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Blast wave attenuation in liquid foams: role of gas
and evidence of an optimal bubble size

Martin Monloubou, Myrthe A. Bruning, Arnaud Saint-Jalmes, Benjamin Dollet and
Isabelle Cantat*

Liquid foams are excellent systems to mitigate pressure waves such as acoustic or blast waves. The

understanding of the underlying dissipation mechanisms however still remains an active matter of

debate. In this paper, we investigate the attenuation of a weak blast wave by a liquid foam. The wave is

produced with a shock tube and impacts a foam, with a cylindrical geometry. We measure the wave

attenuation and velocity in the foam as a function of bubble size, liquid fraction, and the nature of the

gas. We show that the attenuation depends on the nature of the gas and we experimentally evidence a

maximum of dissipation for a given bubble size. All features are qualitatively captured by a model based

on thermal dissipation in the gas.

1 Introduction

Pressure wave propagation in liquid foams is very peculiar, with
a low sound velocity, of the order of 50 m s�1, and a high level
of attenuation. This feature is of high interest in the context of
soundproofing or of blast wave attenuation.1–7 Recent progress
has been made in the identification of the local processes
controlling the propagation velocity and the attenuation length.
In his seminal work, Wood8 described the foam as an effective
continuum, from which average density and average compres-
sibility are deduced from the bulk phase properties and from
the volumetric liquid fraction fl. The sound velocity predicted
on the basis of these effective quantities, called Wood’s velo-
city, is in good agreement with the experimental observations
for bubble size below a frequency dependent critical value.9,10

Above this bubble size, a resonant behaviour is observed:
the energy absorption and the sound velocity reach maximal
values.11,12 In this regime, the liquid and gas phases, having
very different inertia, do not follow the same trajectory and the
simple continuum approximation made in Wood’s model is not
valid anymore. Finally in the large bubble size limit, most of the
liquid phase stays at rest, as proposed by Kann’s model,13 and
the velocity decreases toward its Kann’s value, still larger than
the Wood’s prediction. These different models focus on the
local deformations and motions induced by the pressure wave,
but do not model the resulting energy dissipation. This dissi-
pation is simply neglected in Wood’s and Kann’s models and
taken into account by a single phenomenological internal time
scale in the resonant model.12

Other studies focused in contrast on the fundamental origin
of the energy dissipation. For a single bubble in an unbounded
liquid, Prosperetti first modeled the high thermal dissipation
induced by the large contact area between the gas phase, which
temperature varies with the pressure, and the liquid phase,
which remains at constant temperature.14,15 This model has been
used for foams in ref. 9 and 16, assuming a continuum deforma-
tion, as in Wood’s regime. The thermal dissipation model predicts
a maximum of dissipation for a given bubble size, as the resonant
model. In this paper, we present results on the propagation of a
short overpressure, characteristic of a blast wave, in a liquid foam.
We measure the pulse velocity and the maximal pressure attenua-
tion, as a function of the bubble size R, the liquid fraction fl,
the initial pressure amplitude P1 and the nature of the gas. This
strongly broadens the parameter space already explored in our
previous paper,16 in which a single gas and a single liquid
fraction had been used. It thus allows us to establish two impor-
tant results: (i) the pressure attenuation depends on the nature of
the gas, and that (ii) a maximum of attenuation is obtained for a
critical bubble size, at a fixed liquid fraction. The first one is a very
discriminant piece of information in order to build the right
model of dissipation, whereas the second one may be useful to
optimise the foam properties for practical use. Comparison
with both resonant and thermal models allows us to conclude
that the observed maximum of dissipation is due to the non
monotonic variation of the thermal dissipation in the gas phase
with the bubble size.

2 Experimental setup

In all experiments described in this paper, a foam is subject to
a blast wave. In this section, we describe the foaming solution
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and gas (Section 2.1), the foam production and characterisation
(Section 2.2), the blast wave generation and the pressure measure-
ments (Section 2.3) and the measurement of the wave velocity
(Section 2.4).

2.1 Foaming solution and gas

The foam is produced with a solution of sodium dodecyl sulfate
(SDS) at a concentration of 10 g L�1, larger than the critical
micellar concentration (cmc) which equals 2.8 g L�1. The gas is
either nitrogen (N2) as in ref. 16, or hexafluoroethane (C2F6). The
thermal properties of these two gases are reported in Table 1.

2.2 Foam production and characterisation

The two experimental set-ups used in this paper are denoted by
V and H (as vertical and horizontal).16

In set-up H, the foam is produced by a turbulent mixing
method18 and injected between two horizontal plexiglass plates
separated by a distance h. The liquid fraction is controlled by the
balance between the gas and solution flow rates and pressures
and can be varied over the range fl A [0.02–0.3]. For each
experiment, it is measured by weighing a known volume of foam.
The initial bubble radius is constant and close to R = 30 mm.

The foam coarsening leads to the bubble size increase and
this parameter is thus tuned by changing the waiting time
between the foam production and the blast. The set-up allows
to vary independently the control parameters R and fl over a
certain range, limited by several processes. The waiting time
tc required to double the bubble radius varies as R2/(DHe), with
He the Henry coefficient, which measures the gas solubility,
and D the gas diffusivity in the liquid phase. This characteristic
time is of the order of a few seconds for R = 30 mm and N2, and is
much larger for C2F6, which is 30 times less soluble than N2.19,20

Moreover, tc increases with liquid fraction. Another ageing
process is gravitational drainage. The liquid phase begins to
leave the foam and to leak on the bottom plate after a time
tdr scaling as 1/R2 and decreasing with liquid fraction. The cell
is thus turned upside down during the coarsening process
at a frequency larger than 1/tdr to maintain a homogeneous
liquid fraction. Finally, this set-up can be used when the total
coarsening time is smaller than 15 minutes and the draining
time larger than 10 seconds. The resulting maximal bubble
radius is typically 300 mm for fl = 5% and N2 foams.

To extend the accessible range of parameters, the set-up V has
been designed. In that case, the foam is produced by blowing gas
in porous glass frits immersed in the foaming solution (see Fig. 1)
and the bubble size is modified by changing the porosity of the
frits. The foam then rises between two vertical plexiglass plates,

and overflows at the top of the cell. Once a steady state is reached,
a sample of known volume of the foam is weighed to measure the
liquid fraction as with H. The latter is governed by the upward
foam velocity, and can be tuned by changing the inlet pressure,
which controls the global flux in the frits. Additionally, the
individual flux in each frit is controlled by a valve (see Fig. 1).
Indeed, as the bubble size slightly depends on the flux through
the frit, it is important to get the same flux in each frit. When
the foam looks homogeneous, and while it is still flowing, it is
subject to the blast wave.

We checked in ref. 16 for a given set of parameters that
the pressure wave propagation is the same in set-up H and V.
Results obtained with both set-ups can thus be directly compared.

For N2 foams, the bubble size distribution of each foam
sample is measured by spreading a few hundred bubbles on top
of a thin layer of the foaming solution. The bubbles form a
monolayer of spherical bubbles and their radius distribution
can be obtained by image processing.10 The size of a bubble
in the foam is thus measured by the radius Rs of the sphere of
same volume.

For C2F6 foams, the diffusion of the outside air into the
bubbles is too fast to use this spreading method21 and an in situ
measurement must be performed. We record an image of the
layer of bubbles touching the transparent plexiglass plate and
the contact area between the bubbles and the wall is determined
by image processing. A calibration has been done using both
techniques with N2 foams to convert the contact area distribu-
tion into the Rs distribution. The average value R = hRsibubbles is
the bubble radius used in the paper to characterise the bubble
size in the foam. Each data point reported in this paper, at a
target value of bubble radius, liquid fraction, blast strength,
and gas, is the result of at least three independent experiments.
All standard deviations and error bars come from the dispersion
of the results of these individual experiments. The normalised
standard deviation of the bubble distribution is close to 0.4 for
all foams, which quantifies the foam polydispersity.

Table 1 Gas properties of N2 and C2F6
17

Property N2 C2F6

Density rg (kg m�3) 1.18 5.84
Thermal conductivity k (W m�1 K�1) 0.024 0.0135
Specific heat cp (J kg�1 K�1) 1040 760
Molar mass M (g mol�1) 28.0 138.0
Thermal diffusivity DT (10�5 m2 s�1) 1.95 0.304

Fig. 1 Sketch of the vertical set-up. Pressure is monitored at the exit of
the gas bottle and the flux in each frit is controlled by a valve (blue patches
on the figure).
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2.3 Blast wave generation and pressure measurements

A rigid PVC shock tube is connected at one end to the front
plexiglass plate, in the middle of the plate (see Fig. 1). At the
other end of the tube, a chamber is sealed by an aluminium
foil, and connected to a gas bottle. To generate the pressure
wave, we let the gas flow into this chamber; when the pressure
in this chamber reaches a critical value, the foil breaks and a
pressure wave propagates in the tube. A shock wave (i.e. a stiff
pressure step followed by a finite interval of sustained high
pressure) forms in the tube and evolves into a blast wave
(i.e. a short overpressure followed by an underpressure) when
exiting the tube. This blast wave then propagates in the foam.
The pressure in the foam is recorded using four pressure sensors
(PCB – piezotronics, model 113B28) installed at distances
ri = [3.1,5.1,7.2,9.2] cm (i = 1 to 4) from the symmetry axis of
the experiment, corresponding to the center of the tube. They are
connected to an oscilloscope (tektronics, model TDS 2004 B),
which has a sampling time of 4 ms. Fig. 2 shows typical signals at
sensors 1 and 4. At sensor 1, a rapid pressure increase is followed
by a slower pressure decrease and an underpressure, also called
rarefaction wave. This kind of profile is known as a Friedlander
profile.22,23 The duration of the pressure increase is of the order
of 0.1 ms, which is about 100 times larger than the nominal
pressure sensor rise time. The duration of the overpressure is of
the order of 2 ms. We observed that these two characteristic
quantities do not depend on the foam, and that the shape of the
pressure signals are quite reproducible (Fig. 2). Henceforth, for
the sake of simplicity, we will thus consider that the pressure
wave is entirely determined by its maximal value at sensor 1,
denoted by P1 in the following. It is varied by changing the
number of aluminium foils used to close the high pressure
chamber. The maximal value recorded at sensor 4 is P4 and we
define the pressure ratio as a = P4/P1. The first reflection of the
wave on the external boundary of the foam reaches the sensor 4
at t E 5 ms, leading to a second overpressure. We only consider
events occurring before this first reflection.

To test the influence of the cell geometry, we compared
pressure signals obtained from pairs of sensors placed at the
same distance from the center, respectively on the top and the
bottom plates, with a 3 cm gap, in the H geometry. At the position

of the first sensor (r C 3 cm), the bottom signals amplitudes are
always greater than the top ones by a factor in the range [1–1.5].
However both signals always superimpose at the position of
sensor 4 (r C 9 cm), with differences smaller than the experi-
mental reproducibility. We also varied the H cell thickness
from 1.7 cm to 8 cm. The pressure decrease from sensor 1 to
sensor 4 (on the top plate) was not modified for gaps between
1.7 cm and 3 cm. For larger gaps, a faster decrease was observed,
interpreted as a transition from a cylindrical (at small gap) to a
spherical (at large gap) wave propagation. In Appendix A, we
present comparisons between the pressure decreases obtained
with the 3 cm and 8 cm gaps which confirm quantitatively this
interpretation, thereby ensuring that geometrical effects have
been correctly taken into account in the following data and
interpretations.

In the following, we present experiments made in the cylind-
rical regime, with a 3 cm gap both in the H and V geometries.

2.4 Wave velocity measurements

The pressure wave deforms during its propagation, because of
the non-linearities and of the viscous and dispersive nature
of the medium (see Fig. 2). The wave velocity can thus be
defined in different ways, leading to slightly different results.
Experimentally, the maximal pressure Pi is well defined on the
pressure signal i, but its arrival time is difficult to determined
accurately, as it turned out that the signal is quite flat around
the maximum. In contrast, the arrival time of the pressure Pi/2,
denoted by t1/2,i is a well defined quantity. We thus define the
wave velocity as v = (r4 � r1)/(t1/2,4 � t1/2,1).

In parallel to a velocity based on the pressure signals, optical
measurements can also be performed. In that case, the foam
sample is lit with an intense white light, used in transmission.
The foam dynamics are recorded using a high-speed camera
(Photron FastCam SA3), which is triggered by the same signal as
the pressure sensors: both measurements are therefore synchro-
nised. The dynamics remaining axisymmetric, we reduced the field
of view to a narrow rectangle (640 � 32 pixel2), allowing to record
images at 57 000 frames per second. A spatio-temporal diagram is
obtained from the images, on which different gray levels are
clearly visible, produced by the spatial fluctuations of the trans-
mission coefficient of the foam (see Fig. 14 in Appendix B).
Before the pressure wave arrives, these fluctuations are static
and vertical lines are thus visible on the diagram. The sudden
inflection of these lines at a position r and time tim(r) is the
signature of the pressure wave front reaching the position r.
The wave velocity is deduced from the value tim(r) as detailed in
Appendix B.

Both definitions of the wave velocity, based on the pressure
signals or on light transmission, are equivalent, as evidenced in
Fig. 14, Appendix B.

With the optical measure, we get the front velocity at any
position during the propagation. For r o r1 a high velocity
transient is observed (see Fig. 14, Appendix B), but the velocity
becomes independent on r for r 4 r1 in all our experiments.
This steady velocity increases with P1, as expected for a non-
linear propagation.16 However, for P4 o 10 kPa, the wave

Fig. 2 Typical pressure signals in a C2F6 foam measured at sensor 1 and
sensor 4, for R = 422 mm and two aluminium foils. The time origin corresponds
to the arrival of the blast wave on sensor 1.
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velocity variation due to the pressure is smaller than the
experimental dispersion. Therefore, the velocities discussed in
the following are the average over all the experiments we per-
formed which verifies P4 o 10 kPa.

3 Results
3.1 Influence of the gas and of the bubble radius

The set-up V was used with glass frits of three different cali-
brated porosities 2, 1 and 0 to produce a C2F6 foam with bubble
radii in the range 200 to 800 mm. The pressure attenuation and
the wave velocity are measured as a function of the bubble radius
and of the pressure amplitude. To allow comparison with the
previous study on N2 foams,16 the liquid fraction fl was adjusted
as close as possible to 4.8% by tuning the gas flux through each
frit. The bubble radius range of the previous study was also
enlarged by adding a point at R = 840 mm for a N2 foam.

3.1.1 Wave attenuation. We report in Fig. 3 the pressure
ratio aexp = P4/P1 as a function of P1 obtained for these experi-
ments, and one data series from Fig. 3 in ref. 16, for sake of
comparison. The pressure ratio increases with the pressure
intensity. This behavior has been reproduced numerically by a
slightly nonlinear numerical model in ref. 16. These simulations
show an almost affine behavior, with a slope independent on the
material attenuation. The extrapolation at P1 = 0 is in contrast a
signature of the attenuation properties, and the remaining part
of the paper will thus focus on this extrapolated value. The affine
fits at constant slope are indeed in good agreement with the
data, even if a quantitative comparison is made difficult by
the large experimental noise observed with some series. Only
the N2 foam with the largest bubble radius (R = 840 mm) is not
compatible with such a fit as it exhibits a much faster increase
of aexp with P1. This last data series corresponds to a different
regime, as discussed in Section 4 and is first discarded in the
following discussion.

An important result of this paper is that the pressure ratio
a depends on the nature of the gas. A direct comparison can be
made in Fig. 3 for R C 210 mm: the pressure ratio is signifi-
cantly larger with C2F6 than with N2 over the whole pressure
range, which is the proof of a smaller attenuation with C2F6.
This is a crucial hint to determine the fundamental nature of the
dissipation processes leading to the wave attenuation. Indeed, as
the bubble radius, the liquid fraction and the surfactants are the
same for both series, the dissipation in the liquid phase and at
the interfaces is not modified and thus cannot explain the
attenuation variation between both series. This evidences that
the dissipation in the gas itself contributes significantly to the
total dissipation.

Moreover, for all P1 values, the pressure ratio for C2F6 foams
first decreases with the bubble radius and then increases at larger
bubble radius. This surprising non-monotonous behaviour is
discussed in the next paragraph.

3.1.2 Attenuation length. In the small amplitude regime,
and in a non-dissipative, non-dispersive medium, the pressure
attenuation only depends on the space dimension. A propa-
gation with a cylindrical symmetry induces a pressure ratio

aref2DðrÞ ¼
ffiffiffiffiffiffiffiffiffi
r1=r

p
between two points at the distance r and r1 of

the symmetry axis. Dissipation in the medium will induce an
additional pressure decrease which can be characterised in the
linear regime by an attenuation length la. The pressure ratio
is in this case a(r) = arefe�(r�r1)/la. The attenuation length is the
intrinsic property of the material, which must be measured to
quantify attenuation.

To measure la, we extrapolated at P1 = 0 the affine fits made
in Fig. 3 to obtain the experimental value of a (for r = r4) in the
low pressure limit, i.e. in the linear regime. The low pressure
data of each series (P1 o 20 kPa), including those of Fig. 3 in
ref. 16, were first fitted by the law a = k1P1 + k2, with k1 and k2

fitting parameters which depends on the bubble size R and on
the nature of the gas g. The obtained slopes k1 were then averaged
over all the series (excepted the N2 series at R = 840 mm), leading
to k0 = hk1iR,g = 5.4 � 10�3 kPa�1. The different series were finally
fitted by the one-parameter law aexp = k0P1 + a0(R,g), as shown in
Fig. 3. The experimental attenuation length is finally given, for
each bubble radius and each gas, by

1

‘expa
¼ 1

r4 � r1
ln

ffiffiffiffiffiffiffiffiffiffi
r1=r4

p
a0ðR; gÞ

: (1)

As discussed in Appendix A, more data points have been
obtained in spherical propagation geometry, and they were
found to be consistent with the data obtained with a cylindrical
propagation.

Fig. 4 shows 1/la as a function of the bubble radius, for the
two gases. As discussed in the previous section, the attenuation
is larger in N2 foams than in C2F6 foams in the investigated
bubble radius range. The non-monotonous behaviour of the C2F6

foams appears more clearly in this representation: the attenua-
tion in C2F6 foams exhibits a maximum for a bubble radius
around 500 mm, as was conjectured in ref. 16 for N2 foams. This
result is important for practical reasons, as the optimal

Fig. 3 Pressure attenuation as a function of the shock amplitude. C2F6

foams: R = (218 � 5) mm, fl = (5.6 � 0.5)%; R = (422 � 13) mm, fl =
(4.4� 0.4)%; R = (794� 28) mm, fl = (4.2� 0.3)%. N2 foams: R = 210 mm,
fl = (4.8 � 0.3)% (already published in ref. 16, Fig. 3); + R = 840 mm,
fl = (4.9� 0.2)%. Black dashed line: geometrical attenuation corresponding to
a cylindrical propagation. Coloured dashed lines: affine fits with the imposed
slope k0 = 5.4 � 10�3 kPa�1.
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pressure attenuation is sought in many applications. It is also a
very discriminant experimental information to test different
theoretical models of dissipation, as discussed in Section 4.

3.1.3 Wave velocity. The velocity v of the pressure wave
front is plotted in Fig. 5 as a function of the bubble radius. The
velocity in the C2F6 foams (same experiments as in Fig. 4) is
shown in the top graph and was measured from the pressure
signal. One additional point at R = 45 mm has been obtained in
cell H at large gap (spherical propagation). As the wave velocity
is independent on the geometry, this data point can be com-
pared to the other ones. The velocities for the N2 foams have

been measured on the images (same experiments as in ref. 16),
close to sensor 4. The point at R = 840 mm is a new experiment,
with a velocity measured with the pressure signal.

A classical prediction for the wave velocity in the linear
regime is Wood’s velocity.8 This model assumes that the
foam behaves as an effective medium of compressibility w0

and density r0, averaged over the volume fractions of the liquid
and the gas phases. As the liquid phase is almost incompres-
sible, w0 is based on the gas compressibility: wg = 1/(�kp0), leading
to w0 = (1 � fl)/(�kp0), with fl the liquid fraction measured at the
atmospheric pressure p0, and �k the polytropic exponent.14 The
gas is modeled as an ideal gas with �k = g or �k = 1 for an adiabatic
or isothermal compression, respectively. Here, g is the ratio of
specific heats; it equals 1.4 for N2, and 1.085 for C2F6.24 The
foam density is given by r0 = flrs + (1 � fl)rg where rs and
rg are respectively the solution and gas densities.8,25 Wood’s
velocity is thus:

cw
2 ¼ 1

w0r0
¼ �kp0

1� fl

1

flrs þ 1� flð Þrg
: (2)

The adiabatic and isothermal Wood’s velocities cw,a and cw,T

have been computed for each experiment, on the basis of the
measured liquid fraction fl. The obtained values are reported in
Fig. 5. The experimental wave velocities remain close to Wood’s
velocities for small bubbles, and become larger than this
prediction for bigger bubbles. The velocity is indeed 2.5 times
larger than Wood’s prediction for the largest bubble radius and
the C2F6 foam, and it reaches twice the predicted value for the
N2 foam with the largest bubble radius. This last sample is the
one which also shows a specific behaviour in Fig. 3. A departure
from Wood’s velocity is a strong indication that a gas bubble
and its contiguous liquid environment do not move with the
same amplitude when the pressure wave arrives. The menisci,
i.e. the liquid channels at the intersection of three films, having a
much larger inertia that the thin films, have a different dynamics
than the gas and the films. This effect is at the basis of the
resonance observations and models established in ref. 11 and 12
and becomes important above a critical bubble radius.

Fig. 5 shows that for the bubble radius corresponding to the
maximum of dissipation, i.e. R E 450 mm, the wave velocity is
still close to the Wood’s velocity. This is a first indication that
the maximum cannot be explained by the resonance.

3.2 Influence of the liquid fraction

The influence of the liquid fraction has been investigated for N2

foams in the large bubble limit (R close to 900 mm) using the
setup V and in the small bubble limit (R close to 95 mm) using
the setup H. The shock was always produced with a single
aluminum foil (low pressure range). For both series, the velocity
is measured from the pressure signals.

3.2.1 Wave attenuation. The pressure ratio for large bubbles
is plotted in Fig. 6 and shows a decrease of a with the liquid
fraction, i.e. an increase of attenuation. For a given frit porosity,
the bubble radius fluctuates over a certain range and we kept
only the experiments with bubble radius in the range 800 to
950 mm. The bubble radius is indicated for each data point by a

Fig. 4 Attenuation length for C2F6 foams (’) and for N2 foams ( ), as a
function of the bubble size, for a liquid fraction fl = 4.8%. Solid lines:
prediction of eqn (3) (isothermal regime), with the prefactor lT = 0.4 for both
gases (red: N2, black: C2F6). Dashed lines: predictions of eqn (4) (adiabatic
regime) with la = 12, for both gases.

Fig. 5 (Top) Wave front velocity for C2F6 foams as a function of the
bubble radius for fl = 4.8% ( ). Theoretical Wood’s velocity given by
eqn (2) for isothermal (J) and adiabatic ( ) regimes. (Bottom) Wave front
velocity for N2 foams and Wood’s predictions, same symbols.
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colour code in Fig. 6. For the different liquid fractions, the
largest value of a is obtained either for the smallest or for the
largest bubble sizes. For bubbles larger than 900 mm, we expect
that a increases with the bubble size (see Fig. 3), but the bubble
size scatter in this figure is small enough for this dependency to
be unobservable. The variation of a is thus solely due to the
liquid fraction variation. Similarly, we only kept P1 values in
the range 4.8 to 6 kPa. From the value of a, we deduce the
attenuation length of the foam using eqn (1), shown in Fig. 9.
As the pressure intensity has not been varied, the pressure ratio
cannot be extrapolated to P1 = 0, and the parameter a0 in eqn (1)
is identified with the raw data aexp.

The same study was performed for small bubble radius, as
shown in Fig. 7. In that case, the pressure attenuation is equal to
the geometric attenuation, within the experimental error bars. This
means that the attenuation due to the medium itself is not
detected. We can therefore not conclude about a potential depen-
dency with the liquid fraction in this small bubble regime. This
result also confirms that foams with small bubbles do not attenuate
much sound waves, in agreement with Fig. 4 and 13.

3.2.2 Wave velocity. The wave velocity measured from the
pressure signals is reported in Fig. 8 as a function of the liquid
fraction for small bubble radii (R = 95 mm, same experiments as in
Fig. 7) and for large bubble radii (R = 870 mm, same experiments

as in Fig. 6, and additional points at fl o 1 with R in the range
900 to 1100 mm). Wood’s velocities for an adiabatic and an
isothermal propagation (eqn (2)) are plotted on the same graph,
without fitting parameter. A very good agreement is obtained
between the small bubble series and the isothermal Wood’s
velocity, whereas for the large bubble the experimental velocities
are larger than Wood’s velocity by a factor which reaches 2.5 for
fl close to 5%. This confirms that the wave propagation is in the
Wood regime at small bubble size, and departs from it at larger
bubble size. The transition is difficult to quantify, but Fig. 5
indicates that it is around R = 800 mm.

4 Models
4.1 Thermal dissipation model

The thermal model developed in ref. 9, 14 and 15 and already used
in ref. 16 assumes that the energy dissipation is mainly of thermal
origin. The gas in the bubbles is compressed by the pressure wave,
its temperature thus increases and dissipative heat transfers occur
between the gas phase and the liquid phase, the latter acting as
a thermostat. Such dissipation is strongly enhanced in foams
because of the large contact area between the liquid phase and
the gas phase, which temperatures differ strongly after the sharp
pressure increase. At the end of the overpressure, the gas is
thermalised by the liquid on a shell of thickness ‘T ¼

ffiffiffiffiffiffiffiffiffi
DTt
p

around each gas bubble, with DT the heat diffusivity given in
Table 1 and t the overpressure duration. For t = 2 ms (Fig. 2), we
thus compute lT = 200 mm for N2 and 80 mm for C2F6. A priori, if the
bubble radius R is much smaller than lT, the propagation is almost
isothermal, and in the other limit, the process is almost adiabatic.
The attenuation lengths in these two regimes are respectively:16

1

‘Ta
¼ lT

R2cw;Tr0
kTt2

; (3)

1

‘Aa
¼ lA

cw;Ar0
rgcpTR

ffiffiffiffiffiffiffiffiffiffiffi
k

rgcpt

r
; (4)

Fig. 6 Pressure ratio aexp = P4/P1 as a function of the liquid fraction fl for
a N2 foam in the V cell. Colours indicate the bubble radius in micrometer
for each experiment. The average radius is R = 870 mm. The dashed line
represents the pressure ratio aref associated to the geometrical attenuation.

Fig. 7 Attenuation a = P4/P1 for a bubble radius R = (95 � 13) mm,
obtained for a N2 foam in the H cell. The dashed line is the geometrical
attenuation.

Fig. 8 Wave front velocity for N2 foams as a function of the liquid fraction,
deduced from the pressure signals. ( ) Small bubble radius: R = 95 mm

(same experiments as in Fig. 7); ( ) large bubble radius: R = (870 � 44) mm

for fl 4 1% (same experiments as in Fig. 6) and R in [900–1100] mm for fl

o 1%. Wood’s prediction is represented with a full line for the isothermal
regime, and dashed line for adiabatic regime. The data at fl = 4.8% have
already been shown in Fig. 5.
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with T the temperature, cw,A and cw,T the wave velocities for
adiabatic and isothermal propagations given by eqn (2), r0 the
foam density and k, cp and rg the gas properties given in
Table 1. The parameters lA and lT are dimensionless fitting
parameters, and all the other quantities are known for the two
gases. A direct comparison with our experimental data can thus
be made, to identify the origin of the observed dependencies with
the liquid fraction, the bubble radius and the nature of the gas.

The model predicts an attenuation 1/la which increases with
the liquid fraction fl, both in the small and large bubble radius
limits. Indeed, even if this model considers only a dissipation
in the gas phase, 1/la depends on the liquid fraction through
Wood’s velocity, scaling as fl

�1/2, and through the foam density
scaling as fl. The attenuation lengths deduced from the pres-
sure ratios shown in Fig. 6 (N2 foam) are plotted in Fig. 9. As the
bubble radius for these data is R = 870 mm, which is in the large
bubble regime, they are compared with the prediction in the
adiabatic regime. Fig. 9 shows a good agreement between the
experimental data and the prediction of eqn (4) for a prefactor
lA = 5. This value is close to the value lA = 7 used in ref. 16 to
reproduce the experimental data obtained with N2 foams.

The dependency of 1/la with the bubble radius predicted
by the model is more complex. It predicts an increase of the
attenuation as R2 for small bubbles (eqn (3)), followed by a
decrease as 1/R for large bubbles (eqn (4)). We show in ref. 16
that the attenuation in N2 foams is well fitted by this model for
the couple of parameters (lT = 0.4; lA = 7). The prefactor lA = 7 is
too small to reproduce the data at large bubbles of Fig. 4,
obtained with C2F6, that would be best fitted with lA close to 35.
The prediction of the model using the couple of parameters
(lT = 0.4; lA = 12), chosen as a best compromise between the two
gases, is shown in Fig. 4 together with the experimental data.

All important qualitative features are reproduced by this thermal
model, despite the lack of quantitative agreement: a maximum of
attenuation is observed for a bubble radius close to the thermal
length; the attenuation is smaller for C2F6 foams than for N2 foams
in the investigated parameter range; the order of magnitude of the
predicted attenuation is in the right range; the attenuation
increases with the liquid fraction at large bubble radius.

This allows to conclude that the thermal dissipation is non-
negligible in the investigated parameter range, and that it is
probably at the origin of the observed maximum of attenuation.
The discrepancy between the model and the experiment may
be explained by the fact that other dissipative and dispersive
processes also contribute to the global pressure attenuation,
with different scaling laws. For instance, viscous effects within
the liquid phase, which are ubiquitous in foam rheology,26 are
also expected to play a role. The thermal model itself could
be refined: in particular, the liquid films are so thin that the
assumption that they act as thermostats is questionable, espe-
cially at large bubble size.

Furthermore, the thermal model implicitly assumes the
validity of Wood’s prediction. The velocity increase at large bubble
radius is thus not predicted in this model, and is potentially
related to the proximity of the resonant behaviour evidenced in
ref. 11 and 12, as discussed in the next section.

4.2 Resonant film-meniscus model

Wood’s model is based on the assumption that the foam
behaves as a continuum and that, locally, the gas, the liquid in
the films and the liquid in the menisci move at the same velocity
-
v(-r,t), which varies at the scale of the acoustic wavelength.
However, at very large frequencies, the menisci do not move
any more, and only the thin films, with a much smaller inertia,
are displaced by the pressure wave.13 Pierre et al. recently gave an
extensive description, both theoretical and experimental, of the
transition from one regime to another, at a critical frequency
(for a given bubble radius)12 or at a critical bubble radius (for a
given frequency).27 This transition coincides with a maximum of
dissipation and occurs for parameter values (bubble radius, time
scale. . .) close to our experimental parameter range. More pre-
cisely, Fig. 3 in ref. 12 shows that Wood’s regime breaks down for
a frequency f such that f (R/R0)1.5 = 105 Hz, with R0 = 40 mm. Since
the overpressure duration is in the ms range, it corresponds to
typical frequencies in the kHz range. With f = 1 kHz, we thus
obtain that Wood’s regime breaks down at R = 0.9 mm, in
agreement with our data on velocity (Fig. 5). It may thus a priori
explain the maximum of dissipation which we observe, and is an
alternative to the thermal model that must be carefully analysed.
In contrast with the previous approach, this maximum of
dissipation is not related to an especially efficient dissipative
process at the bubble scale, but to an enhanced deformation
of the film/meniscus structure. In this case, the dissipation is
assumed to occur mainly in the connection between films and
menisci and is simply modelled by a phenomenological time
scale td, that does not depend on the bubble radius, nor on the
frequency. The model developed in ref. 12 predicts a specific
dispersion relation for the plane wave propagation, in the linear
regime. In order to compare our observations with the predic-
tions of this model, we computed the propagation of a pressure
pulse using this dispersion relation. The incoming signal, at the
position z = 0, is assumed to be p1 = sin(pt/t) for t A [0,t] and
0 elsewhere, with t = 1 ms the duration of the overpressure.
This ansatz mimics well the shape of the overpressure signal at
sensor 1 (Fig. 2), apart from its slight asymmetry, and neglects

Fig. 9 Attenuation length as a function of the liquid fraction (same data as
in Fig. 6). The red dashed line is the prediction of the thermal model in the
adiabatic regime (eqn (4)) with a prefactor lA = 5.
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the rarefaction wave. With this simplified form, the Fourier
transform of the signal has an analytical expression, namely

p̂ðoÞ ¼
ðt
0

eiot sin
pt
t

� �
dt (5)

¼ 2pt
p2 � o2t2

eiot=2 cos
ot
2

� �
: (6)

The main Fourier components are in the range [0,3p/t], i.e. for
o smaller than 104 s�1. The pressure at distance z can then be
determined by the relation

pðt; zÞ ¼ 1

p
Re

ð1
0

p̂ðoÞe�i½ot�kðoÞz�do
� �

: (7)

The dispersion relation which we used is based on eqn (2) in
ref. 12:

kðoÞ2 ¼ o2reff
p0

; (8)

with reff = (1 � fl)rg + f0rs the foam effective density, built on
the complex number f0, playing the role of an effective liquid
fraction. It equals the actual liquid fraction at low frequency
and Wood’s velocity is recovered in this limit. In the high
frequency limit, the liquid phase contained in the menisci does
not move any more, and f0 is the volumetric fraction of the thin
films. This is the Kann regime.13 In the intermediate regime, a
resonant behaviour is observed, with a maximal modulus of f0.
The full expression for f0 is:12

f0 ¼ fl

1þ x2
fl

ff

½1�HðqaÞ� � iotdxHðqaÞ
; (9)

with q ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rse=ð2sÞ

p
, e B 100 nm the thin film thickness,

s = 36 mN m�1 the surface tension, td = 10�5 s, x the fraction of
the bubble area covered by the thin films, which equals 0.38 for
fl = 4.8%,28 and a ¼

ffiffiffi
x
p

R the radius of the thin film. The
function H(u) = 2J1(u)/[uJ0(u)] is built from the Bessel functions
of order 0 and 1 and ff = 3(1 � fl)x

2e/(4R) is the volume of
liquid contained in the thin films per unit foam volume. Using
the approximate value for H(u) for u { 1, a simple expression

is obtained for the resonant frequency: or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s= x2rsflR

3ð Þ
p

.
For R = 500 mm, this yields or = 2 � 104 s�1, which is thus just
above the highest frequencies of the incoming signal.

Fig. 10 shows the pressure signal at sensor 4 obtained with
eqn (7) for bubble radius in the range 200 to 1100 mm, for N2.
The signal is deformed due to the viscous and dispersive properties
of the medium, but a well defined overpressure is still observable.
The maximal pressure decreases with the bubble radius, as well as
the slope of the initial pressure increase. However, the velocity
deduced from t1/2 is almost independent of the bubble radius and
remains close to Wood’s velocity.

The attenuation length is obtained from the P4/P1 ratio,
using the relation la = (r4 � r1)/ln(P4/P1), because the simulated
propagation is unidirectional, so there is no geometric attenua-
tion. The experimental data of Fig. 3 are compared with the
numerical attenuation length in Fig. 11, for three values of the

fitting parameter td, in the range [2–10] � 10�5 s. The results
obtained numerically for C2F6 are almost identical, as the
density does not play a important role in the attenuation. As
already visible in Fig. 10, the attenuation increases with the
bubble radius. However it is impossible to explain the maximum
of attenuation observed at R = 500 mm with the resonant model.
We checked that until at least R = 3 mm (last computed value) the
attenuation 1/la keeps increasing with R. This strongly reinforces
our conclusion that the thermal dissipation in the gas is at the
origin of the observed maximum.

The resonant model nevertheless predicts the right order of
magnitude of the attenuation length for bubble around 800 mm,
and a transition from a thermal origin of the dissipation toward
an origin based on the resonance model is possible. However, the
wave velocity deduced from the numerical simulation varies by
only 2% on the bubble radius range 200 to 1100 mm, so the fast
velocity observed for N2 foams at R = 800 mm remains unexplained.

Finally, we made the same comparison with the experimental
data of Fig. 6, with a bubble radius R = 870 mm. In that case, with
a value of the adjustable dissipative time td B 5 � 10�5 (to be
compared with td = 10�5 obtained for another foam in ref. 12),
the agreement with the prediction of the model is fair (see
Fig. 12). As the thermal and resonant models both predict the
increase of 1/la with fl, these data does not bring additional

Fig. 10 Imposed pressure signal at the position z = 0 as a function of time
(black line) and pressure signal at the position z = 6 cm determined
numerically from eqn (7)–(9), for N2 and for the bubble radius R = (200,
500, 800, 1100) mm (the attenuation increases with the bubble radius).

Fig. 11 Experimental attenuation length of Fig. 4 compared with the
attenuation length obtained numerically for N2 and td = 2 � 10�5 s (solid
line), 5 � 10�5 s (dotted-dashed line) and 10�4 s (dashed line).
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information to discriminate between both models. However,
the thermal model shown in Fig. 6 allows for a slightly better fit
of the data.

5 Conclusions

In this paper, we have reported an extensive study of blast wave
propagation and attenuation in liquid foams, mostly in the weak
wave regime, where comparison with linear acoustics remains
relevant. Thanks to our careful control of the foam production and
parameters, we were able to study independently the influence of
bubble size, liquid fraction, and gas. We showed for the first time
that attenuation reaches a maximum for a certain bubble size, and
depends on the gas. We also showed that attenuation increases at
increasing liquid fraction.

These measurements of attenuation were compared to a
model accounting for thermal dissipation in the gas phase in
contact with the liquid interfaces. It reproduces all the afore-
mentioned qualitative experimental features, although it does
not yield a quantitative agreement with the data. The propaga-
tion velocity of the blast wave agrees with Wood’s velocity at
small bubble size, but becomes larger for bubble sizes above
0.5 to 0.8 mm. This is in qualitative agreement with a resonance
model recently proposed.12 We also showed that such a model
could not explain the attenuation maximum.

These unprecedented results pave the way toward a more
rational optimisation of shock and blast wave mitigation by
liquid foams. It also opens several perspectives. First, we did not
model the nonlinear regime, nor the dependence of attenuation
on the blast wave amplitude. Second, and related to the first
point, the possible destruction of part of the foam by a strong
enough blast, and its influence on propagation and attenuation
of the blast wave, remains to be addressed. We obtained some
recent data along this direction, which will be presented in a
subsequent study. We thus hope that the current study is a first
but crucial bridge between the most recent developments
of linear acoustics of liquid foams and the regime of strong
shocks and blasts.

Appendix A

In order to test our assumption of a cylindrical propagation in
the 3 cm gap cell, we performed additional experiments in the
H cell with a larger gap h = 8 cm, with fl = 4.8% and R in the
range 50 to 300 mm. With this larger gap, it is clearly visible
on the pressure signals that the maximal overpressure reaches
sensor 4 before the first reflection on the bottom plate reaches
the top plate. The signal measured by the sensor placed on the
top plate is thus the same as a signal propagating in a half 3D
space. As the foam was observed to slip at the top plate, we con-
sider that the propagation is the same as in a full 3D space, and
the reference attenuation aref

3D(r) = r1/r can be used. For this test,
we have not systematically varied the overpressure. We assumed
that the attenuation is of the form, at sensor i:

a rið Þ ¼
r1

ri
e� ri�r1ð Þ=‘a þ KsphP1

� �
¼ a0 rið Þ þ k rið ÞP1: (10)

This involves an attenuation length la, which is the intrinsic
material property we want to determine, the geometrical attenua-
tion r1/ri which corresponds to a linear propagation in a spherical
geometry, and the non-linear correction K sphP1. The slope K sph is
assumed to be independent of the bubble radius and of the
nature of the gas, as in the cylindrical geometry (see Section 3.1.1).
Its value K sph = 7 � 10�3 kPa�1 has been determined from a
single data set obtained at different pressure values with C2F6,
R = 45 mm, and ri = r3. This value is then used to compute
the value of a0 for all data obtained in the spherical geometry.
The deduced attenuation lengths la, averaged over several data
points for each bubble radius, is plotted in Fig. 13. The values are
compatible with the ones obtained for the same gas N2 and same
liquid fraction f = 4.8% in the cylindrical geometry, thus confirming
that the propagation between the two plates has a cylindrical
symmetry, and that la does not depend on the cell geometry.

Appendix B

A spatio-temporal diagram of the foam is shown in Fig. 14 (top).
The gray level fluctuations produce vertical lines when the foam
is at rest, and oblique curves when it moves. The transition between

Fig. 12 Experimental data of Fig. 6 compared with the attenuation length
obtained numerically for td = 2 � 10�5 s (solid line), 5 � 10�5 s (dotted-
dashed line) and 10�4 s (dashed line).

Fig. 13 Attenuation length as a function of the bubble radius for N2 foams
in cylindrical geometry ( ) (data from ref. 16) and in spherical geometry (*).
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both behaviours appears sharply on the diagram and corresponds
to the front wave arrival time. It has been determined by image
processing and is represented by the black line on the diagram. The
slope of this line is the front wave velocity. The times tim

i are defined
as the times corresponding to the positions of the four sensors on
this line. They have been reported on the pressure signals in Fig. 14
(bottom). At each sensor, the time tim

i roughly coincides to t1/2,i,
defined as the time for which the pressure reaches half its maximal
value at sensor i. This justifies that the velocity deduced from the
image and tim

i represents the same physical quantity as the velocity
deduced from the pressure signal and t1/2,i.
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Fig. 14 (top) Spatio-temporal image of the foam. The pressure wave
propagates from the left to the right. The symmetry axis coincides with
r = 0, and the position of the four sensors is indicated. The wave front
(black line) has been determined by image processing. (bottom) Pressure
signals obtained for the same experiment plotted as a function of time. The
four squares represent the arrival time tim

i of the wave front at each sensor
position, as determined on the spatio-temporal image above.
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