
OFFPRINT

Influence of bubble size and thermal dissipation
on compressive wave attenuation in liquid

foams

M. Monloubou, A. Saint-Jalmes, B. Dollet and I. Cantat

EPL, 112 (2015) 34001

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-

formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but

not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, innovative Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary 

research to astrophysics, geophysics, plasma and fusion sciences, including those 

with application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles ensures that EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work  

with others across the whole of the physics community.

Run by active scientists, for scientists 

EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community. The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 105  Number 1 

January  2014

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 103  Number 1 

July 2013

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 104  Number 1 

October 2013

ISSN 0295-5075 www.epl journal.org

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 50+ Co-editors, who are experts in their field, oversee the 

entire peer-review process, from selection of the referees to making all 

final acceptance decisions.

Convenience – Easy to access compilations of recent articles in specific 

narrow fields available on the website.

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from submission to online publication is under  

100 days.

High visibility – Strong promotion and visibility through material available 

at over 300 events annually, distributed via e-mail, and targeted mailshot 

newsletters.

International reach – Over 2600 institutions have access to EPL,  

enabling your work to be read by your peers in 90 countries.

Open access – Articles are offered open access for a one-off author 

payment; green open access on all others with a 12-month embargo.

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to gain recognition for your research through worldwide 

visibility and high citations. As an EPL author, you will benefit from:560,000
full text downloads in 2013

OVER

24 DAYS

10,755

average accept to online 

publication in 2013

citations in 2013

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We greatly appreciate 

the efficient, professional 

and rapid processing of 

our paper by your team.”

Cong Lin

Shanghai University



November 2015

EPL, 112 (2015) 34001 www.epljournal.org

doi: 10.1209/0295-5075/112/34001

Influence of bubble size and thermal dissipation on compressive

wave attenuation in liquid foams

M. Monloubou, A. Saint-Jalmes, B. Dollet and I. Cantat

Institut de Physique de Rennes, UMR 6251 CNRS/Université de Rennes 1 - Rennes, France
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Abstract – Acoustic or blast wave absorption by liquid foams is especially efficient and bubble
size or liquid fraction optimization is an important challenge in this context. A resonant behavior
of foams has recently been observed, but the main local dissipative process is still unknown. In
this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to
the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation
at time scales of the order of the millisecond, which propagates in the foam in linear and slightly
nonlinear regimes.

Copyright c© EPLA, 2015

Liquid foams have a surprisingly high effective viscosity,
which can be several orders of magnitude larger than the
foaming solution viscosity [1]. Energy dissipation in foams
may have very different local origins and their identifica-
tion, as a function of the characteristic time scales and of
the foam properties, is a long-lasting fundamental and ap-
plied challenge [2]. For simple shear, dissipation has been
shown to be directly coupled to the foam coarsening at
very low frequency (10−2 Hz) [3,4] and to arise from vis-
cous dissipation between bubbles for frequencies around
the Hz [5]. At higher frequencies, the foam loss modulus
varies as the square root of the frequency and the local ori-
gin of this dissipation is still a matter of debate [6–9]. For
isolated films vibrating at 1 kHz, the viscous dissipation
in air is dominant [10].

Compressive waves in foams have been studied in the
context of acoustic and blast waves. The need to optimize
the blast wave absorption, in terms of liquid fraction, bub-
ble size or chemical formulation, stimulated experimental
studies at the film scale [11] and at the foam scale, both on
field, using real detonations [12,13], and in the lab, using
shock tubes [14,15]. Most theoretical approaches on blast
wave absorption disregard the foam structure, and focus
only on the role of the liquid fraction [16]. In the acoustic
pressure range however, several studies clearly established
the important role of the bubble size on the sound propa-
gation, both theoretically and experimentally [17–22].

Compression waves modify the gas temperature and
thus induce thermal effects. Thermal dissipation is ex-
acerbated in the foam, as its structure makes especially

efficient heat transfer between the liquid and gas phases.
It has been computed for a bubbly liquid, in the limit of
small gas fraction, evidencing two limiting cases, for bub-
bles of radius R much smaller or much larger than the
thermal length ℓT =

√
χτ , with τ the excitation charac-

teristic time and χ the heat diffusivity. The attenuation
coefficient is predicted to scale as R2/τ2 for small bubbles
(isothermal regime), and as 1/(R

√
τ) for large ones (isen-

tropic regime) [23,24]. A good agreement has been found
with the first scaling for acoustic waves of frequencies in
the range 40–80 kHz propagating in commercial shaving
foams [18].

This paper focuses on the attenuation of a compressive
wave propagating in a liquid foam, with an overpressure
duration τ of the order of one millisecond. We work on the
moderate overpressure regime, below the critical pressure
at which the foam is fully destroyed, and above the linear
regime. Recording the pressure evolution in a foam sam-
ple, we determine the wave amplitude attenuation. We
establish the scaling laws for the thermal attenuation in
the context of dry foams and recover the two scaling laws
proposed for bubbly liquids [24]. Experimentally, the att-
enuation varies as R2 for small bubbles as in [18], but we
evidence that it departs from this law for larger bubbles.
We thus identify the crossover between the isothermal and
isentropic regimes, for R ≈ 5ℓT , that coincides with an op-
timal energy absorption, distinct from the optimal energy
absorption induced by the resonance [19,21,25].

The foam is produced by turbulent mixing of nitrogen
and foaming solution at a flow rate of the order of
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Fig. 1: (Color online) Sketch of the experimental set-up.

100mL/s [26]. The solution is composed of SDS (sodium
dodecyl sulfate) at a concentration 10 g/L in pure water.
The foam is then injected in a cell made of two trans-
parent square plates, through a hole in the middle of the
top plate. The plates are 30 cm wide and the gap be-
tween them is H = 3 cm (see fig. 1). The liquid fraction
of the foam is controlled by the nitrogen flux and is mea-
sured a posteriori. Its value is φl = (4.8 ± 0.3)% for all
the results shown in the paper. As the foam evolves by
coarsening, the average bubble size increases with time
and bigger bubbles are obtained after some delay. During
this delay, the cell is flipped upside down every 30 seconds
to ensure a homogeneous liquid fraction in the cell. With
this method, the accessible bubble radius is 100–300μm.
Larger bubble radii, up to 500μm, have been obtained by
blowing nitrogen through four porous frits immersed in
the foaming solution, below the cell, held vertically.

Just after the shock, a few hundreds of bubbles are ex-
tracted from the cell and spread on a thin layer of foaming
solution, forming a monolayer of spherical bubbles. Their
average radius R, determined by image processing, is used
to quantify the bubble size in the foam [25]. The diame-
ter distribution is roughly log-normal, with a normalized
standard deviation of the order of 0.4.

A pressure wave is generated with a homemade shock
tube inspired by [27], composed of a high-pressure cham-
ber separated from a low-pressure one by a diaphragm.
Nitrogen is injected into the high-pressure chamber until
the rupture of the diaphragm, which generates a shock
wave (i.e. an overpressure step) that propagates in the
tube. When reaching the exit of the tube, which is con-
nected to the middle of the cell (see fig. 1), the shock wave
turns into a blast wave that propagates in the foam. The
wave amplitude is varied by changing the diaphragm. We
used aluminium foil (1 to 4 layers) and, for the weakest
shocks, one parafilm layer. Four pressure sensors PCB 113
B28 are installed on the top plate at a distance ri from
the centre, with i = 1–4 and ri = [3.10, 5.15, 7.20, 9.25] cm.
They are connected to an oscilloscope TDS 2004 B, and
record the pressure pi(t) with a sampling time of 4μs.

Figure 2 shows typical pressure signals as a function
of time, at different distances from the cell center. At
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Fig. 2: (Color online) Pressure at sensors 1 to 4 (solid lines,
from left to right) as a function of time for R = 210 µm. Dash-
dotted line: signal used as numerical boundary condition for
the simulations. Dashed lines: numerical simulations of the
pressure at sensor 2 to 4, with ν = 1.1 m2/s and γ = 1. Inset:
rescaled signals p1(t)/P1 at sensor 1 for R = 115 (black), 210
(blue) and 265 (red) µm for 4 aluminium foils (solid line), 2 foils
(dash-dotted line) and parafilm (dashed line).

sensor 1, a rapid pressure increase is followed by a slower
pressure decrease and a small underpressure. This kind
of profile is typical of a blast wave [12]. The duration of
the overpressure is of the order of 2ms and finishes be-
fore the first wave reflections come back from the external
foam boundary, in contact with air. The results do not de-
pend on the cell thickness H for H < 5 cm and the wave
propagation is cylindrical.

The transmission coefficient from the shock tube to the
foam depends on the bubble size and on the shock am-
plitude, but the rescaled pressure p1(t)/P1, with P1 the
maximal pressure at sensor 1, is independent on those pa-
rameters (see fig. 2, inset). The initial signal p1(t) is thus
fully characterized by the single parameter P1 which is our
control parameter for the shock amplitude in the whole
study.

The pressure ratio, α = P4/P1, with P4 the maximum
pressure value measured at sensor 4, is shown in fig. 3
as a function of the amplitude, for 6 bubble sizes. α in-
creases with the amplitude and can be fitted by a phe-
nomenological affine law αfit(R, P1) = α0(R)+KP1, with
K = 6.5Pa−1 the slope leading to the best agreement.
The standard deviation is σ(R) = 〈(αexp − αfit)2〉1/2. In
the linear regime, the wave attenuation is classically quan-
tified by an attenuation length ℓa defined by the relation
α = αref exp[(r1 − r4)/ℓa], αref being the expected at-
tenuation, in the nondissipative case. In our cylindrical
geometry, αref = (r1/r4)

1/2 = 0.58. The length ℓexpa was
computed for each bubble size using the value of α ex-
trapolated at small amplitude, α0(R) ± σ(R), shown in
fig. 3 (inset). The main result is that the pressure attenu-
ation increases with bubble size for bubbles smaller than
300μm (and the attenuation length thus decreases) and
saturates for larger bubbles, at constant liquid fraction.
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Fig. 3: (Color online) Pressure ratio in the foam α = P4/P1 as a
function of the initial wave amplitude P1, for different bubble
sizes R: 117 (�), 182 (⋆), 210 (�), 265 (�), 303 (•), and
535 (�) µm. The last two points have been obtained with the
vertical cell. The liquid fraction is φl = (4.8 ± 0.3)%. The solid
lines are numerical results obtained for ν = 0.001, 0.17, 0.25
and 1.5 m2/s (from top to bottom) and γ = 1. The dashed line
are phenomenological fits αfit = α0(R) + 6.5 P1 (in Pa). Inset:
α0(R) ± σ(R) as a function of the bubble size.

The experimental pressure ratio, in the small amplitude
limit, remains below the geometrical limit αref as ex-
pected. However, at larger amplitudes the nonlinearities
reduce the attenuation, and α may cross this limit.

When the wave reaches a bubble, its pressure increases
by typically δp ≈ 104 Pa during τ ≈ 1ms. Considering
an ideal gas behavior in the bubbles, this may lead to a
temperature increase of δT s = δP/(ρgcp) ≈ 10K if the
process is isentropic, with ρg = 1.2 kg/m3 the gas den-
sity and cp = 103 J · kg−1 · K−1 its specific heat at con-
stant pressure. The bubble is surrounded by the liquid
phase, that plays the role of a thermostat at tempera-
ture T . Indeed, in a given volume of foam, the ratio
of the thermal capacities of gas and liquid phases equals
ρgcp/(ρscp,sφl) = 5 · 10−3 ≪ 1, with ρs = 103 kg/m−3 the
density of the solution and cp,s = 4 · 103 J · kg−1 · K−1

its specific heat. At a time τ after the bubble com-
pression, the thickness of the thermal boundary layer is
ℓT =

√
χτ ≈ 10−4 m, with χ = 20 · 10−6 m2/s the heat

diffusivity. This length ℓT is much smaller than the wave
length λ = cτ ≈ 5 · 10−2 m, with c ≈ 50m/s the sound
velocity (see inset of fig. 4). It is, in contrast, just in the
range of the investigated bubble size.

Thermal properties first influence the foam effective
compressibility, and thus the wave velocity. A classical
prediction for the linear sound velocity c is the Wood ve-
locity. In this model, the foam is replaced by a continuous
medium of density ρ = φlρs related to the local pressure
ptot by a constitutive relation [28,29]

ptot = p0

[

(1 − φl,0)ρ

ρ0 − φl,0ρ

]γ

, (1)

with p0 the initial atmospheric pressure, ρ0 and φ0 the
foam density and its liquid fraction at ptot = p0. The gas
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Fig. 4: (Color online) Foam effective viscosity as a function of
the bubble size; (o) viscosities deduced directly from the exper-
imental attenuation, as defined in the text, (×) viscosities ob-
tained as fitting parameter in the numerical simulations, when
possible. The error bars are deduced from the experimental
dispersion σ(R). The solid and dashed lines are the predic-
tions of eq. (4) and eq. (3), rescaled vertically by a factor 0.4
and 7, respectively. Inset: sound velocity as a function of the
bubble size, in the small amplitude limit. Rectangles represent
the isothermal (bottom) and isentropic (top) Wood velocities,
with the error bar arising from the liquid fraction error bar.

can be modeled as a ideal diatomic gas and γ = 1.4 or
γ = 1 for the isentropic and isothermal cases, respectively.
The Wood velocity is

c2

W =

(

∂ptot

∂ρ

)

ρ=ρ0

=
γp0

(1 − φl,0)φl,0ρs
. (2)

For φl = 0.048, ct
W

= 47m/s for γ = 1, and cs
W

= 56m/s
for γ = 1.4. The small amplitude front velocity, mea-
sured optically for a better precision (see appendix A), is
better fitted with the isothermal Wood velocity for small
bubbles and by the isentropic velocity for large bubbles
(see inset of fig. 4). Note that the front velocity we mea-
sured may be sligthly larger than the average velocity of
the whole signal, because of the signal spreading. It thus
should be considered as an upper boundary for the sound
velocity.

More importantly, thermal gradients also lead to en-
ergy dissipation and significantly contribute to the wave
attenuation. The isentropic and isothermal assumptions
are valid if the bubble size is respectively much larger and
much smaller than ℓT [24]. We thus derive the scaling
laws of the thermal dissipation in the linear regime for
small bubbles (isothermal model) and for large bubbles
(isentropic model). We then extrapolate these two limit-
ing cases to cover our whole bubble size range.

The mechanical wave carries the energy per bubble
E0 ∼ ρ0u

2R3 ∼ ρ0[δp/(ρ0c)]
2R3. This energy de-

creases with time as [30] Ė ∼ κ
T ∇T 2Ωdis with κ =

2·10−2 W · m−1 · K−1 the thermal conductivity of nitrogen
and Ωdis the volume of dissipation, in one bubble.

34001-p3
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The attenuation length is larger than the wave exten-
sion, so we can use the properties of the inviscid wave
propagation to determine the scaling law of the energy
dissipation [30].

We first consider the isentropic limit. In that case, the
temperature in a bubble during the overpressure is T +δT s

and varies close to the liquid phase at T over the typical
distance ℓT =

√
χτ < R, so that Ωdis ∼ R2ℓT and ∇T ∼

δT s/ℓT . Using χ = κ/(ρgcp) we get

1

ℓs
a

∼ Ė

cE0

∼ cρ0

ρgcpTR

√

κ

ρgcpτ
, (3)

giving an attenuation length ℓs
a ≈ 10 cm for τ ≈ 10−3 s

and R ≈ 10−4 m.
The same kind of analysis can be performed for the

isothermal wave propagation. In that case, the gas re-
mains at constant temperature and thus at constant en-
ergy (ideal gas assumption). The mechanical work on a
bubble δW ∼ pδV ∼ R3δp thus equals the heat exchange
with the liquid phase and δQ ∼ R3δp for each bubble, dur-
ing the characteristic time τ . This heat flux is ensured by
thermal conduction and thus δQ ∼ κ∇T tR2τ ∼ κδT tRτ .
From these two relations, we deduce the small temperature
variation δT t between the bubble center and the bubble
boundary. The temperature gradients scale as δT t/R and
Ωdis = R3. We finally get

1

ℓt
a

∼ Ė

cE0

∼ R2cρ0

κTτ2
, (4)

giving ℓt
a ≈ 10 cm, like ℓs

a, for the same parameters.
The dissipation in the continuous phase may also be

relevant in the problem. When the foam is compressed,
the liquid phase remains incompressible, but the films and
the meniscus are sheared or elongated in a complex way
which depends on the local foam structure. This induces
viscous dissipation in the liquid phase, as well as a specific
interfacial dissipation related to the interfacial shear and
dilatational viscosities. When the foam is simply sheared,
the gas is not compressed and the thermal dissipation is
thus probably irrelevant. In contrast, the film and menis-
cus deformations are a priori of similar nature as under
foam compression. Even if the local processes associated
to the global deformation of the foam are mostly un-
known, the dissipation in the continuous phase can thus be
qualitatively estimated from the effective viscosity of the
foam measured in simple shear experiments. Kinematic
shear viscosities at 100Hz of the order of νv = 0.02m2/s
have been reported [31,32]. The viscous attenuation length
ℓv
a scales as 1/ℓv

a = νv/(τ2c3) [30], which would lead to
ℓv
a ∼ 5m. As the foam is known to be a shear thinning

material, its effective viscosity should be even smaller at
higher frequencies. Viscous dissipation is thus a priori
negligible in comparison with thermal dissipation.

Whatever their physical origin, all dissipative processes
play the mechanical role of an effective viscosity, with

ν ∼ τ2c3/ℓa [30]. From the order of magnitude determined
above, ν is governed by the attenuation (3) for small bub-
bles and (4) for large ones. The crossover is reached for
R ∼ ℓT , which corresponds to a maximum of viscosity.
This predicts that, in a compressive regime, the effective
kinematic viscocity of a foam increases as R2 for R < ℓT ,
reaches a maximum and then decreases as 1/R, as already
proposed in [18].

We define the experimental viscosity by νexp =
bτ2c3/ℓexpa , with b a numerical prefactor close to one. The
parameter b = 1.2 leads to the best agreement with the
numerical simulation discussed below. Using this value,
we obtained the effective kinematic viscosity νexp for all
bubble sizes, as shown in fig. 4. It lies in the range
0.2–2m2/s and increases with the bubble radius up to
300μm. These experimental data are fitted by the expres-
sion νt = 0.4τ2c3/ℓt

a, which shows a good agreement for
the bubble radii in the range 100–300μm. In contrast, the
last point at 500μm is incompatible with the quadratic in-
crease of the viscosity with the bubble size. This radius is
much larger than the thermal layer thickness ℓT = 100μm,
hence the adiabatic limit is reached. The effective viscos-
ity νs = 7τ2c3/ℓs

a is plotted in fig. 4 and reconciles the
theoretical and experimental results. Unfortunately, we
have not been able to produce foams with larger bubbles
and still a 5% liquid fraction to evidence the viscosity de-
crease at large bubbles. We have performed experiments
at larger R, albeit at smaler φl, that suggest this decrease
of attenuation.

Beyond the linear regime, the foam properties must be
compared to numerical simulations. A minimal model
consists in considering the foam as a compressible and
dissipative continuum of density ρ0, undergoing weakly
nonlinear sound propagation. Hence, we performed nu-
merical simulations based on the second-order equation of
sound propagation,

The wave propagation equation is obtained from
the series expansion of the compressible, axisymmetric,
Navier-Stokes equation at the second order in the over-
pressure p(r, t) = ptot − p0 and in the radial foam velocity
u(r, t) ([33], eq. (14.4.12)):

(

∂rr +
1

r
∂r

)

(

p +
ν

c2
∂tp

)

− 1

c2
∂ttp =

− ρ0

(

∂rr +
2

r
∂r

)

(u2) +
Γ

ρ0c4
∂tt

(

p2
)

, (5)

where ∂X and ∂XX respectively stand for partial deriva-
tives of first and second order with respect to variable X.
The parameter Γ is ρ0c

4(∂2ρ/∂p2)0/2. For an ideal gas,
Γ = (1 − γ)/2 < 0. The parameter ν is a dissipative pa-
rameter with the dimension of a kinematic viscosity. We
only kept first-order terms in ν, the validity domain thus
being limited by the conditions p ≪ ptot and ν ≪ c2τ
with τ ≈ 1ms the typical duration of pressure variation.
This last condition yields ν ≪ 3m2 · s−1, with c ≈ 50m/s.
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Practically, reliable results have been obtained for
ν < 2m2/s.

The mass conservation closes the problem and only
needs to be computed at order one:

1

c2
∂tp + ρ0

(

∂r +
1

r

)

u = 0. (6)

We used the phenomenological fit of the pressure p1(t)
at sensor 1 shown in fig. 2 as a boundary condition at the
inner boundary. The foam is assumed to be at rest at
large r. This set of equations is solved numerically with
an implicit scheme implemented in a Matlab code, which
has been validated with a precision of 1% using known
nonlinear analytical solutions (see appendix B).

Qualitatively, the viscous term in (5) induces a signal
attenuation and a signal spreading, thus leading to an en-
hanced pressure attenuation. In contrast, the nonlinear
term acts against the signal spreading, and thus slows
down the maximal value decrease. These features, ob-
served experimentally, are reproduced by the model (see
fig. 2). However, for large bubbles and large amplitudes,
the model fails to predict the high attenuation experimen-
tally observed. Moreover, the front pressure gradient is
always underestimated. This could come from the fact
that the numerical simulation disregards any acoustic dis-
persion [21].

The numerical value of the attenuation αnum is plotted
in fig. 3. For each bubble size the dissipative coefficient has
been chosen to get the best agreement with αfit. Its value
νnum(R) is plotted in fig. 4 as a function of the bubble size.
The error bars have been obtained by fitting numerically
αfit ± σ.

In conclusion, using a foam with a well-controlled chem-
ical composition, bubble size and liquid fraction, we show
that the main dissipative processes that mitigates a com-
pressive wave, in a time scale domain of the order of
τ = 1ms, are of thermal origin. The associated effective
viscosity increases as R2/τ2 at small bubbles and departs
from this law for larger bubbles. Our theoretical analysis
is based on the Wood model. This has been validated by
checking that the propagation velocity does not exceed the
Wood velocity. It has recently been shown that above a
certain radius, Wood’s model breaks down and a resonant
behavior is expected. For our characteristic time of 1ms,
the resonant bubble radius is of the order of 1mm [21].
However strong variations of the sound velocity are ex-
pected at the resonance, with a sound velocity of order
200m/s for R > Rr, which is not compatible with our ob-
servations. We thus believe that the wave propagation we
observe is below the resonance for our whole parameter
range (i.e. at a radius smaller than Rr). Moreover, the
local process responsible for the attenuation during the
resonance was not identified, and the thermal dissipation
may be the relevant one.

These results seem limited to compressive waves. How-
ever, it is known that plastic events triggered in foams by

y r

Fig. 5: (Color online) Image of the foam few ms after the
shock. The rectangle is the reduced field of view used for the
measurements.
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Fig. 6: Space-time image of the foam. The position of the wave
front deduced from the image is plotted in black solid circles.

simple shear induce pressure variations, and thus temper-
ature variations. In this context, the associated thermal
dissipation may thus also be important in some parameter
range.
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Appendix A: wave velocity measurements. – The
foam sample is lightened from below with an intense white
light. The foam dynamics is then recorded from top using
a high-speed camera Photron FastCam Sa3. The camera
is triggered by the same signal as the pressure sensor and
both measures are therefore synchronised.

Images are recorded with the field of view shown in fig. 5
(bottom). Each image is averaged in the y direction, and
the resulting line is used to produce a space-time plot as
shown in fig. 6. At each position r, the first gray level
variation is automatically detected by image processing.
This first foam motion occurs at time tfr(r) and coincides
with the wave arrival at position r. This provides the front
wave position rfr(t).

The wave velocity is deduced from the slope obtained
in the linear regime, far from the center.
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Appendix B: code validation. – The set of equa-
tions (5) and (6) is solved numerically with an implicit
scheme implemented in a Matlab code. Two known ana-
lytical cases have been used to test the code. First, the
nonlinear steady solution in a plane-wave geometry,

p = p0 + δp {1 + tanh [(x − vt)/δ] /2} ,

with v = c
[

1 + δp(1 − Γ)/(2 ρ0c
2)

]

and δ = 2νρ0c/
(δp(1 − Γ)). Numerically, setting the inner boundary at
the position r0 = 3000 δ to be in a plane-wave geometry
and using eq. (7) as pressure condition at this point, we
got an agreement between numerical and analytical solu-
tion better than 1% on the velocity and on the thickness
of the pressure step, for the same time and space discreti-
sation and the same global time and space scales as used
in the paper. Second, we tested the energy conservation
for an inviscid case at very small amplitude. Using the
low-amplitude experimental data as boundary condition
at the inner boundary (at its experimental position) we
found that

∫

∞

r=0
rp2dr, which is proportionnal to the wave

energy, varies by less than 1% between tmax
1 and tmax

4 , for
a vanishing viscosity.
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[4] Cohen-Addad S., Höhler R. and Khidas Y., Phys.

Rev. Lett., 93 (2004) 028302.
[5] Denkov N. D., Tcholakova S., Golemanov K.,

Ananthapadmanabhan K. P. and Lips A., Phys. Rev.

Lett., 100 (2008) 138301.
[6] Mason T. G., Bibette J. and Weitz D. A., Phys. Rev.

Lett., 75 (1995) 2051.
[7] Liu A. J., Ramaswamy S., Mason T. G., Gang H. and

Weitz D. A., Phys. Rev. Lett., 76 (1996) 3017.
[8] Tighe B. P., Phys. Rev. Lett., 107 (2011) 158303.

[9] Wintzenrieth F., Cohen-Addad S., Le Merrer M.
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mécanique des fluides (Mir, Moscou) 1989.
[31] Gopal A. D. and Durian D. J., J. Colloid Interface Sci.,

213 (1999) 169.
[32] Krishan K., Helal A., Höhler R. and Cohen-Addad
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