Wet foam coarsening: **3D rotating experiments**

A. Saint-Jalmes^{1,a}, M. Durande², F. Graner², Gilberto L. Thomas³

¹Institut de Physique de Rennes, CNRS-Univ. Rennes 1, Rennes, France.

²MSC, CNRS-Univ. Paris-Diderot, Paris, France.

³Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

^ae-mail: arnaud.saint-jalmes@univ-rennes1.fr

UFRGS UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Motivations:

Coarsening : at constant liquid fraction, bubble diameter D increases with time t : D ~ t^{β}

Coarsening exponents β versus the foam liquid fraction, ϕ_1 ?

indicate To answer, one must widely tune ϕ_{I} , **Fig. 4.** The bubble growth exponent, β , determined from mea-FIG. 2 (color online). (a) Evolution of the number of gas surements as those shown in fig. 3 is shown as a function of a transition but keep it constant during a measurement.... bubbles for different values of ϕ , in log-log plot. (b,c) Power liquid fraction (given in %). For comparison, the expectation of von Neumann dynamics, $\beta = 1/2$, and that of Ostwald ripenlaw exponent β versus ϕ , in (b) linear and (c) log-log scales. The at very low ϕ_1 [2]. ing, $\beta = 1/3$ is shown by the full and dashed lines, respectively. red line is $\beta = 1/2 - \phi^{0.207}/6$. The transition between these two regimes is rather narrow at liquid fractions between 25% and 35%. • Foam production: **Approach / setup:** - turbulent mixing device [3]

Efficiency to reduce drainage?

• For $\phi_1 > 10\%$: decay of the liquid fraction (measured by the amount of liquid drained); BUT still very slow (500 times slower than without rotation) \rightarrow dD/dt and d ϕ_{l} /dt are of the same order.

liquid fraction, $\phi_1 < 10\%$:

As ϕ_1 is constant, I_T / I_T (t=0) provides the relative evolution of D(t)

- Qualitatively, coarsening gets slower as ϕ_1 increases. Scaling regimes have similar exponent (except for the dryest foam at large times).
- Quantitatively, scaling exponents can be extracted: $\beta = 0.39 + - 0.015$

time (s)

Perspectives for liquid fractions above 10%:

 I_{T} varies because of both D(t) and $\phi_{I}(t)$...

- Relying on light scattering model to decouple D(t) and $\phi_{l}(t)$? Roughly consistent with $\beta \sim 1/3$, but not accurate enough...

Improving data analysis:

- With independent measurements of D(t) et $\phi_1(t)$ + using various experiments (trajectories) where D and ϕ_1 changes smoothly, it must be possible to ascribe a coarsening (and drainage) rate for each given set of D and ϕ_{I} .
- Compiling all these 'instantaneous' coarsening (and drainage) rate

Tested on dry foams ($\phi_1 = 0.03$): consistent with light scattering data !

together, one can then obtain :

- dD/dt at constant ϕ_1 versus ϕ_1 and D

- $d\phi_1/dt$ at constant D, versus ϕ_1 and D

Conclusions:

a wide set of experimental parameters!

Coarsening exponents are measured well below 0.5, even for foams with liquid fractions of a few percents.

With this setup, drainage still occurs for wet foams..., but slowly enough so that there are ways to decouple the evolution of $\phi_{l}(t)$ and of D(t).

REFERENCES

- 1 N. Isert *et al.*, *Eur.Phys.J.*E 36, 116 (2013).
- 2 I. Fortuna et al., Phys. Rev. Lett. 108, 248301 (2012).
- 3 A. Saint-Jalmes, EPJ B, 12, 67 (1999).

ACKNOWLEDGEMENTS

Thanks for stimulating discussions : E. Rio, E. Forel, C. Guidolin, A. Salonen

