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Synopsis

By using simultaneously rheometry and a multiple light scattering technique, diffusing wave
spectroscopy (DWS), we have studied the steady flows of three-dimensional aqueous foams. A
number of parameters—the surfactants, the liquid volume fraction, and the roughness of the
rheometer surfaces—are widely varied in order to determine which quantities have an impact on
the macroscopic flow behaviors. By comparing to previous theoretical and experimental results, we
show that flow regimes can either be slip or shear dominated. Two opposite slip regimes are
identified; the transition from one to the other is obtained either by changing the surfactant or the
liquid fraction, and we quantitately discuss which regime is selected for any given foam
properties. Similarly, different shear regimes are also found, and we discuss the link between the
macroscopic rheometry measurements, the nature of the flow, and the interfacial microscopic
properties. Despite the occurrence of slip, we show how we can recover the actual shear rate by
DWS, and how we can quantitatively explain the measured slip velocities. © 2008 The Society
of Rheology. [DOI: 10.1122/1.2952510]

I. INTRODUCTION

Aqueous foams are parts of our everyday life. On one hand, we use them a number of
times per day in various environments, often in contact with our bodies, or even eating
them. On the other hand, industrial processes, such as froth flotation, demand a huge
volume of aqueous foam. In both cases, foams often undergo stresses that can lead them
to flow. Thus, it is important to understand the flow properties of aqueous foams, in order
to optimize industrial procedures, or to conceive new applications and materials.

A large amount of foam rheological studies have focused on the linear viscoelasticity
and yielding, evidencing some universal features once rheological quantities are normal-
ized by the Laplace pressure P=0/R, with o the gas-liquid surface tension, and R a
characteristic bubble dimension [compilations of results can be found in Rouyer et al.
(2005) and Hohler and Cohen-Addad (2005)]. Comparatively, there are fewer studies on
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the steady flow of foams. In fact, many experimental and theoretical results are reported
on the flow of two-dimensional (2D) foams [Kraynik et al. (1991); Tewari et al. (1999);
Debrégeas et al. (2001); Asipauskas er al. (2003); Janiaud and Graner (2005); Cantat and
Delannay (2005); Janiaud et al. (2006); Wang er al. (2006); Cox (2006); Dollet and
Graner (2007)]. A 2D foam consists of only one layer of bubbles, usually constricted
between glass plates. Such systems are actually quite useful to approach foam flows: One
can always see all the bubbles, their deformations, or the velocity field. However, a major
drawback with 2D foams is the central role of the friction of the bubbles on the support-
ing plates. This friction is dominating all the other viscous effects, and different results
can be found by changing the experimental setup [Wang er al. (2006)]. Thus, despite
important insights that can be evidenced with 2D foams (for instance, on the nature and
statistics of plastic events during flow or on the occurrence of strain localization) these
studies cannot be transposed in a straightforward way to model the flow of three-
dimensional (3D) foams.

With 3D foams, the different experimental or theoretical results reported [Khan et al.
(1988); Princen and Kiss (1989); Reinelt and Kraynik (1993); Gopal and Durian (1999);
Bertola et al. (2003); Rodts et al. (2005); Denkov et al. (2005)] did not get a clear picture
of the steady flow properties, especially regarding the flow uniformity. Indeed, with 3D
foams (which are opaque), it is almost impossible to monitor the flow in bulk. So,
nonuniformities like shear banding or strain localization are not easy to evidence. Re-
cently, by coupling rheometry and nuclear magnetic resonance (NMR) experiments
Raynaud et al. (2002) and Bertola er al. (2003) measured bulk velocity profiles, and
showed that nonuniform flows can actually occur. However, with transparent (density
matched) emulsions, it has also been shown that the occurrence of shear banding depends
on the chemical formulation and on the interactions between the droplets [Bécu et al.
(2006)]. Today, it turns out that the important parameters, on which the flow properties
depend, are still not well identified.

Also, the possible occurrence of slip on the surfaces of the rheometer and its impact on
the flow properties are still not completely understood for aqueous foams. Many recent
works have focused on these slip issues, implementing the seminal works of Bretherton
(1961), and trying to deepen our understanding of the hydrodynamics within the liquid
layers separating the bubbles and the walls [Denkov et al. (2005, 2006); Terriac et al.
(2006); Saugey er al. (2006); Emile et al. (2007)]. The existing models predict that
different slip regimes can be obtained depending on an interfacial “mobility” (controlled
by the surfactants adsorbed at the interfaces) and on the liquid volume fraction. Different
power laws between the slip velocity and the stress characterize these regimes. Today
there are some experimental results reported on the exponents of these laws, but much
less on the prefactors, and a complete quantitative model including all the effects is still
lacking. It is finally also important to test the universality of the results, and whether the
flow of foams is similar to the ones of other soft materials like emulsions, microgels, or
even granular matter. More information is thus needed to better figure out the links
between the flow uniformity, the slip, and the chemicals and interfacial properties.

The purpose of this article is to present new experimental data on flow of 3D aqueous
foams based on several surfactants, different liquid volume fractions, and for different
roughness conditions applied to the rheometer surfaces. Our measurements are made with
a careful control of the foam physical and chemical properties, especially allowing us to
correctly manage the undesired aging affects. Simultaneously, a light scattering tech-
nique, diffusing wave spectroscopy (DWS), probes the dynamics of the elementary
bubble rearrangements, which can then be linked to the macroscopic results.

The article is written as follows: Sec. II presents the different chemicals (with the



AQUEOUS FOAM SLIP AND SHEAR REGIMES 1093

interfacial properties) and methods; the raw results of rheology and DWS are given in
Sec. III for the different surfactant systems, liquid fractions, and roughness conditions.
All these results are analyzed in Sec. IV, with comparisons to previous models and results
on foams and on other soft materials.

Il. MATERIALS, METHODS AND ANALYSIS
A. Foam production and materials

The foams are produced by using a turbulent mixer apparatus [Saint-Jalmes er al.
(1999a)]. The principle consists of injecting the solution and the gas, at high pressures,
inside a T junction. In the middle of the 7, the diameter of the liquid channel is strongly
reduced, down to 0.7 mm in order to create a high-speed jet, to which the gas is added.
The mixture hence flows in a turbulent regime along a final hose, providing homogeneous
foams with bubble radius of 70 = 10 wm (measured at the surface of samples by optical
transmission microscopy) depending on the foaming chemical. The liquid volume frac-
tion &, controlled by adjusting the gas and liquid flow rates in the foam generator, is
varied from 0.05 up to 0.25 in this study. For the gas, we use perfluoroethane (C,Fy): it
has low diffusion and solubility constants, considerably limiting coarsening and drainage
of the foams [Saint-Jalmes (2006)]. Three types of foaming chemicals are used: Sodium
dodecyl sulfate (SDS), an anionic surfactant; casein (CAS), a mixture of milk proteins;
and Amilite GCK-12 (GCK), a commercial name for an anionic surfactant made of a
fatty acid residue from coconut oil. The first two were sold by Sigma-Aldrich and the
third was kindly provided by Ajinomoto Co., Inc. For these chemicals, the concentrations
used are respectively Cgps=6 g 17! Cops=4.5 g17! and Cgex=10 g 17!, The casein solu-
tion is brought at pH 5.6 by adding a phosphate buffer at 10 mM, and then placed in an
ultrasonic bath for 30 min, so as to prevent casein from aggregating during the dissolu-
tion. The solution is then stirred at 1000 rpm during 8 h. After this procedure, the CAS
solution can be used for two days, before bacteria development. For GCK, the solution
pH is 8.2.

Adding the chemicals to water does not change the bulk viscosity 7, which remains
quite close to 1 mPas. The surface tensions o are 36, 22, and 46 (*+0.5) mN m™', re-
spectively, for SDS, GCK, and CAS (measured by the rising bubble method). An equi-
librium value is reached within 1 min after the formation of the bubble for SDS and
GCK. For CAS, a slow drift is still observed after 10 min (due to protein reorganization
at the surfaces). We use the value at a typical instant of 300 s, which corresponds to the
mean duration of a rheology or DWS measurement.

We have selected these chemicals to be sure that very different behaviors at the
gas-liquid interfaces and in thin films separating the bubbles are obtained. With SDS, the
interfaces are fluid like, and the films are flat, uniform, with a typical thickness of a few
tens of nm. The GCK foams have similar types of films, but the interfaces are much more
viscous and elastic. On the other limit, the use of casein creates highly viscoelastic
interfaces [Bos and van Vliet (2001)]; moreover, the films are very peculiar: they are
thick (hundreds of nm) and appear as gelified, and nonuniform in thickness (due to the
confinement in the film of large protein aggregates) [Saint-Jalmes er al. (2005)]. If the
interfacial properties have an impact on the macroscopic foam flow, we can then expect
to evidence it with such different systems.

B. Rheometry

Measurements are performed with a MCR 300 Rheometer, from Anton Paar. The
foams are studied using homemade cone-plate geometries in Plexiglas (cone diameter
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FIG. 1. Experimental setup consisting of a cone-plate rheometer coupled to a DWS setup (in transmission
mode). The cone surface of the rheometer cone is always rough, while we use either a smooth or a rough
surface for the bottom plate. The foam is injected inside the cell at the center, from below.

=175 mm, angle=0.175 rad). The cone is always covered with polydisperse sand grains
having a mean diameter around 100 wm. The bottom plate is used with or without glued
grains, in order to get a smooth or a rough surface (Fig. 1).

We performed experiments at controlled shear rates v, varied typically from
1073 to 15 s~!. For higher rates, the sample is ejected out of the cell. In the purpose of
implementing the steady shear data at high shear rates, we also performed oscillatory
strain sweeps at different fixed frequencies, from 0.3 up to 9 Hz. The oscillatory strain
amplitude is swept from 0.01 up to 2. In that way, we can theoretically get similar and
even higher shear rates than with the steady-shear mode; the validity of this approach will
be discussed in Sec. III.

Practically, a complete flow curve can be obtained on a single sample. However, with
the shear rates range investigated and to get enough points on the curve, this leads to
more than a few minutes of measurement time. Moreover, the light scattering technique
(DWS, see below) also requires a few minutes in order to average the temporal fluctua-
tions of intensity. So, a 10-point flow curve would need at least 10 min to be measured.
This is too long for a single foam sample, especially at high liquid volume fractions
where significant aging may occur between the first and last points. This is why shear
stresses are measured independently on different samples, only one shear rate being
applied to a given foam. The results shown on the plots are then averaged over a few
samples (3-4) for each shear rate. Moreover, for each shear rate, the plotted stress is the
constant value found in the steady state (although the onset of this regime depends on the
shear rate, it is commonly set at a shear strain of 100%). Note also that as the foam
sample height in the rheometer is small when compared to the usual liquid capillary
holdup length (corresponding to the height of the wet layer at the bottom of a foam and
inversely proportional to the bubble size [Saint-Jalmes (2006)]), wet foams can be stud-
ied without fast and significant drainage.

C. Diffusing wave spectroscopy (DWS)

A diffusing wave spectroscopy (DWS) setup is coupled with the rheometer (Fig. 1). A
highly coherent monochromatic laser at A=532 nm is used for the light source, the
transmitted light is then collected by an optic fiber, and directed towards a photon count-
ing detector, finally feeding a correlator. Note that the sand did not prevent the experi-
ment: The cone and plates remain always sufficiently transparent. DWS allows us to
measure a typical time scale associated with the dynamics inside the foam; this dynamics
is either induced by the applied shear, or by the foam coarsening [Durian et al. (1991);
Gopal and Durian (1999); Hohler and Cohen-Addad (2005)]. The formalism and its
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application for colloidal particles and foams has been described in Weitz and Pine (1993)
and Durian (1995). From the intensity variations I(¢), one first calculates the intensity
autocorrelation function; this function is related to the electrical field autocorrelation
function g,(¢) (Siegert relation):

0
%= 1+ g (0)]? (1)

{ is an experimental factor depending on the optical setup characteristics, ranging from
0.1 to 0.9 [Weitz and Pine (1993)]. For aqueous foams, g,(7) has been calculated, in
transmission [Durian et al. (1991)]:

(LIP)N6(1/T)"
sinh[(L/F)W6(e/T)"]

81 = 2)
where L is the sample thickness; 7 is the characteristic time of the foam dynamics, and /*
is the transport mean free path of light. The latter is related to the bubble size [Vera et al.
(2001)]. When the dynamics is due to uncorrelated events, like for coarsening, n=1 and
T corresponds to the averaged time between rearrangement events at a given location in
the sample; whereas n=2 implies a continuous and convective bubble motion [Wu et al.
(1990); Gopal and Durian (1999)].

As schematized in Fig. 1, the laser spot hits in the middle of the cone radius, about
43 mm from its center. At this position, the sample thickness is approximately 7 mm
> [*. The smallest L/[* ratio, obtained for the lowest liquid volume fraction (0.05) has a
value of 12 and is sufficient to be in the multiple light scattering limit and to use the DWS
formalism.

lll. RESULTS
A. SDS foams
1. Rheometry results

Figure 2 presents the flow curves (stress 7, derived from the measured torque, as a
function of the shear rate ) obtained for SDS foams at a liquid fraction £=0.15, with the
two different plate roughness conditions. It turns out that the roughness of the plate is
clearly important and that the flow curve depends strongly on this experimental condi-
tion. For all values of e, the same qualitative trends are observed and only the stress
range decreases with the liquid fraction, as shown below.

We first describe in more detail the flow curves obtained with a rough bottom plate,
and as a function of the liquid fraction (Fig. 3). On this plot, we have compiled the
steady-shear data and the points obtained by oscillations: The latter correspond to mea-
surements at various frequencies, but at a constant amplitude y of 100%, in order to get
the same value for the shear rate and for the frequency w (w="7/v). Using this method,
we find that the points collected by oscillations agree with those of steady shear (except
for the wettest foam, where stability issues of drainage can be important). This allows us
to implement the range of accessible shear rate; in the same time, this seems to be a first
proof that the Cox—Merz rule holds for aqueous foams; but note though that this is found
over less than a decade in frequency or shear rate, and this has to be investigated in more
detail.

Concerning the shape of the flow curves, whatever the liquid fraction, we identify a
typical yielding behavior, with a nonzero limit of the stress at low shear rate correspond-
ing to a yield stress, 7,. Such flow data can actually be adjusted with a Herschel-Bulkley
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FIG. 2. Flow curves—shear stress 7 as a function of the applied shear rate—for SDS foams at £=0.15. Effect
of the roughness: Full symbols correspond to a rough plate, and open symbols to a smooth plate.

(HB) model: 7=17,+a, % (e, has the dimension of a consistency), as shown by the solid
lines in Fig. 3, left. As the liquid fraction increases, the whole curve is shifted downward,
but the exponent remains constant: We find 3=0.42 = 0.02. Another way to present such
a behavior is to focus on the high shear rates and to plot the viscous stress 7,=7—7, as a
function of y, for the different liquid fractions. One directly visualizes scaling regimes
(Fig. 3, right), with an exponent 8=0.42+0.02.
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FIG. 3. (Left) Flow curves for SDS foams, at various liquid fractions: Including both measurement obtained
during steady shear and measurements during oscillations (at various frequencies , for a fixed strain amplitude
of 1). Solid lines are fits based on the Hershel-Bulkley (HB) models. (Right) Viscous shear stress, 7,=7—7, vs
applied shear rate for different liquid fractions. Lines are power law fits, with a constant exponent S=0.42.
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FIG. 4. (Left) Shear stress 7 vs applied shear rate for SDS foams on a smooth plate (¢=0.2, 0.15, 0.1 and 0.05).
Here only the first regime is shown (7<<7,). (Right) Same data in a nondimensional form: Normalized slip
stress 7 =7/(0/R), calculated by integrating the stress along a radius, as a function of the dimensionless
capillary number Ca defined in the text.

For the flow curves with a smooth bottom plate and for all the liquid fractions, it is
impossible to determine a yield stress: Stresses continuously decrease with decreasing
shear rates 7y, and can be at least one order of magnitude lower than with a rough plate.
At a critical rate 7y,, a kink is well evidenced, separating two regimes. In fact, this slope
rupture always occurs precisely at the yield stress value seen for the rough conditions.
The first regime can be characterized by a power law behavior 7=a,3° (up to 7,). The
liquid fraction dependence of this first regime is shown in Fig. 4, left. The exponent & is
independent of the liquid fraction and equals 0.65* 0.01.

Concerning the high shear rates range, the behavior seems to follow another power
law behavior, but there are not enough points to determine it precisely. However, it is
always observed that shear stresses with either smooth or rough plates meet at the highest
shear rates.

2. DWS results

Typical data for a SDS foam at £=0.15 for the rough and smooth plates are shown in
Fig. 5. We have plotted 1/T as a function of 9, with 7 deduced from the intensity
autocorrelation curves as discussed in Sec. II.

First, note that for a quiescent foam (at y=0), the gas diffusion from bubbles to
bubbles creates both an increase of the mean bubble size (coarsening) and some bubble
rearrangements (side swapping, also known as “T17). In this case, the DWS data—for
which n=1 to fit the data—provide us with the rate of coarsening-induced rearrange-
ments.

Under shear and with rough surfaces, we find that the autocorrelation curve fits are
always better using n=2, rather than 1. Continuous shear-induced flows are thus domi-
nating over coarsening rearrangements. Note that this fitting procedure with n=2 is less
efficient for the lowest shear rate, where a contribution of discrete shear-induced rear-
rangement (n=1) should probably be added; however, it remains clear that the main
mechanism is the one corresponding to n=2, and we will only keep this one for all the
shear rates. In this regime, we find that the dependence of 1/7 with shear rate follows a
power law with an average exponent of 0.80 = 0.05. The exponent is independent of the
liquid volume fraction, and the prefactor decreases with the liquid volume fraction. A
closer look shows that the exponent is actually close to 0.9 at the lowest v, and slightly
decreases at high 7.
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FIG. 5. Typical DWS results for SDS foams at £=0.15: Rearrangement frequency (1/7) vs applied shear rate
on a rough plate (filled symbols) and on a smooth plate (open symbols), averaged on 3—4 measurements for
each applied shear rate. The circles correspond to n=1 and the triangles correspond to n=2 [see Eq. (2)].

For the smooth plate at low shear rates, we get a plateau, which turns out to be exactly
at the same value as the one for a foam at rest; along this plateau, data fitting is always
better using n=1. Above a critical shear rate, which corresponds to the same 7y identified
in the flow curve, another power law is found, with an exponent of 1.75 % 0.25 that does
not depend on the liquid volume fraction either. Note that 1/7 is always smaller than the
one measured with rough plates. Nevertheless, at the highest shear rates, 1/7 no longer
depends on the roughness. These results are consistent with previous published results
[Gopal and Durian (1999)], and will be discussed in Sec. IV.

B. Casein foams
1. Rheometry results

In Fig. 6, flow curves for CAS foams at £=0.15, with smooth and rough plates, are
shown. For rough plates, a shape consistent with a HB behavior (solid line) is found;
however, the yield stress appears less marked. The high shear rates regime is described by
a power law with an exponent 8 of 0.30 %+ 0.01. For the opposite case of the smooth plate,
the flow curve at low shear rates gives a power law with an exponent & of 0.32+0.01.
There is only a tiny change of slope at the yield stress, and at the highest shear rates, an
exponent still quite close to 0.3 can be estimated.

The comparisons between SDS and CAS foams are summarized in Fig. 7: it is clearly
shown that the surfactant and thus the interfacial and film properties control both the slip
and the shear behaviors.

2. DWS results

Qualitatively, the results are similar to the ones of SDS foams. With a rough plate, 1/T
follows an almost linear behavior, using n=2. While with a smooth plate, a first plateau
is observed (with a fitting parameter n=1) corresponding again to the value at y=0. For
high shear rates, a power law is found with the same exponent as for the SDS foams.
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FIG. 6. Flow curves for CAS foams at £=0.15 and effect of the roughness. Full symbols for a rough plate and
open symbols for a smooth plate.

C. GCK foams

For GCK foams, only flow curves have been measured, for both plate roughness and
several liquid volume fractions & up to 0.25. A HB behavior is well evidenced, as for
SDS, with rough surfaces, allowing us to determine the yield stresses. For the high shear
rates, the exponent 8 has a unique value of 0.49 =0.01, whatever ¢.

With the smooth plate, a more complex behavior than with SDS and CAS is observed
for the low shear rates, corresponding to stresses below the yield stress 7,. Oppositely to
SDS and CAS, there is not only one single power law behavior (Fig. 8) over the whole
range of 7. In fact, we can still find a range of shear rates where the exponent & can be
determined as previously (solid lines on Fig. 8), up to a ¥, for which 7=7,. But, first, this
exponent turns out not to be constant: it increases with the liquid fraction, 6=0.28, 0.44,

stress (Pa)

viscous stress (Pa)
-]

—*—SDS, £=15%

*—SDS, €=15%
O CAS, £ =15% 2

O CAS,£=15%

0,1
0,001 0,01 0,1 1 1 10

applied shear rate (s™) applied shear rate (5'1)

FIG. 7. Comparisons between SDS foams and CAS foams: (left) first regime with a smooth bottom surface
(7<), and (right) viscous stress 7, with a rough bottom surface.
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FIG. 8. Flow curves for GCK foams, at various liquid fractions (£=0.2, 0.15, 0.1, and 0.05) and with a smooth
bottom plate.

0.48, and 0.66 for £=0.05, 0.10, 0.15, and 0.25 respectively. Second, another behavior is
found at very low shear rates. Another power law is more and more evidenced as the
foam is dry (dashed lines in Fig. 8): Its exponent decreases almost down to zero and the
corresponding range of shear rates increases as € decreases.

IV. DISCUSSION

A. Slip or shear: DWS data analysis

First, we show that the coupling of DWS and rheometry can provide us with the type
of flow occurring in the foam, whatever the roughness and the shear rates. In one hand,
with rough surfaces, a uniform flow without slip can be expected. According to Gopal
and Durian (1995), under such conditions, the rate of rearrangements 1/7T inside the foam
is simply linear with the shear rate. Such linear relationship was also found with laminar
shear flow of dilute colloidal suspension [Wu et al. (1990)]. For aqueous foams, this
linearity and quantitative agreement have also been found experimentally in a cylindrical
Couette rtheometer by Gopal and Durian (1999). In that context, the power law we find,
with an exponent slightly below 1, is consistent with previous works. However, the
smaller value measured implies some disturbing phenomena, most likely some slip oc-
curring at the highest shear rates. This means that with rough surfaces, as initially ex-
pected, there is mostly no slip (unless at the highest shear rates). It is interesting to note
that the existence of slip does not only depend on the plate roughness itself, but also on
the applied shear rate.

In the other hand, for the smooth plate, using the DWS data, we can determine that the
low shear rates regime (before 7g) is a pure slip behavior: The constant value of
1/T—equal to the value found for foams at rest—and n=1 prove that the foams actually
slip on the smooth plate without any shear-induced bubble rearrangements. The foam
translation due to slip is actually not fast enough, when compared to the coarsening
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FIG. 9. Flow curves for rough and smooth plates (SDS foam at £=0.15), as a function of the real shear rate
deduced from the DWS measurements. For the smooth plate, only the points above the yield stress, where shear
occurs simultaneously to slip, have to be considered in this graph.

dynamics, to be responsible for the decorrelation of light: Thus this translation has no
effect on the DWS data, as if the foam stays at rest, only subjected to coarsening-induced
rearrangements.

Above s, we find that the flow must be a mixture of slip and shear. First, as n=2,
there are clear signs of correlated shear-induced rearrangements. Second, since we are
measuring, for a given y> g, smaller 1/7 than with a rough surface, the foam must still
be simultaneously slipping, confirming previous results by Gopal and Durian (1995) on
the detection of slip by DWS. So, the true shear rate occurring into the foam must be
smaller than the applied one.

If we first consider that the DWS curve for the rough surfaces is ideal (true up to the
highest shear rates), and secondly assume that the frequency 1/T always reflects the
actual shear rate in the bulk, we can recover the real shear rate occurring in the smooth
plate case. In that respect, the DWS measurements provide us with the rate at which
bubbles are actually sheared within the foam, independently of some possible slip. For
instance, an applied shear rate of 7 s~ for the smooth plate corresponds to a true shear
rate of 2 s!, since those both correspond to the same 1/7, as shown by the arrow in
Fig. 5.

We can then re-plot—for the points above the yield stress—the rheology results of Fig.
2 as a function of the real shear rate encountered by the foam: Once this renormalization
is done, the data points for the rough and smooth plates almost collapse (Fig. 9). How-
ever, this collapse is not as perfect as it should be if both the real shear stress and shear
rate were correctly extracted from the smooth surface data. In fact, when slip occurs
simultaneously with the shear, extracting the true shear stress from the measured torque
is not as straightforward as in the standard case (considering no slip and uniform stress in
the sample). Here we have used the stress value calculated assuming these assumptions,
and this must be one of the origins of the observed discrepancy in Fig. 9.
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We can also note that for a full collapse of the data in Fig. 9, one just has to subtract
a few Pa from the stress obtained when shear and slip occurs: This is typically the correct
range of slip stresses measured in the pure slip regime (see Fig. 2), but it is always
smaller than the yield stress. It thus appears that the slip contribution is maximum at the
yield stress, and that it decreases at higher shear rates. This is actually confirmed by the
DWS measurements: Using the renormalization we can deduce the slip velocity. It
reaches a maximum at the yield stress, and tends to remain constant (or to slightly
decrease) above 7. Such behavior is also consistent with observations in [Meeker et al.
(2004b)] and remains to be fully understood.

B. Slip regime: Comparing data and further quantitative analysis

Our data confirm that the slip regime properties—both exponent and prefactor of the
scaling law—depend on the interfacial properties and on the liquid volume fraction. As
already stated, many theoretical works have been performed on this topic, and the results
mostly dealt with the scaling exponent. The main issue is thus to discuss the quantitative
aspects of the problem, in order to converge on a complete model.

First, for comparisons to previous works, we introduce nondimensional quantities
allowing us to simplify the dependence with the bubble size, the surface tension and the
bulk viscosity. The shear stress 7 is normalized by (o/R), and in the following we use
7' =7/(0/R) and a capillary number Ca=nV/o, where 7 is the surfactant solution vis-
cosity and V is the linear velocity of the foam at the plate surface. The latter is calculated
at half the cone radius from the angular velocity, first because this gives the mean linear
velocity, and second because it is where the DWS data are collected. Second, for a
detailed quantitative analysis, one also has to carefully derive the value of the stress from
the measured torque: When pure slip occurs, the stress varies with the cell radius as it
depends on the slip velocity. It is found that the standard calculation, which assumes a
uniform stress over the sample, remains valid for all the qualitative descriptions in terms
of exponent, when a power law relationship between the measured torque and the slip
velocity is found [Denkov et al. (2005)]. But it can no longer be used and a correction has
to be made to determine quantitatively the dimensionless prefactor «, defined by 7’
=a;Ca‘S in case of pure slip. Consequently, we have used the formalism described in
Denkov er al. (2005) to accurately calculate the slip stress (by integrating along a radius)
and this prefactor «, and the results are given in Fig. 4, right.

Denkov et al. (2006) showed that, for “immobile” (or rigid-like) gas-liquid interfaces,
the following equation relates the stress needed for slip to the capillary number:

=7 / (%) =1.25C,_pF(e)CY? +2.1C,_ppH(e)C2> (3)
With
f3/4
F(s)=1:fl,2 and H(e)=f"" (4)
V1=

The function f only depends on &: f=1-3.2 [(1—&)/&+7.7]7"%, an expression derived
empirically by Princen (2001). Equation (3) reflects the geometry of the contact between
a foam and a wall. There are two different structures in which fluid motion and viscous
dissipation can take place: (i) the flat thin film made by the contact between the bubble
face and the wall, and (ii) the thick channels separating the bubbles, also called “‘surface
Plateau borders” (named “PB” in the following). These borders have a triangular-like
shape, with one of their faces in contact with the wall. In Eq. (3), the first
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contribution—in Ca'’?, weighted by the prefactor C,_—corresponds to viscous dissipa-

tion inside the flat wetting film. The second—in Ca*?, weighted by the prefactor
C;_pg——comes from dissipation inside the PB. The differences in geometry of these two
structures are responsible for the different macroscopic behaviors. This scaling in Ca*?
was also found in the pioneering work of Bretherton (1961), who only takes into account
the dissipation in the Plateau border.

For “mobile” interfaces (“fluid-like” ones), predictions for the stress are the following:

= T/ (%) =3C,,_psH(e)CY?  with H(e) = /12 5)

In these conditions, the dissipation in the film is neglected: There is almost no shear in the
film as the bubble interface is flowing with the bulk liquid. Only the effects in the PB are
taken into account. Recent numerical refinements by Saugey er al. (2006) confirm the
scaling with the exponent 2/3; but note that this is true only in a certain range of Ca (for
Ca>107 the exponent slightly decreases with Ca).

Coupling these different results, we can first notice that the difference between immo-
bile and mobile cases for the dissipation in the PB is simply in the prefactor (which is still
not known). One can just expect that the value for immobile surfaces can be higher than
for the mobile ones. Also it turns out from Egs. (3) and (4) that by increasing the liquid
content one should change the balance between dissipation in the film and in the PB, and
shift from one scaling to the other: From the dependence with &, the second contribution
becomes bigger as & increases. However, it is not predicted whether it is physically
possible to have this second contribution higher than the first one, and at which value of
g, since the prefactors C,_p and C;_pp are not yet known. So an important issue is to find
out what are the prefactors to determine the exact balance between the different contri-
butions.

Our data can now be compared to these models, starting with the measured power law
exponent o. For the CAS foams, one expects highly viscoelastic interfaces and thick
gelified films: Our results show that the exponent is 6=0.32, below but close to the
predictions for immobile interfaces and for dominant dissipation in the contact film [Eq.
(3)]. Indeed, this is what is expected, and it is consistent with previous works on foams
and on microgels, all having highly viscoelastic interfaces [Denkov ef al. (2005); Meeker
et al. (2004a, 2004b)]. On the opposite, the results for SDS foams are also consistent with
the interfacial properties: SDS-covered interfaces are expected to be very fluid-like in-
terfaces so a scaling in Ca?? should be, and is actually observed. In that respect, the
results with GCK are quite interesting: As the liquid volume fraction increases, o shifts
from ~0.3 to ~0.66. Thus, in agreement with Eq. (3), it is physically feasible to tune the
slip regime—and the location of the main dissipation—by changing the liquid volume
fraction e.

To be more quantitative, we now study the dimensionless prefactors ! (7' =a’Ca’) as
a function of the liquid volume fraction (Fig. 10, left). For CAS and GCK foams with
£<0.25, the exponent & is close and can be forced to 0.5, so that we can compare the
measured dependence of ag with & to the first term of Eq. (3). In Fig. 10, left, the solid
line represents this theoretical dependence using the value for C;_p=3.7, determined at
£=0.1 in Denkov et al. (2006). A good agreement is observed, and the prefactor smoothly
decreases with €. Practically speaking, this tends to prove that we are normalizing our
data as in Denkov er al. (2006), with the same definition for the capillary number, etc.

For SDS foams, the exponent is 6=0.65; in this regime, we can also compare the
dependence of the nondimensional prefactors «;, to the predicted dependence of Eq. (5)



1104 MARZE, LANGEVIN, AND SAINT-JALMES

12 T T T T T 10 T T T T T
*  GCK foam, with § = 1/2 o 4 GCK foam with B =0.5
3 ¥ CAS foam, with § = 1/2 A GCK foam with g = 0.45
10 A immobile surface, C, = 3.7 ,8=1/2 | sl o SDS foam vith § = 0.5 ]
” -5> ®  SDS foam with = 0.45
= = & SDS foam, with § = 2/3 " -
8 g\~ o GCK foam, with =213 1 o denkov's model (B =0.465)
= J — mobile surface, C,, = 2.1 ,5=2/3 e r\ - princen’s model (B = 0.5)
O 6| i
"5 ----- mobile surface, C,, ., = 3.9 ,8=2/3 E
g o
o 6 1 &
s .
o] L ]
o 38 4
» 4 1 @
2} ]
2 .
. AN
0 5 0 L I L ! i3
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 015 02 025 03
liquid volume fraction, € liquid volume fraction, €

FIG. 10. (Left) Slip regime dimensionless prefactors a; as a function of &, for SDS foams with exponent &
=2/3 (upright triangles), GCK foams with §=2/3 (square), GCK foams with §=1/2 (diamond), and CAS
foams with 6=1/2 (downright triangle). The solid line represents the predicted dependency for immobile
interfaces with C;_r=3.7, the dotted and dashed lines are the predictions for mobile surfaces with Cy,_pp=3.9
and Cy_pp=2.1, respectively. (Right) Shear regime dimensionless prefactors «, as a function of &, for SDS
foams and GCK foams with 8=0.45 and 0.5. The lines represents the description from Princen and Kiss (1989)
and the model of Denkov et al. (2008).

(dotted line in Fig. 10), using the value found by Denkov et al. (2005) for Cy_pg=3.9
(note that this C,,_pg was only inferred from a single measurement at £=0.1). We find
prefactors about twice smaller than previously reported (except for the point at 0.05,
which appears much higher than the others). Adjusting our data with the model of Eq. (5)
provides a rough agreement (dashed line), and a value Cj,_pg=2.1. Last, we can extract,
for the first time, from the GCK point at €=0.25 a value for the prefactor C,_pp: the
fitting with 6=0.66 provides C;_pz=3.5. From all these pieces of information, many
remarks can be made in order to move towards a complete description of slip. First, with
GCK foams, the measured value of C,_p and C,_pg can be plugged into Eq. (3): We
consistently find that the second contribution actually becomes dominant for £ >0.2 (for
a typical Ca value).

It is also well confirmed that changing the surfactant changes the slip regime. How-
ever, in the Egs. (3) and (5), such dependencies are not yet included (only the effect of
liquid fraction is determined, and fairly validated by data as discussed previously). For a
complete and quantitative scheme of slip, one also has to include the effect of the sur-
factant. In that goal, the slip coefficients (C,_g, etc.) cannot be constant values, but must
be functions of the interfacial properties. So, we propose that a complete model for slip
must have only two terms, as in Eq. (3). The first one corresponds to dissipation in the
film: It depends on the liquid fraction in a way already well described by Eq. (3), and has
a prefactor Cgp Which is a decreasing function of the interfacial mobility. For perfectly
rigid surfaces, Cgy=C)_p; for the opposite case of mobile surfaces, Cgyy Vanishes
down to 0, since there is no more contribution of the film in this limit of highly mobile
interfaces. For the dissipation in the film, making the surface less and less rigid moves the
solid line downwards in Fig. 10, left, the slip stress is lowered (CAS-covered surfaces can
be then seen as the limiting case). The second contribution is the one from the PB—
scaling in Ca®*—which depends on the liquid fraction and has a prefactor Cpz which is
also a decreasing function of the mobility (in order to get higher stresses for more rigid
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interfaces). But, oppositely to the case of the film, there is a finite limit for the perfectly
mobile case, for which Cpg=3Cy;_pp# 0. In the other limit of rigid surfaces, the factor
Cpp=2.1C;_pp; note that from our preliminary measurements, it seems that the decrease
of the prefactor Cpp with the mobility is actually rather small (from 2.1C,_pg=7 to
3Cy_pp=6.3).

In this global picture, one understands that the second contribution (from the PB) can
eventually become dominant as the mobility increases (for any given liquid fraction). As
well, for a given surfactant, if one makes dryer foam, the relative contribution of the film
will increase.

Our data provide us with the boundary values for the two extreme limits of mobility
(with SDS and CAS), and are all consistent with the picture described above. For in-
stance, in this framework, the apparently high value measured for SDS foams at &
=0.05 can be understood by considering that the dissipation in the film can no longer be
neglected (because it is in the limit of low €). Also, the data of Denkov et al. (2005) at
€=0.1, from which a higher value of C,;_pp has been determined, could be included in
this picture, simply by assuming that they correspond to a lower surface mobility than in
our case.

The next point is to determine which microscopic interfacial properties are behind the
concept of interfacial mobility, and to know if this is related to compression or shear
response of the interfaces. On such issues, it might be instructive to consider the analogy
between these results and those on foam drainage [Stone et al. (2003); Saint-Jalmes
(2006)]. In drainage, two opposite regimes are observed, with two different power laws
when plotting V vs € (as here, o vs Ca). One can change from one regime to the other
either by changing the surfactant or the bubble size (as here, with the surfactant and the
liquid fraction). The dimensionless prefactors of the power laws are hydrodynamic resis-
tances, which depend on the surface mobility. This mobility includes interfacial proper-
ties, liquid fraction and bubble size (as here we have prefactors which also depend on the
interfacial properties, the liquid fraction, and the bubble size). Each regime corresponds
to a different foam structure in which the dissipation is maximum: “Dissipation in PB” vs
“dissipation in nodes” for foam drainage, “dissipation in PB” vs “dissipation in film” for
foam slip. In drainage, the relevant interfacial property has been identified as the inter-
facial shear viscosity: It is the relevant parameter as it describes how the interfaces resist
to the bulk flow or are sheared with it. In many ways, the slip issue is similar. Again, the
interfacial mobility reflects whether the interfaces are sheared or not by a bulk flow. It is
thus quite tempting to propose that the surface shear viscosity could also be the important
parameter in this problem of slip, rather than some other shear or compression moduli.
But this will have to be assessed in the future.

It is also interesting to discuss quantitatively the slip velocity. Using the DWS data and
the rheological curves, we can get the slip velocity V as a function of the foam param-
eters, especially the maximum value V'. As in Meeker et al. (2004a, 2004b) with micro-
gels, we have plotted V' as a function of the quantity GR/7; G is the shear modulus,
measured by small oscillation experiments [Saint-Jalmes and Durian (1999b)]. We find a
linear relationship as for the microgels: V' =kGR/ 7. Moreover, the factor k is the same
(k=0.003) and our set of data is well superimposed and implements the previous results
(for our foams, the quantity GR/ 7 varies from 1 to 20, while it varies from 1072 to 1 for
the microgels, and the typical velocity is about 10-40 mm s~!). To go further, we have
seen that the maximum velocity is always obtained for a stress 7 equal to the yield stress
7,. The latter is equal to y,G, where v, is the yield strain and G is the elastic shear
modulus. Those are decreasing functions of &: G=(a/R).R(g) and y,=7,9.0Q(e) [Saint-
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Jalmes and Durian (1999b)]. When equating the normalized slip and yield stresses, we
get for the case of immobile interfaces (viscous dissipation dominating in the films):

V,_g{ Y0 HR(e)Q@)T ©
"yl 1.25C, F(e) '

And for mobile surfaces (viscous dissipation dominating in the PB):

wzf{ %o ]MTR@)Q@)T” .
7L 3Cuy_pp H(e)

As a matter of fact, the functions F(g), H(e), Q(g), and R(e) are quantitatively quite
similar; they all decrease slowly with &, and are typically around 0.3 for £=0.15. First,
this gives some interesting new ways of understanding how the slip prefactor depends on
e [functions F(eg) and H(e)] since it seems that there must be some links with how
rheological properties depend on & [functions R(g) and Q(g)]. At a first order, we can
assume that RQ/H or RQ/F~ 1. With this simplification and with y,,=0.2 [Saint-Jalmes
and Durian (1999b)], it follows that we quantitatively calculate both the typical velocity
range and the slope k, and that these agree with the measurements (V' =30 mm/s and
k=0.003 =0.001). We have thus been able to explain quantitatively the origin of the slip
velocity. Especially, it emphasizes the crucial role of the yield strain value: It is a quantity
very similar for many soft materials, and it is thus understandable to get similar results as
for microgels. Qualitatively, the results are also consistent with the proposed dependence
of the prefactors C;_r and Cy,_pp With the interfacial properties. If one goes towards rigid
interfaces, the values of C,_r and Cj,_pp increase, and the slip velocity decreases, as
expected.

Last, let us comment on the very low shear rates regime seen for GCK, i.e., the
occurrence of a plateau for the dryer foams (Fig. 8). Such a “plateau,” which can be seen
as a pseudo-yield stress (but still below the real yield stress), has also been observed with
microgels [Meeker er al. (2004b)]. Though its interpretation is still lacking, it must be
related to the facts that, as the foam is dryer, there is more film surface in contact with the
wall, smaller PB radius, and that the foam is eventually no longer slipping. As discussed
previously for the roughness of a surface, it is the same for the smoothness of a surface:
It depends again on the foam properties and the applied deformation, and not only on the
surface itself.

C. Shear regime between rough surfaces

With rough surfaces on both sides of the rheometer cell preventing wall slip, the
comparison to other systems and to models can also be done. The issues of flow homo-
geneity and uniformity and the existence of simple universal behavior can thus be inves-
tigated. We first notice that once normalized by (o/R) the measured yield stresses are in
agreement with the data reported in the literature [Rouyer e al. (2005)]. Then we can
look in more detail at the viscous stress, 7,=7—7,. Here again, it can be normalized by
(o/R) and the capillary number Ca can be used. Schwartz and Princen (1987) predicted
a scaling regime 7,~ Ca®, with 8=2/3 [also found in Reinelt and Kraynik (1989)];
however, it was later found experimentally by Princen that for concentrated emulsions
[Princen and Kiss (1989)]:
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7=(r-1,) / (%)=a<b_s)cy2_ (8)

Similarly, starting from diluted emulsions up to concentrated ones, a shift from 8=2/3 to
B=1/2 (and eventually lower) was also found experimentally [Mason et al. (1996)].

More recently, Denkov et al. (2005), with rigid and mobile interfaces foams, experi-
mentally found two g, respectively 0.25%+0.02 and 0.42*0.02. A theoretical model
based on the calculation of the energy dissipated due to viscous friction inside the films
between bubbles has also been proposed by Denkov er al. (2008); the viscous stress is
then

7' =aCP(1 - &)"%/e"? 9)

with the coefficient a=0.806 and the exponent $=0.465.

Also, with transparent emulsions, an exponent 8=0.45 was found with SDS (at low
SDS concentrations, corresponding to nonattractive interactions), and simultaneous mea-
surements of the velocity profile showed that the flow was uniform with this exponent.
On the opposite, at higher concentrations of SDS, the interaction between the droplets
becomes attractive and the flow is no longer uniform (shear banding occurs).

Experiments on microgels have shown a uniform flow, and an exponent S=0.45 is
also measured. Other experiments showed in one hand that with a same commercial
shaving cream there can be shear banding [Bertola et al. (2003)] in Couette shear, and in
the other hand that rheological data provide an exponent 0.2 (after deducing stress from
reported viscosity measurements) [Gopal and Durian (1999)]. Nevertheless, using planar
shear geometry, Gopal and Durian came to the conclusion that the flow is uniform in
Gillette foams, on the basis of DWS measurements [Gopal and Durian (1995)]. On the
side of numerical simulations, recent models on the steady state of sheared glass [Haxton
and Liu (2007)] found a B between 0.4 and 0.6, with uniform flows. Last, with extremely
dry foams containing SDS, co-surfactants and polymers, some nonlinear velocity profiles
have been found [Rouyer et al. (2003)].

Compiling all this information, no simple and definitive picture emerges; however,
most of the results can be summarized by considering that there are most likely two
opposite cases, corresponding to two values of the exponent (8~0.2 and 8~0.45), and
two associated possible types of flow (respectively, with localization or uniform).

Our data are consistent with such previous results, and validate this classification of
flow properties. For SDS and GCK foams, the behavior looks very similar to the systems
that uniformly flow (8=0.4—0.5), and is in qualitative agreement with Eq. (9). Oppo-
sitely, the CAS foams differ, with a 8=0.31=0.01, which turns out to be much closer to
the one of shaving foams and attractive emulsions. For these foams, it is thus tempting to
deduce, by comparisons to other known results, that the flow could be no longer uniform.

So, we show that—as for emulsions—we can get different types of flow depending on
the interfacial properties, and it seems one can identify these behaviors thanks to the
macroscopic flow curve features. To go further, we can try, as for the slip, to figure out
what makes the difference at the microscopic scale between the different regimes. At first
sight, a uniform flow might preferentially be found for the simplest chemical formulation,
the most fluid-like interfaces and the thinnest films. In that respect, the CAS foams with
thick gelled and jammed interstitial films resemble more the attractive emulsions. For
such systems, one can qualitatively understand that more energy is required to switch one
bubble over another because of the gelified films. Thus, such foams prefer to localize the
shear at a given place, rather than everywhere in the sample. Despite that it is likely that
the film properties have to play a role, we still lack the relevant quantity, which controls
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the shear regime. But, data show also that we must not only consider the interfacial
properties: The liquid fraction, as the shearing geometry, must play a role regarding the
occurrence of shear localization. Last, to tackle these issues of flow uniformity, it also
seems that one has to take into account some nontrivial effects, like dynamic dilatancy,
which link the localization of the shear to a liquid fraction gradient [Marze er al. (2005)].

Quantitatively, in Fig. 10, right, we compare the results for the prefactors a’v (7
=a’ ,CaP) to the previous results of Princen and Kiss (1989) and to the recent model of
Denkov et al. (2008). The comparison to the model of Denkov ef al. (2008) turns out to
be quite correct, both on the exponent as discussed already, but also on this prefactor. The
solid line in Fig. 10, right represents the model of Eq. (9). Here, the experimental pref-
actors are determined by fixing all the B to a same value (8=0.45) close to the predicted
one [Eq. (9)]. It thus seems that this model describes our experimental data well.

If we want to compare our experiments to those of Princen and Kiss (1989), we first
have to force 8=0.5, which is less efficient: then one can see that the prefactors a’v are
consistent with the Princen and Kiss (1989) results (dashed line in Fig. 10, right). How-
ever, this dashed line does not describe the set of points as well as the solid line. Note
also that the experimental result of Denkov et al. (2005) at £=0.1 is very close to the
SDS value at £=0.1 (both with B=0.45).

On the steady shear, we finally make a few other remarks. First, on the similarity
between continuous and oscillation tests, it seems that the results shown in Fig. 3, left
show that the Cox—Merz rule holds for foams, at least in the tested cases and ranges of
parameters. Here, we did the experiments by controlling the shear rate. But it could be
done differently, by controlling the applied stress. With such stress-controlled measure-
ments, a viscosity bifurcation has been observed with shaving foams, as a direct signature
of nonuniform flows [Da Cruz (2002); Mgller (2006)]. For SDS and GCK foams, our
observations tend to show that the flow is uniform, so that there should be no viscosity
bifurcation. However, such effects should be seen with CAS foams, as for shaving ones.
We are currently performing more experiments in a stress-controlled mode to confirm the
consistency of these results.

V. SUMMARY AND CONCLUSIONS

We have reported a large amount of results on steady flows of aqueous foams made of
different chemicals, at different liquid fractions, and for different surface roughness. The
main contributions we are adding here come first from the fact that we have coupled
rheometry and DWS, and second that we have varied the liquid fractions of foams of
well-controlled properties. This provided us with a large set of new results at different
scales. With such new data and by comparing them to previous works, we have been able
to get a better understanding on many issues related to foam slip and shear.

The occurrence of slip at a solid surface is crucial in the mechanical response of the
foam: Whether the foam is slipping or not induces quite different behaviors. We have
confirmed that there are different slip regimes. Qualitatively, changing the surfactant
changes the slip regime. As well, we have experimentally shown that the liquid
fraction—for fixed interfacial properties—can also change the slip regime. There are
actually two extreme cases, each corresponding to a different location where the viscous
dissipation dominates (contact film and PB). In a real situation, viscous dissipations (or
resistance) in the film and in the PB are both present, and the balance between them is
controlled by the surfactant and the liquid fraction. Quantitatively, we report for the first
time experiments showing how the hydrodynamic resistance in the film and in the PB
(characterized by Cgpy and Cpp) depend on the liquid fraction and on the surfactant.
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From all our results, we propose that the interfacial properties must be included into these
film and PB contributions in such a way that a coefficient Cgy y; strongly decreases down
to 0 with increasing interfacial mobility, whereas Cpp must only decrease slightly down
to a constant value at high interfacial mobility. These first measurements will help to
validate future quantitative models. It remains to determine exactly which microscopic
properties of the interface are relevant. From the analogy with drainage and due to the
central role of the coupling between bulk and surface flows, we suggest that the shear
interfacial viscosity is likely to play this role.

In a more general view, we want to point out that we recover, as in many other aspects
of foam physics, that the macroscopic foam properties result from a subtle balance
between what is happening in the Plateau borders, the nodes, and the films. Then, by
changing the interfacial properties (thus the surfactants used) or the liquid fraction, one
can modify the equilibrium between the effects in the different structures, and get differ-
ent macroscopic behaviors (which significantly differs because the scales and geometries
of PB, nodes, and films are quite different).

Thanks to the use of DWS, we have measured the slip velocity, which turns out to
have a maximum at the yield stress. In fact, DWS is a very useful tool for discriminating
between slipping and sheared foams, and for extracting the real shear rate within the
foam. Quantitatively, we have been able to explain the slip velocity; in particular, this
analysis enlights the role of the yield strain of the material.

Concerning the steady shear (without slip), we have first confirmed some previous
results, concerning both the dependence of the yield stress and the behavior of the
viscous stress with liquid fraction and shear rate. Once the real shear rate is known, we
have found that the flow properties depend also on the surfactants. Compiling previous
works on emulsions, microgels, and foams, we have been able to determine that our SDS
foams most likely flow uniformly, without localization effects, whereas our CAS
foams—as the shaving foams—display shear nonuniformities. These results stress the
importance of the interaction between bubbles, via the interstitial film properties. But,
this remains to be completely elucidated, as well as the balance between such interfacial
effects and those of the liquid fraction on the flow uniformity.

We have also brought proofs that steady shear and oscillation measurement modes can
provide similar results, tending to show that the Cox—Merz rule holds for foams. Last,
these results also show that a surface is never perfectly rough or smooth: It always also
depends on the foam properties and the applied shear rate.
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