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Enhanced interfacial deformation in a Marangoni flow:
A measure of the dynamical surface tension
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We investigate the flows and deformations resulting from the deposition of a water soluble
surfactant at a bare oil-water interface. Once the surfactant is deposited, we show that
the oil-water interface is deformed with a water bump rising upward into the oil. For a
given oil, the maximal deformation—located at the surfactant deposition point—decreases
with the oil-layer thickness. We also observe a critical oil-layer thickness below which
the deformation becomes as large as the oil layer, leading to the rupture of this layer and
an oil-water dewetting. Experimentally, it is found that this critical thickness depends on
the oil density and viscosity. We then provide an analytical modelization that explains
quantitatively all these experimental features. In particular, our analysis allows us to derive
an analytical relationship between the vertical profile of the oil-water interface and the
in-plane surface tension profile. Therefore, we propose that the monitoring of the interface
vertical shape can be used as a new spatially resolved tensiometry technique.
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I. INTRODUCTION

As a consequence of a surface tension gradient, a bulk flow emerges to compensate this tangential
stress: this is known as the Marangoni effect [1,2]. In practice, various actions can be used to trigger
a nonuniform interfacial tension. For instance, a spatially limited heating of the interface decreases
locally the interfacial tension, which consequently creates thermocapillary flows [3–7]. As well,
by depositing a small amount of amphiphilic molecules (or surfactant) at an interface between two
phases, a gradient of concentration is created, and so a gradient of surface tension. In the simplest case
of a water-air interface and for insoluble surfactants, the spreading of the monolayer at the interface
is accompanied by a sharp deformation of the interface and a front that propagates away from the
source. Experiments and simulations have especially focused on the scaling regimes describing the
position of this front with time [8–11].

In the case of soluble surfactants, the situation is more complex, though more relevant if one
considers many natural and industrial processes. Here, the concentration close to the interface is
a dynamical quantity, governed by the convection-diffusion equation. This concentration sets the
local value of the surface tension, and thus the viscous tangential stress at the interface, which is
the driving force for the flow. This coupling between bulk and interface leads to a large variety of
dynamical behaviors, all associated to a surfactant supply at a liquid interface, such as spreading
[12–17], self-propulsion [18,19], oscillation [20], dynamical dewetting [21], instabilities [22–24], or
droplets emission [25]. In fact, there are many issues on such surfactant-assisted Marangoni flows
that need to be tackled. For instance, to understand these various behaviors, accurate measurements of
the interfacial and bulk concentration fields are required; in particular, local and direct measurements
of the out-of-equilibrium surface tension are still lacking.

In this article, our goal is to go beyond the usual liquid-gas interface, by replacing the infinite
top air layer by a finite viscous oil one. This is motivated by the fundamental question of surfactant
transport on flowing interfaces but also by the need to better control the dynamical effects occurring
within emulsions and in confined multiphasic flows (like in microfluidic chips). Therefore, we focus
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here on the dynamics induced when a drop of a concentrated solution of water-soluble surfactant
is deposited at a stable interface between oil and pure water. Macroscopic features, easily visible
with the naked eye, are then triggered. The oil-water interface is strongly deformed, and we show
that the interface deformation decreases with the oil-layer thickness. Experimentally, we also find a
critical thickness, separating situations where the deformation is big enough to pierce the oil layer
(dewetting cases), from situations where the water layer remains covered by oil (no-dewetting cases).
Then we propose a model quantitatively explaining our observations. Interestingly, we show that the
height of the oil-water interface at any given point is related to the value of the surface tension at the
same point by a simple analytical expression. We evidence that, for all the oil-layer thicknesses we
tested, the maximal height reached by the oil-water interface at the injection point is in quantitative
agreement with this expression, computed using the surface tension imposed locally by the drop,
which is known. Our model can then be used to deduce the local surface tension from the interface
deformation, anywhere on the interface. In our geometry, we thus propose a new spatially resolved
tensiometry technique based on the optical measurement of the interface deformation, which may
be suited to other Marangoni flows.

II. EXPERIMENTAL SETUP

The experiment is performed in a parallelepipedic tank (25.5 × 45.5 × 25 cm3) initially filled
with several liters of ultra pure water (Millipore range), leading to a water layer thickness H of the
order of 10 cm.

A controlled volume of sunflower oil is then poured to produce an oil film of thickness d in the
range [3–13] mm at the surface of the water. The oil and water phases are denoted respectively by
phase 1 and phase 2 in the following (see Fig. 1, top). Complementary experiments are also done

FIG. 1. Top: Schematic of the experiment, side view. The gray dot represents the surfactant drop, deposited
on the initially flat oil-water interface; after the drop coalesces with the water bath, the oil-water interface deforms
upwards. Middle: Picture of the experiment, side view. The upward deformation of the oil-water interface is
visible, and the height of the deformation is smaller than the oil-layer thickness d (no dewetting case). Bottom:
Picture of the experiment, top view. In that case the oil-water interface has touched the oil-air interface and a
hole in the oil layer appears, visible in the image (dewetting case).
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TABLE I. Physicochemical properties of the water and sunflower oil phases and geometrical control
parameters.

ρ2 1000 kgm−3

Water η2 1 mPa s
Fluids ρ1 920 kg m−3

Oil η1 50 mPa s

Oil d [3–13] mm
Geometry Water H 10 cm

γOA 32 mN m−1

γOW 25 mN m−1

Interfaces γ0 = γO(W+SDS) 1 mN m−1

�γ = γOW − γ0 24 mN m−1

with a silicone oil (V10) and with hexadecane, for comparisons to the sunflower oil results, to check
the role of the water-oil density and viscosity ratio.

For the sunflower oil, the surface tensions γOA and γOW, respectively, at the oil-air and oil-water
interfaces, are measured by the pendant drop technique and given in Table I. The spreading coefficient
of the oil on water isS = γWA − (γOA + γOW) = 15 mN/m, withγWA = 72 mN/m the surface tension
of pure water. This coefficient is positive, which is consistent with the spontaneous spreading of the
oil experimentally observed, for every oil thickness (as for the two other oils).

The spreading coefficient is still positive when surfactant is added in the water phase, and the oil
layer is thus always thermodynamically stable. The oil density ρ1 is smaller than the water density
ρ2, as shown is Table I, so the two liquid layers are stable in the gravity field.

The experiment consists in the deposition of a drop of a concentrated aqueous solution of sodium
dodecyl sulfate (SDS) just above the oil-water interface, without initial velocity. The drop volume
is 20 μl, unless otherwise specified, and the concentration is c = 15 cmc (where cmc is the critical
micellar concentration, and equal to 8 mM for SDS). After a small delay, the drop coalesces with the
pure water phase and suddenly sets the system in an out-of-equilibrium state. The SDS concentration
in the water close to the drop coalescence point becomes larger than the cmc, which locally lowers
the oil-water surface tension to its minimal value. Using a pendant drop apparatus, an independent
measurement of this surface tension above the cmc provides γ0 = 1 mN/m.

The shape of the oil-water interface is recorded at 125 images/s with a Photron Fastcam set
on the side of the tank, and mounted with a 50-mm Nikon camera lens. The system is lighted in
transmission with a Phlox light covered by a diffusing sheet (see Fig. 1, middle). The oil-water
interface deformation is then determined by image processing. In some cases, both phases have been
seeded with particles to observe qualitatively the velocity fields [26]. Additional images have been
recorded with a different angle to see the oil-air interface from the top (see Fig. 1, bottom).

III. EXPERIMENTAL RESULTS

A. Time evolution of the oil-water interface

The most striking observation is that the oil-water interface is strongly deformed once the drop
has coalesced: a bump of water rises up into the oil phase (see Fig. 1).

Bump profiles at different times are shown in Fig. 2. Note that after a transient during which
the bump is growing, its height saturates to a constant value for several seconds, while the lateral
extension begins to slowly decrease. Eventually the bump disappears in typically 1 s. Figure 3
presents this specific dynamics in more details.

The system remains axisymmetric and the oil-water deformation can be described with cylindrical
coordinates by the function h2(r,t), with r the distance from the drop injection point, and t = 0 when
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t
FIG. 2. Successive bump profiles at the water-oil interface. The delay between the images is 800 ms. In that

case, the oil layer is thick enough (d = 9.5 mm) so that no dewetting occurs.

the drop coalesces with the water layer. The reference value at t < 0, as well as for large values of
r , is h2(r,t) = 0. The height h2(0,t) at the point of drop deposition is plotted in Fig. 3 (top) as a
function of time t , for different oil-layer thicknesses. The error bar on this maximal value of h2(r,t)
is 0.25 mm, corresponding to one pixel size. A well-defined plateau in the graph h2(0,t) lasts for a
few seconds, and this plateau h2,max has a larger value for thinner oil layers.

In Fig. 3 (bottom), we show the bump radius as a function of time for the same experiments. This
typical radius is defined as the largest value of r for which a height variation is observable. As the
transition is rather smooth, this value has a large uncertainty, of the order of 10%. The height and
the radius first increase rapidly together, and when the height saturates at its plateau value, the radius
begins to slowly decrease.

Another important result is that if the oil layer is thinner than a critical thickness dc, the top of
the bump reaches the oil-air interface. In that case a dynamically enforced dewetting is observed, as
seen in Fig. 1, bottom. The behavior at short times is similar for d > dc and d < dc, but in this latter
case the bump height is limited by the oil-layer thickness. Dewetting has been reproducibly obtained
for d = 6.9 mm and has never been obtained for d = 8.7 mm. We thus define the experimental value
of the critical oil-layer thickness leading to the dewetting transition as d

exp
c = 8 ± 1 mm.

The velocity field has been qualitatively observed in both phases (see Supplemental Material [26]).
The surface tension gradient at the oil-water interface induces an outward flow in the oil and in the
water, close to the interface. A consequence of this flow is the increase of the pressure at large r , which
leads to inwards counter flows in both phases: annular vortices are thus visible around the bump. The
typical velocities, measured on a small set of particles trajectories followed by eyes, are of the order
of U1 = 10−2 m s−1 in the oil phase, and of the order of U2 = 5.10−3 m s−1 in the water phase.

B. Maximal bump height for d > dc

In the following, we focus on the maximal height h2,max reached by the oil-water interface in
the cases without dewetting. It is measured from the dynamical profile h2(r) = h2(r,tpl) at a time
tpl in the middle of the height plateau. All the dynamical quantities discussed below are implicitly
considered at that time. An example of such interface profile, obtained for d = 8.7 mm, is plotted in
Fig. 4. It is rather flat in the middle and can be fitted by the phenomenological law,

h2(r) = h2,max

2

[
1 − tanh

(
r − r0

α

)]
, (1)
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FIG. 3. Evolution of the oil-water interface shape as a function of time for different oil-layer thicknesses d ,
for d > dc (no dewetting). From top to bottom (and blue to green on line) d = [8.7; 9.5; 10.4; 11.3; 12.1; 13]
mm. (Top) Height of the bump h2(0,t) at the drop deposition point; (bottom) bump radius R.
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FIG. 4. Interface profile h2(r) for an oil-layer thickness d = 8.7 mm. The error bar is 0.25 mm, given by the
pixel size. The black line is a phenomenological fit [Eq. (1)] with h2,max = 5.2 mm, α = 8.5 mm and r0 = 3.15
cm.
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FIG. 5. Maximal height of the oil-water interface h2,max as a function of the oil-layer height d , in absence of
dewetting. Dots: experimental data h

exp
2,max. Solid line: prediction hth

2,max of Eq. (21) without adjustable parameters;
dot-dashed line: line h2,max = d obtained is case of dewetting (systematic dewetting is obtained for d = 6.9 mm);
dashed line: critical value dc leading to the dewetting transition, given by Eq. (22) (and by the intersection of
the solid and dot-dashed lines).

with α the characteristic lateral extension of the transition between h2 = h2,max and h2 = 0, and r0

the lateral extension of the bump, close to the maximal experimental value of R (see Fig. 3, bottom).
For a given oil, our main control parameter is the oil-layer thickness d, and the value of h2,max is
reported as a function of d in Fig. 5. This height increases when the oil-layer height decreases, and
thus becomes equals to d at a critical thickness d = dc. This is at the origin of the dewetting transition
corresponding to h2,max = dc.

IV. MODELIZATION

A. The quasisteady regime

Before writing rigorously the equations of motion in both phases, we first discuss qualitatively
some important features involved in the bump formation. The total amount of surfactant brought
by the drop is 2.4 × 10−6 mol. When the mixing of the drop into the 8 l of pure water is achieved,
a concentration of the order of 3 10−7 mol/l is obtained, leading to no measurable surface tension
variation at the oil-water interface. At large time the oil-water surface tension remains thus at its
equilibrium value. However, as long as the droplet is not entirely spread, it maintains the interfacial
surfactant concentration at its cmc value close to the coalescence point and the interface is locally
saturated with surfactants.

At a distance r larger than R, in contrast, the interface remains bare at all times, as briefly discussed
below on the basis of a previous study [16]. The Marangoni stress induced by the surface tension
difference between r = 0 and r = R leads to a fast convective spreading of the surfactant at the
interface. The bulk concentration is significantly modified in a thin layer just below the interface,
called the mass boundary layer. During their convective transport outwards, the surfactants also
diffuse toward the deeper water phase, and the concentration near the interface thus decreases with
r , until it reaches negligible values, at a distance R from the deposition point. The balance between
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FIG. 6. Scheme of the studied system. The interface deformations verify h1 < 0 (downward deformation)
and h2 > 0 (upward deformation). Due to the confinement the velocity in the oil phase is radial and its value
v1(r,z) is schematized on the left.

surfactant injection by the droplet, convection by the interface velocity, and diffusion toward the
water bulk determines the concentration field, and thus the local surface tension. In the following,
the aim is not to predict this concentration field, but rather to focus on the coupling between the
interface deformation and the surface tension distribution.

Before the drop dissolution, the global surface tension difference between the point of drop
deposition and the boundary of the oil-water interface at large r is constant in time. We will show
that this constant difference is at the origin of the stabilisation of the bump height at its maximal
value, even if the spatial distribution of the surface tension, and especially the value of R, slightly
evolves. We will call this regime the quasisteady regime.

We developed an axisymmetric model to predict the relationship between this dynamical surface
tension distribution and the interface deformation during this quasisteady regime. The notations we
use are given in Fig. 6. The relevant physicochemical quantities and geometrical characteristics are
summarized in Table I, as well as the order of magnitude of the control parameters and dynamical
quantities used to justify the assumptions of the model.

B. Flow in the oil phase

The flow in the oil phase occurs in a very flat domain of typical height d ∼ 10−3 m and typical
lateral extension R ∼ 10−2 m. This justifies the use of the lubrication equation:

η1
∂2v1

∂z2
= ∂p1

∂r
. (2)

In this quasiparallel flow, the vertical pressure gradient is only controlled by the gravity force and
∂zp1 = ρ1g. The deformation of the oil-air interface is much smaller than the deformation of the
oil-water interface and h1 is at most of the order of 1 mm. The Laplace pressure jump at the interface
scales as γOA h1/R

2 ∼ 10−2 Pa and is negligible in comparison with the hydrostatic pressure. The
pressure at the position z = h1(r) is thus the atmospheric pressure, taken as the reference pressure.
We deduce p1(z,r) = ρ1 g (h1(r) − z) and ∂rp1 = ρ1 g dh1/dr , so

η1
∂2v1

∂z2
= ρ1 g

dh1

dr
. (3)
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The tangential stress continuity at the two interfaces imposes:

η1
∂v1

∂z
= 0 for z = h1, (4)

dγ

dr
+ η1

∂v1

∂z
− η2

∂v2

∂z
= 0 for z = −d + h2. (5)

At the oil-water interface, v2 = v1 = vi ∼ 10−2 m/s. In the oil phase, the velocity gradient scales
as vi/d (or larger close to the dewettting transition) so η1∂v1/∂z ∼ 5 × 10−2 Pa. In the water phase,
a viscous boundary layer is generated by the interfacial velocity, with a typical thickness �w =√

η2R/(ρ2vi) ∼ 1 mm. We thus have η2∂v2/∂z ∼ η2vi/�w ∼ 5 × 10−3 Pa, which is much smaller
than the stress in the oil phase. Neglecting this last contribution, we get

dγ

dr
+ η1

∂v1

∂z
= 0 for z = −d + h2. (6)

This assumption allows to decouple the flows in both phases and to solve analytically the problem.
It limits the validity domain of the model to viscous oils, as discussed in the next section.

By successive integrations of Eq. (3), we obtain the velocity field and the radial flux q1, using the
boundary condition Eq. (4):

∂v1

∂z
= ρ1g

η1

dh1

dr
(z − h1), (7)

v1 = ρ1g

2 η1

dh1

dr
(z − h1)2 + K, (8)

q1 =
∫ h1

h2−d

v1dz = ρ1g

6 η1

dh1

dr
δ3 + Kδ, (9)

with δ = h1 − h2 + d and K an integration constant.
The order of magnitude of the flux q1(r) can be estimated from the bump shape evolution. The

mass conservation implies

q1(r) = − 1

2πr

d�(r)

dt
, (10)

with �(r) the oil volume at a distance smaller than r of the z axis. During the quasisteady regime,
d�(r)/dt = 0 for r < R and it is of the order of −2πh2R dR/dt for r > R. The flux q1 is thus
maximal (in absolute value) at r = R and scales as h2dR/dt ≈ 10−5 m2/s, with dR/dt ≈ −2 mm/s
from Fig. 5(b).

Additionally, the boundary condition at the oil-water interface Eq. (6) provides a relation between
the surface tension gradient and the height gradient:

ρ1g
dh1

dr
δ = dγ

dr
. (11)

This relation provides the profile h1 as a function of the local surface tension and the local film
thickness δ. We find that h1 is negative and of order of magnitude h1,max = �γ/[ρ1g(d − h2)] =
0.5 mm.

We define A = ρ1g

6 η1

dh1
dr

δ3 the term appearing in Eq. (9). From Eq. (11), we get A = dγ /drδ2/(6η1)

of the order of 10−4 m2/s, i.e., one order of magnitude larger than q1. The flux q1, which would be
zero in a steady regime, can thus be neglected in Eq. (9). This justifies to describe this regime as a
quasisteady regime. We finally get Kδ ≈ −A and

K = −ρ1gdrh1δ
2/(6 η1). (12)
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From Eqs. (8), (12), and (11) we can express the oil velocity as a function of the surface tension
gradient

v1 = 1

6 δ η1

dγ

dr
[3(z − h1)2 − δ2], (13)

and the interface velocity at the oil-water interface,

vi = 1

3 η1

dγ

dr
δ. (14)

Using dγ /dr ≈ �γ/R we deduce that this velocity is of the order of 1 cm/s, consistently with
the experimental observations. To summarize, the oil is pulled outward along the oil-water interface
by the Marangoni force. During the quasisteady regime, the oil-air interface is sufficiently deformed
so that the hydrostatic pressure induces an inward counter flux that just balances the Marangoni flux.
The resulting velocity field v1 is shown in Fig. 6.

C. Profile of the water-oil interface

The prediction ofh2(r), which is much larger thanh1(r), is surprisingly governed by the hydrostatic
law only, despite the relatively large velocities in the water phase. This can be shown by a careful
analysis of the order of magnitude of each pressure terms involved in the circulation of the pressure
gradients along the closed loop depicted in Fig. 6, written as

−ρ2g[L + h2(r)] + �P
dyn
AB + �P

cap
B − ρ1gδ + �P

cap
C + ρ1gd + ρ2gL + �P

dyn
GH + �P

dyn
HA = 0 ,

(ρ1 − ρ2)gh2(r) − ρ1gh1(r) + �P dyn + �P cap = 0 .

(15)

This total circulation is zero, as it is the integration of a gradient along a close loop. Along each
segment, the pressure difference is decomposed into the hydrostatic part and the dynamical part
written �P dyn. We only consider this term for the segments in water, as the dynamical contribution
of the pressure in the oil phase has been shown to be negligible in the previous section. �P cap is the
global contribution of the Laplace pressure jumps. The orders of magnitude determined below show
that both �P dyn and �P cap are negligible.

The radial flux (per unit length in the orthoradial direction) in the water phase boundary layer
scales as q� = vi�w ∼ 10−5 m2/s. Further away from the interface, an inwards counterflow ensures
the mass conservation of the water phase. Its relevant vertical characteristic length �2 can be either
the water layer thickness H = 10 cm or the bump radius R ∼ 5 cm. As they are of the same order,
we assume �2 = R in the following. As the inward radial flux qin = U2�2 must balance q� we get
U2 of the order of the mm/s as expected. The Reynolds number associated to this counter flow
is Re = ρ2RU2/η2 ∼ 250, so the dynamical pressure at the origin of the flow scales as �P dyn ∼
ρ2U

2
2 ∼ 10−2 Pa.

Finally, h1(r) is of the order of 0.5 mm so the order of magnitude of �P cap can be estimated as
�P

cap
C ∼ −γOAh1/R

2 ∼ 2.5 10−4 Pa and �P
cap
B ∼ γ0h2/R

2 ∼ 10−4 Pa.
These values must be compared with the gravitational contribution ρ1gh1 ≈ 5 Pa, which is much

larger. The dynamical and capillary terms are thus negligible and Eq. (15) becomes

h2(r) = − ρ1

ρ2 − ρ1
h1(r). (16)

These results express the fact that, in our experimental regime, the water motion is driven by
negligible forces. The oil-water interface thus simply follows the oil-air interface deformation,
imposed by the Marangoni flows in the oil phase, to maintain the hydrostatic pressure field in
the water phase. Consequently, the oil-water interface deformation is an inverted image of the oil-air
interface deformation, with a magnification coefficient ρ1/(ρ2 − ρ1) ∼ 10.
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Inserting Eq. (16) in Eq. (11), we obtain

∂γ

∂r
= ρ1

2ρ2
�ρg

∂

∂r

(
d − ρ2

ρ1
h2

)2

, (17)

γ (r) = γOW − ρ1

2ρ2
�ρg

{
d2 −

[
d − ρ2

ρ1
h2(r)

]2
}

. (18)

This expression predicts that the local, out-of-equilibrium surface tension can be measured by
the simple observation of the interface deformation of centimetric order. Such relation has also
been established for Marangoni flows driven by thermal gradient in Refs. [27,28] in a different
experimental geometry. Equivalently, Eq. (18) can be inverted to obtain a prediction for h2(r) as a
function of the local surface tension:

h2(r) = ρ1

ρ2

(
d −

{
d2 − [γOW − γ (r)]

2ρ2

gρ1�ρ

}1/2
)

. (19)

For small enough deformations, a Taylor expansion leads to the simpler expression:

h2(r) = γOW − γ (r)

gd�ρ
. (20)

At the position r = 0, the surface tension is the one of the injected drop, i.e., γ0, and the height
of the bump is maximal:

h2,max = ρ1

ρ2

[
d −

(
d2 − 2�γρ2

gρ1�ρ

)1/2
]
. (21)

At large d, a simplified expression is h2,max ≈ �γ/(gd�ρ), consistently with Eq. (20).
The maximal height depends on the surfactant concentration field only through the global surface

tension difference �γ . This explains the presence of the plateau in the graph Fig. 3(a), which lasts
as long as the surfactant concentration at r = 0 remains larger than the cmc. In contrast, the bump
width depends on the whole distribution γ (r) and slowly varies with time [see Fig. 3(a)].

Dewetting occurs when h2,max reaches its critical value h2,max = d + h1(0). Using Eq. (16), this
leads to h2,max = d ρ1/ρ2. From Eq. (21), we obtain the critical oil-layer thickness for dewetting

d theo
c =

√
2�γρ2

gρ1�ρ
. (22)

Finally, the outcomes of this model are the quantitative predictions of a small deformation
downward of the upper oil-air interface h1, and a large deformation upward of the oil-water interface
h2, which is simply the inverted image of h1, with a magnification factor ρ1/(ρ2 − ρ1). This factor
can become very large if the density of the two phases are close enough and makes the deformation
of the water-oil interface much easier to observe than the one of the oil-air interface. If the oil phase
is viscous enough, the local surface tension at the oil-water interface is related to this deformation
by a simple analytical expression.

V. COMPARISON WITH EXPERIMENTS

First, the modelization provides predictions which are qualitatively in agreement with our
observations and explains these nonintuitive behaviors. The fact that the water bump is rising upward
turns out to be a direct consequence of the small downward deformation of the oil-air interface. As
well, the magnification factor ρ1/(ρ2 − ρ1) is crucial as it allows us to easily visualize h2, while h1

is impossible to see with eyes.
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FIG. 7. Surface tension profile deduced from the interface deformation shown in Fig. 4, using Eq. (18). The
error bar is given by the vertical distance between the red dots. The black line is obtained from the smooth fit
of the interface profile Eq. (1), whereas the red dots are obtained from the raw data.

Quantitatively, we can first compare the critical oil-layer thickness leading to the dewetting
transition. For the sunflower oil, all the physical quantities in the right-hand side of Eq. (22) have
been measured, and their values are reported in Table I. Using these values we get the prediction
d theo

c = 8.2 mm, in good agreement with our experimental observation dc = 8 ± 1 mm.
For further comparisons, complementary experiments have been performed with different oils.

With V10 of viscosity ηV 10 = 10 mPa s, we obtained dc/d
theo
c = 0.95, again in good agreement.

However, with hexadecane of viscosity ηhex = 3 mPa s, a significant difference between theoretical
and experimental results occurs. Indeed we get dc/d

theo
c = 0.6. It then seems that the critical oil

viscosity below which the flow decoupling assumed in Eq. (6) is no longer valid is thus of the order
of few mPa s.

We also increased the drop volume and checked that the critical thickness is independent of
this parameter. However, if the drop becomes too small, or not concentrated enough, the dewetting
transition occurs for a smaller oil thickness value. This is consistent with a lower value of �γ , if the
drop does not ensure a local concentration above the CMC.

For oil thicknesses above the critical value dc, we can also test Eq. (21), which provides a prediction
for the maximal deformation height as a function of d. This prediction is plotted in Fig. 5 and is in
a quantitative agreement with the experimental data. Note that the fitting is done with no adjustable
parameters.

Following the agreement between the data and the model shown in Fig. 5, our more general
prediction [Eq. (19)] can therefore be used to determine the dynamical surface tension profile over
the whole oil-water interface, using its reciprocal form Eq. (18). This prediction assumes that the
surface tension at large r is at its equilibrium value γOW and deduces the surface tension at any other
radial position from the oil-water interface deformation. We present in Fig. 7 the surface tension
distribution obtained from the interface profile shown in Fig. 4.

As already proved by Fig. 5, the predicted value for the oil-water surface tension at r = 0
agrees with the lowest possible value of the surface tension γ0 (the one found above the cmc and
independently measured). The other surface tension values, at intermediate r , cannot be compared to
other experimental data: it is impossible to accurately resolve in space the dynamical surface tension
with conventional techniques, as we have done here with this new approach.

VI. CONCLUSION

We present a surfactant-spreading experiment at the oil-water interface. Under the Marangoni
stress, we measure and explain that a water bump rises oppositely to the gravity, with a vertical
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amplitude that depends on the oil-layer thickness. In the case of no dewetting, we provide an analytical
expression relating the vertical oil-water interface deformation to the in-plane local surface tension.
The dynamical surface tension generated by a flow in a diphasic system with surfactants is almost
impossible to measure with conventional techniques. Our setup allows us to have an indirect, but
simple, optical measurement of the out-of-equilibrium surface tension, for steady or quasisteady
regimes. More importantly, this technique takes advantage of a magnification effect scaling as ρ/�ρ

(�ρ being the density difference between the two phases), which amplifies the oil-water interface
deformation. This density difference can be adjusted to very small values in order to measure tiny
surface tension variations. The model can be extended to the case of surface tension gradients
created at the oil-air interface and leads to the same conclusions. Preliminary tests with an oil soluble
surfactant deposited at the oil-air interface have indeed evidenced a rising bump at the water-oil
interface. We thus believe that this two fluid layers setup may be used as an efficient tensiometry
technique for a large class of steady Marangoni flows. Finally, for small thicknesses, the water bump
grows so much that it pierces the oil layer, inducing a Marangoni-driven liquid-liquid dewetting. The
hole open in the oil layer can last up to hours. The origins of this stability, linked to the trapping of
insoluble species at the water-air interface, and other properties and perspectives of this experimental
configuration will be discussed in a forthcoming paper.
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