, techniques to characterize foams in details still
have to be developed. In parallel to technical challenges lies
a more general one, which is the propagation of waves in
self-organized hierarchical and aging materials. In that spirit,
the optics and the electrical transport of foams have been
studied [4,5]. In a foam, light is scattered by the gas-liquid
interfaces; with already a few bubbles in thickness, the
multiple scattering regime is obtained, and a foam is no longer
transparent. This apparent disadvantage has been overcome,
and in this limit of multiple scattering, much information can
still be obtained [4,6–8]. However, a major drawback with
such multiple scatterings is that one cannot directly see the
internal organization within a foam.

By comparison, the acoustics of 3D foams has been much
less studied. The key point is to understand how a soft
liquid skeleton vibrates and eventually how such vibrations
modify the propagation of sound from the one in a pure gas.
Implementing earlier works [9–11], significant experimental
and theoretical progress have recently been reported on
foam acoustics [12–18]. Some of these were obtained with
experimental setup based on ultrasonic transducers [14,15,18].
Other experiments with impedance tube allowed to broaden
the range of investigated frequencies [12,16]. In parallel,
light-scattering techniques were used to monitor the acoustic
deformation within a foam [13]. It turns our that these results
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can be rationalized by a global model, introducing resonance
effects and a negative density regime [18]. In particular,
these results emphasize the crucial role of the foam structure
(bubbles size and liquid fraction).

Here, our objectives are twofold: first, we want to upgrade
previous works performed with ultrasonic transducers [14],
to improve the information that can be extracted by this
approach. In particular, we want to monitor more precisely
how the propagation depends on the bubble size, to further test
the recent model of Ref. [18]. The goal is to determine if one
can finally understand the continuous evolution of the acoustic
features as the bubble size is widely varied. Second, we want to
determine whether the chemical formulation can affect sound
propagation. At this stage, it is not included in models, except
in terms of a surface tension. However, unexpectedly high
sound velocities were found for commercial foams [10,16],
possibly showing a possible role of chemistry.

To address these questions, we take advantage of the
natural foam coarsening to vary the bubble size, starting from
a controlled initial liquid fraction remains almost constant
(between 8% and 13%). Furthermore, we have varied the
chemical formulation in a controlled manner: our selection
of solutions allow us to decorrelate as much as possible the
effects occurring at the interfaces, in the films and in bulk.
Thanks to these approaches, which are described in Secs. II
and III, we present new results, show that they agree with
the recent theoretical predictions, and discuss the role of the
physical and chemical parameters on foam acoustics.

II. FOAM SAMPLES: CHOICE OF CHEMICAL
FORMULATIONS AND GAS

One of the goals of this work is to determine if the chemical
formulation of the foam has an impact on the foam acoustics.
Various structural and rheological properties are set by the
chemical species of the foaming solution. First, they set the
properties of the air-liquid interfaces. A first important quantity
is the surface tension, decreased by the presence of adsorbed
surfactants; but the adsorbed chemicals can also induce 2D
viscoelasticity (either in compression or shear) [19,20]. They
can also modify the bulk properties of the solution, by

providing non-Newtonian viscoelastic behavior [21]. More
indirectly, the chemicals also control the properties of the
films between two bubbles (thickness, spatial uniformity, and
viscoelasticity) [3,22,23]. Moreover, the viscoelastic behavior
within a thin film separating two bubbles can be different from
the one of the bulk, due to the confinement, especially for
solutions containing polymers or proteins [3,23].

Our plan was to select a reference formulation, then to add
other components so that interfacial, film, and bulk properties
are tuned. This implied that we have selected chemical
additives which modify, as much as possible, only a single
property at a single scale (interface, film, or bulk). In parallel,
to quantify the modifications made by the additives in bulk,
within the films and at the interfaces, we performed interfacial
tensiometry, interfacial dilational rheology (with a pendant
drop apparatus [19]), bulk viscoelasticity, and single film
microscopy. For the latter, we used a homemade setup derived
from the “thin film balance” apparatus to get information about
the film texture and thickness [23,24].

Following this strategy, we started with a simple and
classical system: a solution of sodium dodecyl sulfate (SDS),
a low molecular weight anionic surfactant. It was used here at
10 g/L, above the SDS critical micellar concentration (cmc).
This surfactant solution has a high foamability and corresponds
to basically no interfacial viscoelasticity. The bulk solution
viscosity is equal to the one of water and the films between
the bubbles are uniform in texture, and in the order of tens of
nanometers.

A second group of formulations corresponds to the addition
of dodecanol (DOH) to the SDS solutions. As the concentration
of DOH is increased, the interfacial tension decreases, and
an interfacial viscoelasticity emerges: the interfacial modulus
increases as shown in Table I. Interestingly, this occurs while
bulk and film properties remain constant. Thus, DOH is used to
only tune the viscoelasticity of the gas-liquid interfaces. As a
third choice, we have added glycerol to the SDS solution. With
this additive, we can modify the bulk viscosity, with interfacial
and film properties constant and similar to those of the SDS
solutions.

To mimic more complex formulations, especially those
found in industrial applications and commercial foams, we

TABLE I. Table of physicochemical properties of the different foaming solutions. The interfacial
dilatational moduli were measured at 1 Hz and amplitude δA/A0 = 0.05%; symbols � stand for the
solutions where they were too high to be measured reliably.

Surface tension Interfacial modulus Bulk viscosity
Foaming solution (mN/m) E (mN/m) (mPa.s)

SDS (10 g/L) 36 0 1
SDS (10 g/L) + DOH (0.03 g/L) 31 3 1
SDS (10 g/L) + DOH (0.1 g/L) 24 11 1
SDS (10 g/L) + DOH (1 g/L) 19 33 1
SDS (10 g/L) + CP (0.2 g/L) 36 0 1
SDS (10 g/L) + CP (3 g/L) 36 � 10
SDS (10 g/L) + CP (4 g/L) 36 � 16
SDS (10 g/L) + Glycerol (4 g/L) 36 0 7
SDS (10 g/L) + Glycerol (7 g/L) 36 0 16
Casein (5%) 48 20 1
Casein (10%) 50 22 1
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also performed experiments where a cationic polyelectrolyte
(CP) is added to the SDS solution. We have used a high
molecular weight polymer, from Guar gum, known as Jaguar
C13-S. At low concentration of CP (0.2 g/L) added to the
reference SDS solution, no effects are seen on the bulk and
interfacial properties. When the concentration reaches a few
g/L, various effects occur: the bulk viscosity is increased,
the interfaces become rigid, and the films become thicker and
get gelified, as observed under the microscope. In fact, the
interfacial rigidity is so high that no reliable measurements
of the dilational viscoelastic modulus can be done with the
pendant drop apparatus. We selected concentrations so that
the bulk viscosity is the same as when glycerol is added, but
the interfacial and films are also modified when the CP is
added.

Last, we also prepared solutions of milk proteins (casein);
these proteins are widely used in food applications for making
foams [25]. This allows us to get another complementary
configuration: the bulk viscosity remains the one of water,
while, due to confinement, the films between bubbles are
heterogeneous, thick and gelified. Thus, here by comparing
with SDS or SDS-DOH systems, only the films are modified.

The details of the interfacial and bulk measurements are
given in Table I. As a consequence of our choice of chemical
systems, almost all types of combinations are tested here, and
by comparing the results found for these solutions, one expects
to decorrelate the possible influence of the interfaces, the films,
and the bulk.

For the gas, all the foams are made initially with hexafluo-
roethane, C2F6. It is chosen to obtain a suitable coarsening rate
of the foam: due to the its low solubility and diffusivity in water,
the timescale for bubble-size variation is much longer than
for air or nitrogen, hence the timescale for a single acoustic
measurement is also well shorter than the foam aging (see
details below). The gas density ρg and viscosity η of this
fluorinated gas are ρg = 5.84 kg/m3 and η = 1.4×10−5 Pa.s
for C2F6 (for comparison, ρg = 1.4 kg/m3 and η = 1.8×10−5

Pa.s for air).
It is important to note that at their creation, foams are made

with pure C2F6, but air tends to enter and diffuse inside the
foam, leading to a volumetric expansion of the foam [26].
Therefore, the composition of the gas changed as a function
of time. In the following data analysis, we discuss in detail the
effect of this change of gas composition with time.

III. FOAM SAMPLES: PRODUCTION
AND PHYSICAL PARAMETERS

All the foams tested here are produced using the double
syringe technique, illustrated in Ref. [16]. For all the chemical
formulations, the liquid fraction �, just after production at t0
is 0.10 ± 0.02. The bubble radius is systematically measured
during the acoustical measurements and all the initial mean
bubble radii are found lower than 70 microns. We have chosen
such initial conditions to have foams which mostly age by
coarsening [27]; this is due to the small bubble radii, which
induces high pressure in bubbles, and high coarsening rate,
while drainage rates are oppositely low. Moreover, we used
samples of a few cm high; this also reduce the drainage as
our samples have a height comparable to the capillary hold-up
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FIG. 1. (Color online) Time evolution of the mean bubble radius
of a pure SDS foam with C2F6 placed in open air. The curve is a fit
with the evolution law (2) with r0 = 51 μm, tc = 344 s. Inset: time
evolution of the polydispersity.

distance [28], which corresponds to the part of a foam which
always remain imbibed of water at the bottom of a foam.

To monitor the bubble-size evolution, we use the “bubble
raft method,” meaning that a tiny portion of a foam is collected
over time and deposited on a bath of soap solution (typically
the foaming solution of SDS at 10 g/L) in order to get a raft
[16]. From image analysis, the bubble-size distribution, n(r),
is found as a function of time. It can be fitted by a log-normal
law:

n(r) = 1

Rε
√

2π
exp

(
− 1

2ε2
ln2 r

R

)
, (1)

where r is the bubble radius, R the median radius, and
ε the polydispersity. The mean radius is 〈r〉 = Reε2/2. The
parameters 〈r〉 and ε are measured as a function of time for all
the chemical formulations.

An example is given in Fig. 1. These are data for the SDS
reference foam. The average bubble radius, 〈r〉, follows the
usually reported law [4,7]:

〈r〉 = r0

√
1 + t

tc
, (2)

where r0 is the initial average bubble radius and tc a character-
istic time, which depends on the chemical formulation. Note
that the polydispersity does not strongly depend on time. In the
following, such a relationship between bubble size and time
is measured for all the different types of foams and is used to
transpose the acoustic data from a time-dependance to a size
dependance.

Concerning the liquid fraction � and its evolution with
time, we previously monitored its evolution for SDS foams in
similar geometries [14] and have shown that it varied by less
than a factor two over the experimental timescale. Together
with the facts that we used here small initial bubbles and
small sample heights, drainage can be considered as a minor
effect when compared to coarsening. However, we must also
take into account that air is progressively invading the foam,
and this tends to decrease the overall liquid fraction, as the
foam volume increases. This liquid fraction evolution is also
discussed as we analyze the acoustic data shown below.
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IV. ULTRASONIC MEASUREMENTS

The other goal of this work is to upgrade the experimental
ultrasonic setup previously described in Ref. [14], who
observed dispersion in coarsening SDS and Gillette foams,
and a minimum of transmission at a given time, ascribed to
resonance effects.

In the experiments presented in Ref. [14], the foam was
placed in open air between two fixed piezoelectric transducers
working at 40 kHz (MA40E7R/S) at a fixed distance. The
complex transmission at one distance and one frequency
(40 kHz) was followed during foam aging. The complex
transmission is given by the amplitude and the phase of
the received signal, measured by an oscilloscope. Several
experiments, each one at a different, given distance, were
performed to measure the speed of sound and attenuation.

In such a setup, neglecting multiple interferences, the
complex transmitted signal T , in between the two transducers
separated by a distance xi , writes:

T = |T | exp (iϕ) = 4ZZt

(Z + Zt )2
exp (ixik), (3)

where Z and Zt are, respectively, the complex impedance of
the foam and the transducers, and k is the complex acoustic
wave vector, which can be written as

k = 2πf

v
+ iα. (4)

Hence, the logarithm of the absolute value of the transmission
is linked with the sound attenuation by the linear relation:

ln(|T |) = −Im(k)xi + Re [A] = −αxi + Re [A] , (5)

and the phase of the transmission is linked with the phase
velocity by the linear relation:

ϕ = Re(k)xi + Im [A] = 2πf

v
xi + Im [A] , (6)

where:

A = ln
4ZZt

(Z + Zt )2
. (7)

Therefore, obtaining the phase velocity and the attenuation
through the foam is in principle possible by linear fits from a set
of experiments done at different distances between transduc-
ers. However, this method crucially relies on a reproducible
evolution of the samples used in different experiments, and
it turned out that the reproducibility of the coarsening of the
different samples was not good enough to measure reliably the
speed of sound and the attenuation.

To overcome this difficulty, we need to vary the distance on
a given sample. Hence, in our new setup, the liquid foam is still
placed in the open air in between the couple of narrow-band
transducers working around 40 kHz [Figs. 2(a) and 2(b)]. But
while the emitting transducer is fixed, the receiving transducer
is mounted on a translation stage. This enables us to vary the
distance between the transducers (x− < xi < x+), hence to
measure the velocity and attenuation in the foam on a path.

Figure 2(c) shows the phase and the absolute value of the
complex transmission during one translation, for values of xi

increasing between 1.5 and 2 mm. This translation lasted less
than 30 s. We can safely neglect foam coarsening at this time
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FIG. 2. (Color online) (a) Sketch of the setup. (b) Dimensions
of the transducers. (c) Data analysis: plots of the logarithm of the
transmission ln |T | and of the phase as functions of the distance,
on one single translation of the receiving transducer. The logarithm
of the average transmission, ln〈T 〉, is substracted to ln |T | only for
convenience; this has no effect on the slope of the fit (hence on the
value of α). The best linear fits are shown, which give the attenuation
coefficient and the speed of sound.

scale, this hypothesis being supported by the linear evolution of
the phase of the transmission and the logarithm of the absolute
value of the transmission in function of the distance. Looking
for Eqs. (6) and (5), the phase velocity v and the attenuation α

are estimated using a linear fit in which the phase is unwrapped
prior to its fit. The uncertainty on this fitting procedure comes
from the dispersion of the experimental data off the linear trend
[Fig. 2(c)] and the 99% confidence interval criterion gives the
error bars on v and α shown later in Figs. 4 and 5. We have not
attempted to calibrate the absolute value of the phase, because
it is not necessary to measure v. Hence, the phase shown in
Fig. 2(c), and later in Fig. 3, is true except for a (constant)
offset. To improve the sensitivity of the ultrasonic setup, a
lock-in has been also adding to the receiver. To validate the
setup, we have checked that monitoring the dependence of
phase on distance for transducers placed in air, we recover the
speed of sound in air within 3%.

Our experiments are thus performed as follows. A freshly
prepared foam sample is injected between the two transducers.
Then, the translation stage is set to make a continuous back-
and-forth motion between distances x− and x+, at constant
velocity. In order to minimize the disturbance of the foam
by the motion of the receiver, the amplitude of the translation
x+ − x− was kept below 2 mm, although it should remain large
enough that the amplitude and the phase vary significantly,
to permit fitting by Eqs. (5) and (6). We have checked that
our procedure does not induce foam coalescence. We have
also checked that the duration of a single translation was
always much shorter than the typical coarsening time; hence,
over a single translation, we probe a foam of nearly constant
properties. As shown below, we point out that during the
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foam aging, the variation of the acoustic properties can be
sufficiently strong, so that we need to change the starting and
ending position to optimize the measurements.

V. EXISTING MODELS

As a key assumption to all models of foam acoustics, the
bubble size is assumed to be much smaller than the acoustic
wavelength λ, an assumption which is fulfilled in practice: the
bubble size remains below 250 μm, whereas λ = v/f is of
order 1 mm to 1 cm.

We will compare our measurements to the model of
Ref. [18]. It is based on the vibrational response to pressure
waves of the foam idealized as a 1D assembly of gas pockets
separated by thin, flexible soap films of thickness e and
diameter a, connected to thick, rigid Plateau borders. The
prediction of the acoustic wavevector is

k2 = ω2χeffρeff, (8)

with χeff = (1 − �)χg + �χw, and

ρeff = (1 − �)ρg + �′ρ, (9)

with an effective liquid fraction given by

�′ = �c + �f (1 − iωτ )I(qa)

1 + (
x2 �f +�c

�f
− 2x

)
[1 − I(qa)] − iωτxI(qa)

. (10)

Let us describe the various terms in this expression.
The liquid fraction of the foam � is separated into two
contributions: � = �f + �c, with �f the contribution of
the films and �c that of the Plateau borders and vertices.
The volume fraction of the films is �f = πa2enf , with
nf the number per unit volume of films perpendicular to
the direction of propagation. Considering that there are N

such films per bubble, one obtains nf = 3N (1 − �)/4πr3.
The volume fraction in the Plateau borders and vertices is
�c = � − �f . The characteristic time τ is a fitting parameter
that describes dissipation phenomenologically. The quantity
q = ω

√
ρe/2σ is the characteristic wavenumber of the films.

The dimensionless number qa is the argument of the function
I, defined as

I(qa) =
∫ ∞

0 a′2n(a′)H(qa′)da′∫ ∞
0 a′2n(a′)da′ . (11)

In this definition, n(a′) is the distribution function of the film
radii a′, assumed to follow a log-normal distribution like the
bubble radii, with a polydispersity εf , and H is defined as

H(qa′) = 2J1(qa′)
qa′J0(qa′)

, (12)

with J0 and J1 Bessel functions of the first kind. Hence, I
is a weighted average of the function H, whereby the foam
polydispersity is taken into account in the model. Finally, x is
the mean surface fraction of the thin soap films on the bubble
faces, the remainder being occupied by Plateau borders and
vertices. The surface fraction covered by films in a liquid foam
was studied by Princen [29]. He found the following empirical
dependence on �: x = 1 − 3.20 [7.70 + (1 − �)/�]−1/2.

A crucial ingredient of the model of Ref. [18] is that it
accounts for the different response of the soap films and

of the Plateau borders as the mean bubble radius and the
frequency vary. Because of their difference in inertia, films
and Plateau borders display the same vibrational response
to pressure waves only below a critical frequency, which
decreases at increasing bubble size. On the contrary, at large
bubble size and frequency, the inertia of Plateau borders and
vertices is such that their vibration can be neglected with
respect to the films. As a consequence, the model of Ref. [18]
naturally includes two models previously proposed: Wood’s
model [30] and Kann’s model [11], as two distinct asymptotic
limits, respectively, of small bubble size and/or frequency,
and of large bubble size and/or frequency. Let us recall these
two models. Wood’s model is an effective medium approach
and considers that the sound propagation is only sensitive to
average properties of the foam, namely its average density and
compressibility, irrespective of any microstructural or physic-
ochemical detail. With such assumptions, Wood’s law predicts
a phase velocity given by the following relation: vWood =
(ρWoodχeff)−1/2, where ρWood = �ρ + (1 − �)ρg is the foam
density in its usual sense, and χeff = �χw + (1 − �)χg

as previously defined. In these expressions, ρ and ρg are,
respectively, the density of liquid and gas, and χw and χg

the corresponding compressibilities. Since limx→0 I(x) = 1,
it is straightforward to show from Eq. (10) that when
qa → 0, �′ → �, hence from Eq. (9), ρeff → ρWood. Since,
typically, χw/χg ≈ 10−4, χeff 
 (1 − �)χg . Hence, with vg =
(ρgχg)−1/2 for the speed of sound in gas, Wood’s model yields

vWood = vg√
(1 − �)

(
1 − � + ρ�

ρg

) . (13)

In contrast, Kann’s model overlooks the presence of Plateau
borders and vertices and considers the foam as a grid of soap
films of thickness e immersed in gas. Its main prediction is
that sound propagates as in air, but with some extra mass due
to the films. It predicts the following speed of sound in foam:

vKann = vg

1 + ρe

ρg2R

, (14)

where R is the bubble radius. The velocity predicted by
Kann is usually much larger than Wood’s prediction. The
model presented in Ref. [18] slightly modifies this relation.
It considers the surface fraction covered by the film:

vhigh = vg

1 + ρxe

2ρgR

. (15)

This formula is true if x is not too small, i.e., if the foam
is not too wet. If the radius a of the thin films becomes too
small compared to the size of the Plateau borders, it is not
reasonable to assume that Plateau borders and vertices play
no role. Indeed, an assumption of the models by Kann [11]
and Pierre et al. [18] is that there is a clear scale separation
between very thin films and much bigger Plateau borders and
vertices. In reality, there is a smooth transition between films
and Plateau borders where the thickness progressively varies.
For wet foams with small films, it is likely that not only the
films, but also a significant part of these transition regions, are
put into vibration by the acoustic wave, likely leading to an
effective thickness that is significantly larger than that of the
sole films.
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In the following, we will use the prediction Eqs. (8) and (10)
at low bubble size, when the acoustic behavior starts departing
from Wood’s law. More precisely, we perform a series expan-
sion of the model at qa � 1. Using the expansions: H(qa′) 

1 + q2a′2/8 and I(qa) 
 1 + q2a2e5ε2

/8, after the moments
of the log-normal law Eq. (1):

∫ ∞
0 a′pn(a′)da′ = a

p

0 ep2ε2/2.
Assuming �f � �c, which is valid in practice, the effective
liquid fraction Eq. (10) becomes �′ 
 �/[1 − (r/R∗)3 − iδ],
with a damping coefficient δ = ωτx and a resonance radius:

R∗ =
[

12Nσ (1 − �)

x2ρ�ω2 exp
(
9ε2/2 + 4ε2

f

)]1/3

. (16)

In Eq. (16), εf is the polydispersity of the films, which is
considered close to ε; see also the Supplemental Material of
Ref. [18]. Inserting in Eq. (8) of the acoustic wavevector and
extracting the speed of sound from v = ω/Re(k), we then get

v(R) = vlow

{
1

2

[
1 − R3

R†3
+

√(
1 − R3

R†3

)2

+ δ2

]}−1/2

×
√(

1 − R3

R†3

)2

+ δ2, (17)

a formula valid for qa � 1. Following the theoretical deriva-
tion, R† in Eq. (17) is equal to R∗. However, we distinguish R∗
and R† because there are two ways of estimating the resonance
radius: either by direct computation of Eq. (16), or by fitting
with Eq. (17) the data at small bubble radius to get R† as a best
fit parameter; the two methods will be used in Sec. VII.

VI. RESULTS FOR THE REFERENCE FOAM

We first focus on a foam made with the simplest formula-
tion: as discussed previously, this corresponds to a water fluid
phase containing SDS (10 g/L) and the gas phase is C2F6.
With this solution, we present below in details all the acoustic
features we can understand and extract by our measurement
technique. Then, we discuss in the following section how these
quantities depend on the physical chemistry.

Figure 3 shows the time evolution of the complex trans-
mission through the SDS foam. The distance between the
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FIG. 3. Time evolutions of (a) the distance between the transduc-
ers, (b) the logarithm of the transmission, and (c) the phase of the
transmission.

transducers is varied between x− = 1.5 mm and x+ = 2 mm
up to 57 min (Fig. 3). For this foam, typically after 60 min of
evolution, the boundaries x− and x+ are no longer optimal:
first, the variations of the transmitted signal along a path
become increasingly smaller with time, so that extracting
the acoustic properties by the fitting procedure explained in
Sec. IV becomes impossible. Moreover, as shown below, the
range of bubble size corresponding to the resonance is actually
passed after 60 min: it then becomes more interesting to collect
data at much higher bubble sizes to cover the widest range
of size variations. As a consequence, a second configuration
with larger x−, x+, and x+ − x− is required. In practice,
these distances have also to be adjusted to avoid too large
deformation or destruction of the foam sample. In the case
of the SDS foams, the values x− = 6 mm and x+ = 8 mm
corresponds to the best distances to get precise measurements
in the large-bubble regime. However, this is at the expense of
the signal between 60 and 90 min, which cannot be precisely
measured using the second configuration.

Within the first 60 min, Fig. 3 first confirms that the variation
of the phase and amplitude along a translation are much sharper
than the slow drifts due to aging. Second, the transmission
shows a minimum at 30 min, consistent with Ref. [14]. This
is not the maximum of attenuation: the latter happens at a
shorter aging time (around 17 min), when the variation of the
amplitude over a translation x+ − x− is the highest. Note also
that between 20 and 40 min, the variation of the phase and
of the amplitude become irregular, even with nonmonotonous
behavior along a translation. In this range, the linear fitting
procedure cannot be used. More complex fitting formula can
be derived, taking into account multiple reflections, but finally
cannot be used here, as the range of variations of x or log (|T |)
are too small to provide correct fits. As a consequence, there
is a range where the acoustic properties cannot be determined.

Last, one can see a phase jump at an aging time of 28
min that survived our unwrapping procedure. This is not
problematic, since we do not use the value of the offset Im [A]
in Eq. (6).

Apart from the two gaps discussed previously (for
20′ < t < 40′ and 60′ < t < 90′), where measurements can-
not be done, we extract from the transmitted signal the complex
wave vector in the foam and can plot the real and imaginary
parts as a function of the bubble radius (Fig. 4). For such SDS
foams, the time evolution of the bubble radius is shown in Fig. 1
and this provides the way to shift from time to bubble-size
variation. We also derived the phase velocity [v = ω/Re(k)]
and the effective density and stacked all these plots in Fig. 4.
Figure 4 shows that the acoustic wave propagation is indeed
strongly dispersive, confirming previous works [14,18]. Under
this form, the data can then be directly compared to the model
of Ref. [18]. This model predicts the acoustic response for
all bubble sizes, and the challenge here is to check whether
there is a range of fitting parameters that can describe the
whole experimental behavior, both in terms of complex wave
vector, velocity and complex effective density, and not only
for velocities in asymptotic cases.

To compute the wavevector following the expressions
presented in Sec. V and to compare it to the data, we need
values for the liquid fraction �, the gas composition, the film
thickness e, and the viscous time τ . It first comes that the
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data cannot be fitted with a constant liquid fraction. We thus
consider a simple linear decrease of the liquid fraction as a
function of R. As well, the gas composition also needs to
be modified along the aging. All together, the optimal fitting
parameters are: a liquid fraction decreasing between 13% and
6%, a viscous time equal to 2×10−5 s, a constant film thickness

equal to 250 nm, and a gas evolving between pure C2F6 at the
beginning of the experiment to pure air at the end (with a linear
dependence of the proportion of both gases with the bubble
size). With such conditions, the predictions of the model is
superposed to the data of Fig. 4. To illustrate the effect of the
gas composition, we also show the predictions for pure C2F6

and pure air.
From the comparisons on Fig. 4, it finally turns out that

the model captures most of the nonmonotonous experimental
trends: a low speed of sound for small bubbles, a large speed
of sound for large bubbles, and a resonance in between with
a maximum of attenuation. Moreover, the fitting parameters
are consistent with the experimental conditions. Such initial
and final liquid fractions and gas evolution are actually in full
agreement with what was expected, as discussed in Sec. II.
The time τ is identical to the one found in Ref. [18], and the
film thickness falls within a reasonable range, though higher
than expected [18].

The gas composition effect is well evidenced: explaining
the acoustic features clearly requires taking into account the
velocity of the air entering the foam. The curves in Fig. 4
clearly show that assuming a constant pure C2F6 with time is
unrealistic at the end of the experiments.

Note that the speed of sound at small bubble size, as well as
the position of the resonance, is much less sensitive on the gas
content than at high bubble sizes. Quantitatively, we recover
the Wood’s velocity in this limit of small bubble sizes: with
Eq. (13), one gets vWood = 31 m/s for pure C2F6. We can then
consider for the following analysis that the foam is made of
pure C2F6 before the resonance.

In the opposite limit, at large bubble size, the speed of
sound is slightly lower than that of air. Quantitatively, we
recover here the other asymptotic limit [Eq. (15)], assuming
pure air within the foam. Although the final value for the speed
of sound is compatible with pure air, there might still be some
low fractions of C2F6, and our data are not precise enough
to determine accurate gas compositions. This means also that
extracting absolute values of the film thickness remains risky,
if one does not monitor the gas composition. We also observe
a slow increase of the speed of sound in this regime, which
can either be due to gas composition continuing to change or
to a decrease of the ratio e/R due to the continuous growth of
the bubble size (with a film thickness remaining constant). For
the subsequent analysis, we consider that this second effect
dominates in the large bubble size regime, and we simplify
these issues by considering pure air within the foam at the late
stages of the experiments. This will allow us to make relative
comparisons of film thickness for the different formulations.

The model thus quantitatively explains the behavior in the
two extreme limits. However, the agreement between the data
at the model is less good in the intermediate range of bubble
size associated to the resonance. It is found that the radius
for the maximum of attenuation (here, at R = 100 microns)
is well recovered by the model, but the attenuation is always
overestimated, as shown in Fig. 4. Also, for bubble radius
between 140 and 170 μm, the agreement between the data
and the model is poor, even if the quantitative range for the
wavevector (between 1 and 2 mm−1) is fine. In that range of R,
there are also discrepancies between the predictions and the
data for the velocity.
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It is interesting to point out that the model also gives
us some insights on the range between 120 and 140 μm
where no measurements were possible. This range corresponds
to an effective density with a small modulus: the acoustic
impedance of the foam is then very mismatched from that of
the transducers, and the acoustic power is poorly transmitted
between the transducers and the foam, both at the emitting
and at the receiving transducers. Moreover, this range of
bubble size also corresponds to a real part of the effective
density becoming negative, together with the imaginary part
close to zero. Such features, as already reported in Ref. [18],
suggest a regime where sound does not propagate but forms an
evanescent wave (although dissipation complicates this simple
picture). In parallel, for these bubble sizes, the velocity is
expected to get highest values. It is then clear that measuring
acoustic features within this range is extremely difficult. In
fact, problems to obtain clean data are associated to sizes
where Re(ρeff) and Im(ρeff) are close to zero or negative, while
velocity is high.

All together, the comparisons of the global model proposed
in Ref. [18] to our data spanning over a large range of
bubble radii shows that this model captures well the main
features. This is even quantitatively correct below and above a
resonance regime, for which the sound propagation is highly
complex. Moreover, the superposition in Fig. 4 of the data and
predictions tends to provide a complete picture, allowing us to
connect the different parts of the foam acoustic behavior.

VII. INFLUENCE OF THE CHEMICAL FORMULATION
ON ULTRASONIC PROPAGATION

Following the previous detailed analysis of our reference
SDS foams, we can then analyze and compare the measure-
ments made for all the other chemical formulations listed in
Table I.

Our first major result is that the same qualitative features
are recovered whatever the foam recipes. The consecutive
behaviors described in Fig. 4, as the bubble size increases,
are always observed: the complex resonance regime always
separates the two well-defined behaviors at small and large
bubble sizes. It is especially in these regimes before and
after the resonance that data can be safely compared, and
that quantitative differences with the formulation are actually
found.

Focussing on the evolution before the resonance, Fig. 5
shows the sound velocity as a function of the bubble radius,
for different types of foams. For clarity, not all the data points
are plotted. As for the SDS foam, the other data sets show an
asymptotic velocity at the lowest bubble sizes, followed by a
rapid increase of this velocity as the resonance is approached.
Note the case of SDS-glycerol foams, where the velocity
increases already drastically at the smallest bubble size, so
that we hardly detect the asymptotic limit. Nevertheless, this
velocity plateau is found independent of the solution and
the value is in agreement with the SDS foam. This tends to
validate that—for any type of foams and in the limit of small
bubble sizes—the sound propagation agrees with the basic
assumptions of the Wood’s model.

By contrast, it is also clear from Fig. 6(a) that the chemical
formulations modify the resonant radius. We will consider
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FIG. 5. Speed of sound as a function of the mean bubble radius
for different formulations: SDS (◦); SDS with dodecanol (for upper
triangles, the darker the color, the larger the concentration in
dodecanol); SDS with polymer (for �, the darker the color, the larger
the concentration in polymer); SDS with glycerol (�) and casein (♦).

three characteristic radii: the resonance radius R∗ predicted
from the model of Ref. [18], Eq. (16); the radius R† coming
from the small-bubble limit, Eq. (17); and the radius of
maximal attenuation, R′. Using the approximated Eq. (17),
valid for qa � 1, the data can be adjusted to extract the radius
R†. The error bar for this radius comes from the nonlinear
fitting procedure. In Fig. 6(a), R† is plotted for the different
foam types. The radius R′ corresponding to the maximum
of attenuation (like the ones of Fig. 4) is also added. The
time when the maximum of attenuation is reached is found
with great accuracy; in contrast, the conversion between this
time and the radius of maximal attenuation R′, using Eq. (2),
comes from a linear fit of the square of the mean bubble radius
as a function of time (Fig. 1). It is this conversion, and the
uncertainty on the latter fit, which gives the major uncertainty
on R′, hence its error bar. Finally, we also plot the resonance
radius R∗ predicted from Eq. (16); all experimental parameters
in this expression are known precisely except �, which varies
between 8% and 12%. It is this uncertainty that gives the error
bar on R∗.

The comparisons first show that all the radii fall within
the same range: the two measured values are always close to
the predicted ones and despite large differences in the type of
foams, there is less than a factor 3 between the extreme values.
Thus, at a first order, a good agreement between all the data and
the model is found, tending to show that physical parameters
(like bubble size and liquid fraction) are more crucial in foam
acoustics than chemical ones.

Still, some systematic deviations can be observed. The
addition of DOH, which acts only as a provider of interfacial
viscoelasticity, gives higher values for the radius at the
resonance when compared to the model. At some point,
it might be possible that, between interfacial elasticity and
surface tension, the biggest value must be taken in Eq. (16),
as found in emulsion rheology [31]. In that sense, dilatational
elasticity replaces surface tension once it becomes significantly
higher.

Oppositely, increasing the bulk viscosity, by adding glyc-
erol, gives smaller values. Smaller values are also found for
the protein foams, which differ from SDS foam at the scale
of the thin films (thicker and gelified). Finally, the chemical
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resonance R∗ from equation 16 for � = [0.08–0.12]. (b) Relative
thicknesses e for the different foams.

system (SDS with CP), which is expected to be the most
different from the reference foam (at interfaces, in films, and
in bulk), gives a similar resonance radius. However, despite
the same velocity plateau value and resonance radius for SDS
and SDS-CP foams, the shape of the curve is different for
these two systems (Fig. 5). At this point, these nontrivial
behaviors remain hard to explain, but they mostly show
that complex chemical formulations can have only a little
effect of the acoustic resonance, possibly as a consequence
of combined opposite effects. One may also wonder whether
the differences of resonance radii observed between different
formulations is not a mere effect of a lack of reproducibility
of the measurements. To address this point, we repeated the

reference experiment, and the one with the formulation SDS
(10 g/L)-PC (3 g/L). Figure 6(a) shows then that the relative
uncertainty on the resonance radii is about 5% for a given
formulation, which is lower than the differences measured
between different formulations.

Then, we can focus on the behavior above the resonance.
Following the data analysis of Sec. VI, and considering pure air
within all the foams, we have plotted the film thickness for the
various foam types [Fig. 6(b)]. To do so, we have used Eq. (15),
and we have performed, at large radius, a linear fit of 1/v as a
function of 1/R; the error bars come from the uncertainty of the
fit exactly as for v and α (Sec. IV). Note that using Eq. (15), we
have access to the product xe and not only the film thickness.
As discussed previously, an absolute measurement requires
knowing the exact gas composition. As a consequence, we
prefer to compare the data in a relative way: we have thus
normalized all the thicknesses by the average value found for
the SDS foams. It turns out that the results are in agreement
with the independent single-film studies: the thinnest films are
found for the SDS and SDS-DOH systems, while the thicker
ones are observed for the polymer and protein films. Thus, all
the data are correctly sorted. However, an increase by a factor 3
between the two extreme values is lower than the ratio expected
from single-film microscopy. From these measurements, a
larger ratio is expected (from typically 70–100 nm for the SDS
films to 500 nm for the thicker films). As explained before, the
discrepancy might come from different gas compositions. But
it might also be possible that the microscopy of the single films
is done on films of millimeter dimension and that they do not
fully correspond to those inside a foam of 100-micron bubble
diameters. Furthermore, the vibrating films might be thicker
than the static ones observed in microscopy, due to dynamic
effects [32], especially for SDS; this could also explain the
unexpected large thickness used in the model to fit SDS
data. Overall, this is illustrating that there is a regime where
in situ film thickness measurement could in principle be done,
provided that the gas is known.

VIII. CONCLUSIONS

Sound propagation in foams—even in the case where the
bubble size is small compared to the sound wavelength—turns
out to be much more complex than expected; however, the
recent theoretical and experimental results allow us to capture
the main acoustic features and their microscopic origins.

Our data at fixed frequency as a function of the bubble
size are fully in agreement with those at varied frequency and
fixed bubble sizes [18]. Both types of experiments agree on the
fact that there is a shift, when varying either the frequency or
the bubble size, between two limits, separated by an inter-
mediate nontrivial propagation, including a resonance of the
structure film-Plateau border and associated to an effective
negative density.

The regime before the resonance corresponds to a modifica-
tion of the sound propagation in the pure gas only linked to the
liquid fraction. The acoustic waves are not sensitive to the foam
structure. Oppositely, the difference from the pure gas above
the resonance arises from a completely different origin and is
linked to the film thickness. Finally, the intermediate regime
(the resonance) is sensitive to the entire foam structure.
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These new results are indeed qualitatively independent
of the chemistry of the foaming solution. However, some
quantitative differences arise when bulk and interfacial vis-
coelasticity are varied. But, we show here that these differences
remain small. Moreover, it seems that the existing model,
based on the physical parameters of a foam, already well
capture the experimental results, so that interfacial and bulk
rheological properties do not seem to be the main key
parameters controlling the foam acoustics. In parallel, the
data analysis also evidences the important role of the gas
composition, especially in the regime after the resonance.

Overall, even if some data are still lacking (intermediate
sizes, gas content), our study yields a consistent picture to the
acoustics of foams, implementing the results of Refs. [14,18],
and extending it to different chemical formulations.

We also show here that such simple measurements could be
first used to monitor the liquid fraction, and provide absolute
measurement of �, without the need of any calibration.
Second, one could also use such setup to get in situ film

thickness, which remain a never-done measurement within
foams of bubble sizes smaller than millimeters. But any
absolute measurements of film thickness will require knowing
the exact gas composition. This also opens an interesting per-
spective: in previous experimental studies [27], different gases
have been used to tune the coarsening rate, but gas has never
been shown to have such a significant effect on macroscopic
foam properties (optics, conductimetry, or rheology). The fact
that it influences significantly the acoustical properties of the
foams thus calls for further studies of the coarsening of foams
constituted by mixture of gases.
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