The spreading of emulsions on thick fluid layers

Matthieu Roché, Zhenshen Li, Ian M. Griffiths, Arnaud Saint-Jalmes and Howard A. Stone

1. Complex Fluids Group, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08544, USA
2. OCCAM, University of Oxford, 24-29 St. Giles', Oxford, OX1 3LB, UK
3. Institut de Physique de Rennes, Université Rennes 1 - CNRS UMR 6621, Rennes, France.

Aim of the study
Surfactants used in chemical encapsulation and delivery to interfaces. Impact of surfactant solubility on spreading of droplet-encapsulated material.

Conclusions
- Finite spreading
- Rich dynamics showing 2D turbulence
- Spreading properties set by surfactant affinity with water

Materials

<table>
<thead>
<tr>
<th>Surfactant family</th>
<th>Alkyl chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium alkyl sulfates</td>
<td>C₈C₁₂</td>
</tr>
<tr>
<td>C₆TAB</td>
<td>C₁₀C₁₄</td>
</tr>
<tr>
<td>C₇TAC</td>
<td>C₁₂C₁₆</td>
</tr>
</tbody>
</table>

2:1 oil-in-water emulsions:
- [surf] = 260 mM
- dₜₐₚ = 10 μm

230 × Mₓ < 320 g.mol⁻¹
38 < γₘₐₚ < 42 mN.m⁻¹ above the cmc

Set-up

Qₒ = 0.2 mL.min⁻¹

|h > 2 mm |
| L = 260 mm |

Ultra-pure water

Constant supply of emulsion to the surface of a layer of ultra-pure water at a flow rate low enough to ensure stability.

1. Finite spreading distance, 2D turbulence

(a) Top view

(b) High ρₒ

Inside the disk of radius rₒ, low density of fast-moving oil droplets ρₒ-

Outside the disk, high density of slow-moving droplets.

Growth of pairs of vortices (similar to Rayleigh-Taylor mushrooms) resulting from the impact of the fast droplets in the dense region.

Low ρₒ

2. Interpretation

Marangoni stress = motion of surfactant molecules AND oil droplets

Solubilization of the surfactants during spreading = Fast motion of the oil droplets at a velocity u(h) in the corona between the source (radius rₒ) and the disk boundary (radius rₛ). Finiteness of spreading.

3. A first model

Fluid dynamics of the layer

Stokes equation

\[u(h) = \frac{h}{\eta \frac{d\gamma}{d\Gamma}} \frac{d\gamma}{dx} \]

Evolution of the surfactant surface concentration

Diffusion-convection equation

\[\frac{d}{dx} \left(u(h) \Gamma \right) = -kₐ \Gamma + Dₗ \frac{d \Gamma}{dx} \]

Surfactant parameters:
- Surface concentration \(\Gamma \)
- Desorption coefficient \(kₐ \)

Layer parameters: interfacial tension \(\gamma \)

4. Test of the model

(a) Corona radius rₒ-rₛ varies over 2 orders of magnitude as the surfactant is changed.

For all surfactants, the corona radius reaches a plateau \(rₜₜₚ-rₒ \) and then starts to decrease.

(b) First, we identify \(\xi \) with \(rₜₜₚ-rₛ \), which we plot against \(kₐ \). We see that \(rₜₜₚ-rₜₜₚ \) does not follow the \(kₐ^{−1/2} \) scaling predicted by our first model.

(c) A plot against the critical micellar concentration (cmc) of the surfactants indicates that the affinity of the surfactant with water sets the spreading properties.

5. Perspectives

- Modification of the convection equation to account for the importance of the affinity: bulk diffusion term?
- Study of the instability of the ring surrounding the corona
- Study of the 2D turbulence
- Can we understand the fast flow towards the center of the corona (indicated by the white arrow on the images below) when the source is removed?

Scale bar: 10 mm