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RNA silencing was discovered in plants as a mechanism

whereby invading nucleic acids, such as transgenes and

viruses, are silenced through the action of small

(20–26 nt) homologous RNA molecules. Our under-

standing of small RNA biology has significantly

improved in recent years, and it is now clear that there

are several cellular silencing pathways in addition to

those involved in defense. Endogenous silencing path-

ways have important roles in gene regulation at the

transcriptional, RNA stability and translational levels.

They share a common core of small RNA generator and

effector proteins with multiple paralogs in plant

genomes, some of which have acquired highly special-

ized functions. Here, we review recent developments in

the plant RNA silencing field that have identified

components of specific silencing pathways and have

shed light on the mechanisms and biological roles of

RNA silencing in plants.
Introduction

The paradigm of modern molecular biology, ‘DNA makes
RNA makes protein’, predicts a role for RNA as a carrier of
information, but not as a regulatory molecule. Although
regulatory RNA had been sporadically observed in
prokaryotes and eukaryotes, it has only recently emerged,
with the discovery of RNA silencing, as a widespread and
fundamental component of gene expression. We are now in
a position to grasp some of what RNA silencing can do, a
little about how it does it, and we use it extensively as a
research tool for gene knockdown through RNA inter-
ference (RNAi).

Small RNA, Dicers and Argonautes: the biochemical core

of RNA silencing

‘RNA silencing’ refers collectively to diverse RNA-based
processes that all result in sequence-specific inhibition of
gene expression, either at the transcription, mRNA-
stability or translational levels. Those processes share
three biochemical features: (i) formation of double-
stranded (ds)RNA; (ii) processing of dsRNA to small (s)
20–26-nt dsRNAs with staggered ends; and (iii) inhibitory
action of a selected sRNA strand within effector complexes
acting on partially or fully complementary RNA or DNA.
Although several mechanisms can generate dsRNA, the
sRNA processing and effector steps have a common
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biochemical core. sRNAs are produced by RNase III-type
enzymes called Dicers [1] with distinctive dsRNA binding,
RNA helicase, RNase III and PAZ (Piwi/Argonaute/Zwille)
domains. One of the two sRNA strands joins effector
complexes called RNA-induced silencing complexes
(RISCs), which invariably contain a member of the
Argonaute (Ago) protein family. Agos have an sRNA-
binding PAZ domain and also contain a PIWI domain that
provides endonucleolytic (‘slicer’) activity to those RISCs
programmed to cleave target RNAs [2,3]. In fact, sRNA-
loaded human Ago2 alone constitutes a cleavage-compe-
tent RISC in vitro, but many additional proteins could be
functional components of RISCs in vivo [4].

Here, we review recent evidence that several pathways
built over the Dicer–Ago core execute a diverse set of
sRNA-directed biological functions in higher plants. These
include regulation of endogenous gene expression, trans-
poson taming, viral defense and heterochromatin for-
mation. Our focus is primarily on plants because they
exhibit a nearly full spectrum of known RNA silencing
effects, but similarities and differences with other organ-
isms are also discussed.
Exogenously triggered RNA silencing pathways resulting

in transcript cleavage

dsRNA-producing transgenes and IR-PTGS: useful but

mysterious

Post-transcriptional gene silencing (PTGS) was discov-
ered in transgenic Petunia as loss of expression of both
transgenes (in either sense or antisense configuration)
and homologous endogenous genes [5]. The transgene loci
often directly produced dsRNA as a consequence of
imperfect integration events that included juxtaposed
sense–antisense transgenes [6,7]. Accordingly, PTGS
efficacy was greatly enhanced by simultaneous sense
and antisense expression [8] or by direct production of
long dsRNA from inverted-repeat (IR) transgenes [9]. The
latter process, IR-PTGS, currently forms the basis of
experimental RNAi in plants and involves at least two
distinct sRNA classes termed short interfering (si)RNAs.
21-nt siRNAs are believed to guide mRNA cleavage,
whereas 24-nt siRNAs are believed to exclusively mediate
chromatin modifications [10,11]. Both siRNA classes
accumulate as populations along the entire sequence of
IR transcripts [12].

Although widely used as a research tool, IR-PTGS
remains one of the least understood plant RNA silencing
processes (Figure 1a). Hence, until recently, no mutant
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Figure 1. Post-transcriptional RNA silencing pathways in plants. (a) The IR-PTGS pathway. An IR transgene construct, typically employed for RNAi in plants, produces ds

transcripts with perfectly complementary arms. Two distinct Dicer-like (DCL) enzymes process the ds transcripts. DCL3 probably produces siRNAs of the 24 nt size class,

which can direct DNA or histone modification at homologous loci (see Figure 3) and which appear to be dispensable for RNA cleavage. DCL4 is probably the preferred enzyme

for production of 21-nt siRNAs from the dsRNA. One siRNA strand incorporates into AGO1-loaded RISC to guide endonucleolytic cleavage of homologous RNA, leading to its

degradation. Both siRNA species undergo HEN1-mediated methylation at their 30 termini. (b) The S-PTGS pathway. The pathway is shown here as being elicited by RNAs with

aberrant features, although there might be alternative triggers. The RNA aberrations could include lack of a poly(A) tail or lack of 50 capping. The latter would normally lead to
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defective in this pathway had been recovered, despite
considerable efforts in several laboratories. One likely
explanation is that the high dsRNA levels produced in IR-
PTGS promote the activities of different Dicers and RISCs,
which would normally act in distinct pathways, to mediate
silencing redundantly. Recent analyses of combinatorial
Dicer knockouts in Arabidopsis support this idea [13,14].
Nonetheless, Dicer-like 4 (DCL4) seems a preferred
enzyme for IR-PTGS: it was specifically required for 21-
nt siRNA accumulation and silencing from a moderately
expressed, phloem-specific IR transgene [15]. DCL2 might
also be involved in RNAi, because it processes some
endogenous DCL4 substrates into 22 nt-long siRNAs in
the absence of DCL4 [13,14], although it remains unclear
whether the 22-nt molecules can functionally substitute
for the 21-nt siRNA products of DCL4.

S-PTGS and transitive silencing: enter RDR

There are several examples in which single-copy trans-
gene insertions producing sense transcripts trigger PTGS.
This pathway, sense (S)-PTGS, has been dissected using
Arabidopsis forward-genetic screens that provided
insights into how dsRNA is produced (Figure 1b). These
screens converged on the identification of the RNA-
dependent RNA polymerase RDR6, one of six putative
Arabidopsis RDRs [16,17]. RDR6 is thought to recognize
and to use as templates certain transgene transcripts with
aberrant features that include lack of 5 0 capping. For
example, mutation of Arabidopsis XRN4, a 5 0–3 0 exonu-
clease that degrades uncapped mRNAs, enhanced
accumulation of uncapped transgene mRNAs. This
favored their conversion into dsRNA by RDR6 and the
subsequent degradation of all transgene transcripts
through the S-PTGS pathway [18]. RDR6 most likely
possesses RNA polymerase activity, resulting in dsRNA
production, because a missense mutation in the GDD
motif, which is essential for the catalytic activity of all
characterized RDRs, is sufficient to alleviate S-PTGS [17].

Although the Dicer that produces siRNAs from RDR6
products remains to be formally identified, S-PTGS siRNA
accumulation in Arabidopsis requires a coiled-coil protein
of unknown function, SGS3 [17], the RNase D exonuclease
WEX [19], the sRNA-specific methyl-transferase HEN1
[20] and the putative RNA helicase SDE3 [21] (Figure 1b).
Unlike RDR6, SDE3 is not stringently required for
transgene silencing, and so could act as an accessory to
resolve the secondary structures found in some RDR
RNA degradation through the activity of the 5 0–3 0 exonuclease XRN4. Lack of XRN4 wou
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templates [21]. In accordance with this hypothesis, an
SDE3 homolog is part of the Schizosaccharomyces pombe
RDR complex [22]. SDE3 could also act at other RNA
silencing steps, because the homologous protein Armitage
is required for RISC assembly in Drosophila, an organism
lacking RDR genes [23]. WEX is related to the exonuclease
domain of mut-7, which is required for transposon
silencing and RNAi in C. elegans, but its role in S-PTGS
remains elusive [24]. HEN1-catalyzed methylation of free
hydroxy termini protects Arabidopsis sRNAs, including
S-PTGS siRNAs, from oligo-uridylation, a modification
promoting their instability (see the ‘miRNA transcription
and biogenesis’ section) [25].

In one S-PTGS mutant screen, an extensive allelic
series of ago1 was recovered, suggesting that among the
ten Arabidopsis AGO paralogs, AGO1 is specifically
involved in this pathway [26,27]. Even weak ago1 alleles
completely lost S-PTGS siRNAs, initially suggesting a role
for AGO1 in siRNA production rather than action [27].
However, given that AGO1 is now recognized as a slicer
activity of the plant miRNA-loaded and siRNA-loaded
RISCs [28,29], loss of siRNAs in ago1 can also result from
their poor incorporation into RISC, enhancing their
turnover. Nevertheless, a role for AGO1 in siRNA
production – possibly linked to RDR6-dependent dsRNA
synthesis – cannot be excluded, because some ago1
mutants defective in S-PTGS siRNA accumulation do
not have defects in IR-PTGS [30].

RDR6, and perhaps other S-PTGS components, is also
involved in the related silencing phenomenon, transitivity
[31,32]. Transitivity is the ‘transition’ of primary siRNAs
(corresponding to a sequence interval of a targeted RNA)
to secondary siRNAs targeting regions outside the initial
interval (Figure 2). In plants, this transition can occur
both 5 0 and 3 0 to the primary interval, possibly reflecting
primer-dependent and primer-independent RDR6 activi-
ties. Transitivity serves as a siRNA amplification mech-
anism that also accounts for extensive movement of
silencing throughout transgenic plants [33]. Secondary
siRNAs are exclusively of the 21-nt size class [33]. Thus,
given that S-PTGS siRNAs seem to accumulate as 21-nt
species [32], that DCL4 produces the 21-nt siRNAs from
IR transcripts [15], and that DCL4 and RDR6 activities
are coupled for 21-nt trans-acting siRNA biogenesis (see
the next section), it is tempting to speculate that DCL4 is
also the preferred Dicer for siRNA production in both
S-PTGS and transitivity (Figures 1b and 2).
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Figure 2. Transitive RNA silencing. In transitive RNA silencing, a dsRNA source of primary siRNAs promotes production of secondary siRNAs both 50 and 3 0 of the initially

targeted interval of a transcript. Production of 50 secondary siRNAs (i) can be explained by RDR6/SGS3/SDE3-dependent complementary strand synthesis that is primed by

one of the primary siRNAs. Production of 3 0 secondary siRNAs (ii) cannot be explained by a primed reaction, and it is possible that RNA fragments resulting from primary

siRNA-directed transcript cleavage are recognized as aberrant, thereby initiating dsRNA synthesis as in S-PTGS. The 5 0 and 3 0 reactions should not be considered mutually

exclusive, as siRNAs produced in (ii) could prime further dsRNA synthesis according to the scheme depicted in (i). DCL4 is shown as putatively involved in 5 0 and 3 0 secondary

siRNA biogenesis. Unlike primary siRNAs (which can be 21 nt and 24 nt in size), secondary siRNA are exclusively of the 21 nt size class. It remains unclear whether 24-nt

primary siRNAs can trigger transitive RNA silencing.
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What would the biological function be of an amplified and
non-cell autonomous pathway based on 21-nt siRNAs? At
least one answer is antiviral defense. Virus-derived 21-nt
siRNAs accumulate in infected cells [34], and plants with
compromisedRDR6functionarehypersusceptible toseveral
viruses [17,35]. An RDR-amplified response primed by viral
siRNAs (transitivity) and/or elicited by virus-derived aber-
rant RNAs (S-PTGS pathway) would ensure that the
silencing machinery keeps pace with the high replication
rates of the pathogen. The systemic nature of the response
would immunizecells that areabout to be infected andmight
result in the exclusion of the virus. Consistent with this idea,
the meristems ofNicotianabenthamianawith compromised
RDR6 activity were invaded by several viruses, whereas
normally these tissues are immune to infection [36].

Endogenous RNA silencing pathways involved

in post-transcriptional regulation

MicroRNAs

In plants, miRNAs are produced as single-stranded,
20–24-nt sRNA species, excised from endogenous non-
www.sciencedirect.com
coding transcripts with an extensive fold-back structure.
miRNAs act in trans on cellular target transcripts to
induce their degradation via cleavage, or to attenuate
protein production (Figure 1c) [37]. Currently, w100
Arabidopsis MIRNA genes falling into 25 distinct families
have been identified [38], but many more are likely to exist
(Box 1). miRNAs have important biological roles in plant
and animal development, as shown by the strong
developmental defects of several miRNA overexpression
and loss-of-function mutants [37]. For instance, key
regulatory elements of the plant response to the hormone
auxin, which specifies organ shape and the axes of the
plant body, are controlled by miRNAs [39,40]. miRNAs
also regulate accumulation of transcription factors
involved in defining the identity or number of floral
organs [41,42], leaf shape [43], abaxial–adaxial leaf
asymmetry [44,45] and lateral root formation [46]. In
addition, DCL1 and AGO1, which are involved in the
miRNA pathway, are themselves regulated by miRNAs
[47,48]. Nonetheless, plant miRNAs with validated
targets involved in primary and secondary metabolism

http://www.sciencedirect.com
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have been identified [39,49], indicating that their roles are
not confined to developmental regulation. miRNAs might,
indeed, have broad implications in plant physiology and
environmental adaptation (Box 1).
miRNA transcription and biogenesis

Most plant and animal miRNA genes reside between
protein coding genes or within introns [50]. Most are
probably independent transcription units, and their
expression patterns often show exquisite tissue specificity
or even cell-type specificity, in agreement with a role in
patterning and maintenance of differentiated cell states
[51,52]. Nonetheless, transcription factors or post-tran-
scriptional mechanisms that specify plant MIRNA
expression remain unknown. Many human primary
miRNA transcripts (pri-miRNAs) are synthesized by
RNA polymerase II (Pol II): pri-miRNAs have typical Pol
II 5 0caps and poly(A) tails, their synthesis is hindered by
Pol II-inhibiting drugs and Pol II is found at their
promoters in vivo [53]. Similar, although less extensive,
evidence also points to Pol II as the major polymerase
producing plant pri-miRNAs [38].
Box 1. miRNA genomics: how many miRNA genes and how

do they evolve?

Various abiotic stresses have been shown to induce expression of

several plant miRNAs [39,109] and, although the effects of biotic

stresses have not been studied so far, miRNA induction or

repression by environmental cues could be a common theme of

plant adaptive biology. Such induced or rare miRNAs would be

under-represented in most current cloning libraries that are based

on sRNA extracted from non-stressed tissues. Likewise, miRNAs

expressed at specific developmental stages, in a given tissue or even

in a given cell type, could be overlooked in cloning procedures

involving RNA from whole organisms. Moreover, computational

prediction of miRNA genes generally relies on conservation between

Arabidopsis and rice or maize genomes, yet it now seems that some

– perhaps many – miRNAs are species-specific. Accordingly, the

original estimate of the miRNA gene number in human (w300 based

on evolutionary conservation) has been dramatically increased to O

1000 following the discovery of many miRNAs that are not

conserved beyond the primate genus [110]. Similarly, the current

number of miRNA genes in plants might be vastly underestimated.

An analysis of recently evolved Arabidopsis miRNAs indicates that

inverted gene duplication events can constitute a starting point in

the evolution of fold-back structures found at MIRNA loci [111]. In

this model, ‘young’ miRNA transcripts initially show extensive

complementarity to their targets; they then progressively acquire

nucleotide divergence to the point that only the mature miRNA

sequence resembles the founder gene sequence, as seen in most

older MIRNA genes. However, such stem-loop structures might be

only one of several possible precursors, because poor RNA folding is

sometimes observed at experimentally validated plant MIRNA loci.

The insertion of transposable elements into new genomic sites also

seems to be one of the driving forces that create new miRNAs during

mammalian, and perhaps, plant gene evolution. For instance, in

human, mouse and rat, LINE-2-derived miRNAs exhibit perfect

complementarity to large families of mRNA that contain portions of

miRNA and LINE-2s in their 3 0 UTRs [112]. Some MIRNA genes might

also be occasionally acquired by direct horizontal transfer through

genomic integration of foreign nucleic acids. Hence, several

mammalian DNA viruses encode and produce miRNAs during

infection [113–115]. Likewise, phytoviruses or other plant pathogens

that exploit nucleic acids to infect plants might use miRNAs as

virulence factors [116], and their genes could integrate into

host genomes.

www.sciencedirect.com
Following transcription, mammalian pri-miRNAs are
processed via a well-defined biosynthetic pathway. The
RNase III protein Drosha and its essential cofactor
DGCR8/Pasha – both constituents of the nuclear micro-
processor complex – catalyze initial cuts at the base of pri-
miRNA stem-loop to produce (pre)-miRNA. Following
Exportin-5-dependent nuclear export, pre-miRNAs are
processed by Dicer into mature miRNAs [54]. Plants have
no direct equivalent of microprocessor. In Arabidopsis,
miRNA biosynthesis depends specifically on DCL1 [55,56],
required for the nuclear stepwise processing of pri-
miRNAs, but whether DCL1 itself catalyzes all of the
reactions involved is uncertain [57]. The plant exportin-5
homolog HASTY is involved in miRNA biogenesis [58], but
its exact role is not as clear as in mammals where the
microprocessor pre-miRNA is an experimentally verified
cargo [59]. Mutants in hasty show decreased accumulation
of some, albeit not all, miRNAs in both nuclear and
cytoplasmic fractions [58]. These observations support the
existence of HASTY-independent miRNA export systems
and raise the question of whether miRNAs or miRNA-
containing complexes are even direct cargoes of HASTY.

In plants and animals, Dicer processing occurs in
association with specific dsRNA-binding proteins. First
observed with the Dcr2–R2D2 complex required for
RISC loading in the Drosophila RNAi pathway [60],
this has now also been found for the Dcr1–Loqs
complex, which is involved in the Drosophila miRNA
pathway [61], and Dicer–TRBP and Dicer–PACT
complexes in human cells [62,63]. DCL1–HYL1 is a
similar complex that acts in pri-miRNA processing in
the Arabidopsis miRNA pathway [64–67] (Figure 1c). In
all of these examples, Dicer produces a duplex between
the mature miRNA (miR) and its complementary strand
(miR*) [68]. The miR strand is generally least stably
base-paired at its 5 0 end and is consequently loaded as
the guide strand into RISC, whereas the miR* strand is
degraded [69] (Figure 1c). In the Drosophila RNAi
pathway, R2D2 acts as a thermodynamic asymmetry
sensor of siRNA duplexes, and Loqs, TRBP, PACT and
HYL1 could possibly perform similar roles.

HEN1 is an S-adenosyl methionine (SAM)-binding
methyl-transferase that methylates the 2 0 hydroxy
termini of miR–miR* duplexes, a reaction apparently
specific to the plant kingdom [70,71]. Methylation protects
miRNAs from activities that uridylate and degrade plant
sRNAs from the 3 0 end [25], but it is not required for RISC-
dependent miRNA-guided cleavage in Arabidopsis
extracts [28]. All known classes of plant sRNA are
methylated by HEN1 [25], but this modification seems to
impact differentially on sRNA stability, perhaps reflecting
variable interactions between HEN1 and distinct protein
complexes or distinct sRNA populations. For example, the
viral silencing suppressor Hc-Pro prevents methylation of
virus-derived siRNAs, but not of miRNAs [72], and several
hen1 mutant alleles exist, in which accumulation of
miRNA, but not of S-PTGS siRNAs, is impaired [20].

Plant miRNA activities

Most identified plant miRNAs have near-perfect comple-
mentarity to their targets and promote their cleavage.

http://www.sciencedirect.com
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This is followed by oligo-uridylation and rapid degra-
dation of the 5 0 cleavage fragment [73], and slower
degradation of the 3 0 cleavage fragment mediated, at
least in some cases, by XRN4 [74] (Figure 1c). Animal
miRNAs generally have imperfect complementarity and
repress protein production from intact target mRNAs.
However, it is possible that the action of both plant and
animal miRNAs results from a combination of both
processes (degradation and repression), whose respective
contributions probably vary depending on the extent of the
miRNA–target complementarity (Box 2). Although the
RISC(s) acting in the plant miRNA pathway remain ill
defined, AGO1 associates with miRNAs, and miRNA
targets are cleaved in vitro by immuno-affinity-purified
AGO1 [28,29]. Thus, in plants, the same Argonaute seems
to function as a Slicer for both miRNA- and siRNA-loaded
RISCs, contrasting with the situations in Drosophila and
C. elegans. Plant RISC components other than AGO1
Box 2. miRNA activities: RNA cleavage, translational

repression and many more?

The finding that mammalian RISC programmed with a fully

complementary miRNA becomes cleavage-competent has prompted

the widely accepted notion that the degree of miRNA–target

complementarity alone largely determines whether RISC guides

mRNA cleavage or translational repression in eukaryotes [117]. Most

known plant miRNAs have near-perfect complementarity to their

targets, and so are believed to act by guiding cleavage. This activity is

indeed often experimentally validated using a modified 5 0 rapid

amplification of cDNA ends (5 0 RACE) procedure that identifies clear

cleavage sites within miRNA targets [118,119]. But is cleavage the

sole mode of action of plant miRNAs?

A positive signal in the 5 0 RACE assay does not indicate the extent

of cleavage and appreciable levels of full-length target mRNA often

remain detectable, suggesting that translational repression can

contribute to the overall inhibitory effects observed. In fact, and

surprisingly, only in one example, the miR172–AP2 interaction, has

endogenous target protein accumulation been tested in plants

[41,120]. Although miR172 has near perfect complementarity to the

AP2 transcript, the output was a combination of both cleavage and

translational repression, the latter being predominant in this case.

Thus, miRNA regulation purely by cleavage or purely by transla-

tional inhibition, if they exist, could represent extremes of a

continuum of miRNA action that normally involves a blend of

both mechanisms.

The procedures used so far to retrieve plant miRNA targets could

also have strongly biased our perception of miRNA activities,

precisely because they involved full or near complementarity as a

common, if not exclusive, selection criterion. However, out of 20

recently isolated rice miRNAs, 13 lacked extensive complementarity

to other loci in the rice genome [121]. These can be prototypic guides

of translational repression, as seen with many animal miRNAs that

imperfectly match the 3 0 UTR of their target except in the ‘miRNA

seed’, a core of 7–8 complementary 5 0 nucleotides [122,123].

Nonetheless, recent evidence suggests that even the seed type of

target recognition in animals could well entail RNA degradation that

might not necessarily involve site-specific cleavage [124].

Altogether, those observations raise questions about the accuracy

or even validity of the many rules that have been tentatively put

forward to explain or predict the outcome of miRNA–target

interactions in eukaryotes. This blurred picture is probably just a

reflection of our limited knowledge of small RNA biology. A

compelling example of this was provided in a recent report

describing enhancement, not repression, of hepatitis virus C

replication by a cellular miRNA in infected human cells [125].

Small RNAs are tailored to guide sequence-specific events and there

is, in principle, no reason to exclude positive regulatory actions by

those molecules.
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await identification and it could be that several alterna-
tive RISCs exist, given the number of AGO-like genes in
Arabidopsis.

Mature plant miRNAs are detected in both nuclear and
cytosolic cell fractions [58]. Likewise, RISC programmed
with the let-7 miRNA can be immuno-purified from
nuclear human cell fractions [75], indicating that plant
and animal miRNAs might have nuclear functions
(Figure 1c). These could include RNA cleavage, as
suggested by the intron-targeting activity of the plant
miR173 [76], but also modifications of homologous DNA
[77]. Thus, in Arabidopsis, recognition by miR165 of the
spliced PHB transcript apparently directs cis methylation
on the PHB template DNA. This methylation is enigmatic,
however, as it occurs several kilobases downstream of the
miRNA-binding site [77]. It is conceivable that miRNA-
induced cleavage of the nascent PHB transcript triggers
dsRNA formation initiated at the 3 0end of the transcript
through a primer-independent RDR activity with moder-
ate processivity. The resulting production of siRNA would
thus be confined to the 3 0 end and could mediate DNA
methylation according to the schemes discussed below.
Intriguingly, some (albeit few) siRNAs corresponding to
downstream parts of several miRNA targets have been
detected in Arabidopsis, although none was directly
complementary to the methylated PHB sequence [78].
Direct miRNA-guided DNA methylation in cis and/or in
trans has also been suggested from the observation that
some 21-nt miRNAs of Arabidopsis accumulate as a
second, 24-nt species at specific developmental stages [68].

Transacting siRNAs: mixing up miRNA and siRNA

actions

Transacting (ta) siRNAs are a recently discovered class of
plant endogenous sRNAs. They derive from non-coding,
single-stranded transcripts, the pri-tasiRNAs, which are
converted into dsRNA by RDR6–SGS3, giving rise to
siRNAs produced as discrete species in a specific 21-nt
phase [79,80] (Figure 1d). The RDR6–SGS3 involvement is
reminiscent of siRNA biogenesis in S-PTGS, but the
genetic requirements of the two pathways are not
identical, because tasiRNA accumulation is normal in
the hypomorphic ago1–27 mutant and in mutants
defective in SDE3 and WEX [79]. Much like plant
miRNAs, mature tasiRNAs guide cleavage and degra-
dation of homologous, cellular transcripts. To date,
tasiRNA generating loci (TAS1–3) have been identified
only in Arabidopsis [76], but they probably exist in other
plant species and possibly in other organisms that contain
RDRs, such as C. elegans or Neurospora crassa.

tasiRNA production involves an interesting mix of
miRNA action and the siRNA biogenesis machinery
(Box 3). Pri-tasiRNAs contain a binding site for a
miRNA that guides cleavage at a defined point. The initial
miRNA-guided cut has two important consequences. First,
it triggers RDR6-mediated transitivity on the pri-tasiRNA
cleavage products, allowing dsRNA production either 5 0 or
3 0 of the cleavage site [76]. Second, it provides a well-
defined dsRNA terminus, which is crucial for the accuracy
of a phased dicing reaction performed by DCL4, which
produces mature tasiRNAs (Figure 1d).
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Box 3. Trans-acting siRNAs: more questions than answers

miRNA-guided cleavage of pri-tasiRNA initiates tasiRNA biogenesis,

which requires dsRNA formation by RDR6 and subsequent pro-

duction of phased siRNAs by DCL4 (see Figure 1d). As Dicers are

known to process dsRNA from both ends, it is unclear how DCL4

systematically selects the dsRNA end located at the miRNA cleavage

site as its starting point of tasiRNA processing (Figure 1d). This

reaction occurs both when tasiRNAs are produced from the 5 0- and

from the 3 0-pri-tasiRNA cleavage fragments. One possible expla-

nation is that DCL4 is directly associated with the miRNA-containing

RISC that cleaves the pri-tasiRNA.

A second, intriguing question is why miRNA action triggers

transitivity on pri-tasiRNA transcripts, but not on endogenous

mRNAs. pri-tasiRNA cleavage can take place in the nucleus, because

the tasiRNA-containing part of the TAS1 and TAS2 pri-tasiRNA

resides within introns, and because DCL4 seems to be localized to

the nucleus. Thus, it is possible that nuclear as opposed to

cytoplasmic miRNA action is coupled to RDR activity, perhaps as a

consequence of association of RDRs with the transcription machin-

ery. This scenario would resemble the S. pombe heterochromatic

RNAi pathway, where Ago1 associates with RNA Pol II, nascent

transcripts and an RDR-containing complex [22,100].

Finally, it is unclear how pri-tasiRNA cleavage by mature tasiRNAs

is prevented. One can argue that many tasiRNAs would be incapable

of guiding pri-tasiRNA cleavage simply because they are of the same

polarity. However, some tasiRNAs offset by 10–11 nt from their

correct phase are occasionally detected [76], suggesting that

tasiRNA-guided pri-tasiRNA cleavage can occur but that mechan-

isms exist to prevent such cleavage from being widespread.
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What is the biological role of tasiRNAs? Arabidopsis
rdr6, sgs3 and dcl4 mutants all have an accelerated
juvenile-to-adult phase transition [13,14,80,81], indi-
cating that tasiRNAs could regulate this trait. The
tasiRNA targets include two auxin response factor (ARF)
transcription factors and a family of pentatricopeptide
repeat proteins, although there is no evidence for the
involvement of the only functionally characterized target
(ARF3/ETTIN) in the juvenile-to-adult phase transition
[82], nor were heterochronic defects noticed in insertion
mutants disrupting the TAS1 or TAS2 loci [79,81].
Mutants in AGO7/ZIPPY have a similar phase-transition
defect [83], suggesting that AGO7 could be part of a
specific tasiRNA-programmed RISC, although tasiRNAs
co-immunoprecipitate with AGO1 to form a cleavage
competent RISC [28].
Natural antisense transcript siRNAs

An example has been recently described in which a pair of
neighboring genes on opposite DNA strands (cis-antisense
genes) gives rise to a single siRNA species from the
overlapping region of their transcripts [84]. This 24-nt
siRNA species – dubbed natural antisense transcript
siRNA (nat-siRNA) – guides cleavage of one of the two
parent transcripts, and it is produced in a unique pathway
involving DCL2, RDR6, SGS3 and the atypical DNA
dependent RNA polymerase-like subunit NRPD1a (see the
‘Chromatin-targeted RNA silencing pathways’ section
below). nat-siRNA guided cleavage triggers production of
a series of secondary, phased 21-nt siRNAs, a reaction
similar to tasiRNA biogenesis except that the Dicer
involved is DCL1. The role of secondary nat-siRNAs is
currently unclear, but primary nat-siRNA-guided clea-
vage contributes to stress adaptation, and, given the
www.sciencedirect.com
numerous cis-antisense gene pairs in plant and other
genomes [85,86], this isolated example might reflect a
widespread mechanism of gene regulation.

Chromatin-targeted RNA silencing pathways

In addition to acting on RNA, siRNAs can guide formation of
transcriptionally silent heterochromatin in fungi, animals
and plants. Plant heterochromatin is characterized by two
sets of modifications: methylation of cytosines and of specific
histone lysineresidues (histone 3 Lys9 (H3 K9) and histone3
Lys27 (H3 K27) in Arabidopsis) [87]. In some organisms,
these modifications act as assembly platforms for proteins
promoting chromatin condensation. Arabidopsis cytosine
methyl-transferases include the following proteins: DRM1
and DRM2, which are all closely homologous to each other
and are required for all de novo DNA methylation; MET1,
required for replicative maintenance of methylation at CG
sites; and CMT3, required for maintenance at CNG and
asymmetrical CNN sites (reviewed in Refs [88,89]). Histone
methyl-transferases involved in H3 K9 and H3 K27
methylation belong to the group of Su(Var)3–9 homologs
and include KYP (also called SUVH4) and SUVH2 in
Arabidopsis [90]. These and other proteins with roles in
Arabidopsis small RNA pathways are summarized in
Table 1.

In many organisms, siRNAs corresponding to several
endogenous silent loci, including retrotransposons, 5S
rDNA and centromeric repeats, have been found [88].
They are referred to as cis-acting siRNAs (casiRNAs)
because they promote DNA or histone modifications at the
loci that generate them. In plants, casiRNAs are methylated
byHEN1andarepredominantly24 nt insize (Box 4) [25,91].
Their accumulation is specifically dependent on DCL3 and,
in many instances, on RDR2 (Figure 3) [91]. casiRNA
accumulation also requires an isoform (containing subunits
NRPD1a and NRPD2) of a plant-specific and putative DNA-
dependent RNA polymerase, termed Pol IV [92–94], which
might act as a silencing-specific RNA polymerase that
produces transcripts to be converted into siRNAs by the
actions of RDR2 and DCL3. However, many aspects of Pol IV
silencing-related activities remain obscure. Hence, it is
uncertain whether Pol IV even possesses RNA polymerase
activity. Additionally, a distinct Pol IVisoform with subunits
NRPD1bandNRPD2is required formethylation directed by
IR-derived siRNAs with transgene promoter homology,
suggesting that the action of Pol IV complexes might not
be confined to siRNA biogenesis [95]. Finally, the require-
ment of NRPD1a for nat-siRNA accumulation in the
presence of both antisense mRNAs (produced by Pol II)
suggests that Pol IV can have silencing-related functions
independent of DNA-dependent RNA polymerase
activity [84].

Other factors involved in IR-derived siRNA-directed
promoter methylation include the chromatin remodeling
factor DRD1 [96] and the putative histone deacetylase
HDA6 [97] whose activity might be required to provide
free histone lysines for methylation by KYP/SUVH-family
enzymes (Figure 3). It is currently uncertain whether
DRD1 and HDA6 are also implicated in silencing of
endogenous loci. 24-nt siRNAs can act in a RISC-like
complex, perhaps one akin to the RNA-induced
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Table 1. Overview of proteins with roles in Arabidopsis small RNA pathways

Protein Domains and motifs Biochemical activity Pathway Refs

DCL1 RNase III miRNA synthesis miRNA [55,85]

dsRNA binding nat-siRNA

DEAD-box helicase

PAZ

DUF283 (unknown function)

HYL1 dsRNA binding dsRNA binding miRNA [64,65]

HST RanGTP binding Putative exportin miRNA [58]

AGO1 PAZ siRNA slicer miRNA [26–29]

Piwi miRNA slicer S-PTGS

tasiRNA

Chromatin (?)

HEN1 dsRNA binding sRNA methyl-transferase All sRNA pathways [20,25,56,70]

Lupus La RNA binding

S-adenosyl binding

RDR6 RdRP RNA-dependent RNA

polymerase

S-PTGS

Transitivity [16,17,32,33,76,79,85]

tasiRNA

nat-siRNA

SGS3 Coiled-coil Unknown S-PTGS [17,79,85]

Putative ZnII-binding Transitivity

tasiRNA

nat-siRNA

DCL4 RNase III 21-nt siRNA synthesis tasiRNA [13–15]

dsRNA binding IR-PTGS

Helicase S-PTGS?

PAZ

WEX 3 0–5 0 exonuclease Putative 3 0–5 0 exonuclease S-PTGS [19]

SDE3 DEAD box Putative RNA helicase S-PTGS [21,33]

Helicase Transitivity

DCL2 RNase III 22- or 24-nt siRNA synthesis nat-siRNA [85]

dsRNA binding

PAZ

DCL3 RNase III 24-nt siRNA synthesis Chromatin [28,91]

DEAD box helicase

PAZ

RDR2 RdRP Putative RNA-dependent

RNA polymerase

Chromatin [91]

AGO4 PAZ Unclear Chromatin [11]

Piwi

NRPD1a RNA polymerase Putative DNA-dependent

RNA polymerase

Chromatin

nat-siRNA

[85,92–95]

NRPD1b RNA polymerase Putative DNA-dependent

RNA polymerase

Chromatin [93,95]

NRPD2 RNA polymerase Putative DNA-dependent

RNA polymerase

Chromatin [92–95]

HDA6 Histone deacetylase Putative histone deacetylase Chromatin [97]

DRD1 SNF2-related DNA and ATP

binding

Putative chromatin remodel-

ing

Chromatin [96]

Helicase

CMT3 Cytosine DNA methyl-

transferase

Cytosine DNA methyl-

transferase

Chromatin [88]

Chromodomain

Bromo-adjacent domain

DRM1/2 Cytosine DNA methyl-

transferase

Cytosine DNA methyl-

transferease

Chromatin [88]

MET1 Cytosine DNA methyl-

transferase

Cytosine DNA methyl-

transferase

Chromatin [88]

Bromo-adjacent domain

KYP SET domain H3 K9 methyl-transferase Chromatin [90]

ZnII-binding domain

Pre-SET domain

Post-SET domain

YDG domain

EF-hand

SUVH2 SET domain H3 K9 methyl-transferase Chromatin [128]

ZnII-binding pre-SET domain

YDG domain
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Box 4. 21-nt, 22-nt and 24-nt siRNAs: does size matter?

High-throughput cloning and case-by-case studies indicate that

casiRNAs are predominantly 24 nt rather than 21 nt in size and

appear to be dependent on DCL3. This prompts the question of

whether there are structural and/or functional reasons that make 24-

nt siRNAs better suited to guide chromatin modification and less

well suited to guide transcript cleavage. Several observations

indicate that this might not be true. First, 21-nt siRNAs are clearly

fully competent to guide DNA methylation in vivo, because RDR6-

dependent transitive siRNAs – exclusively 21 nt in size – have been

found to direct sequence-specific DNA methylation at transgene loci

[32]. Second, a 24-nt nat-siRNA directs transcript cleavage in vivo

[84], as do 24-nt siRNAs that are artificially loaded into AGO1-

containing RISC in Arabidopsis extracts [28]. Third, AGO1 has been

implicated in 21-nt siRNA-guided DNA methylation of transgenes

[27], but it is also required for TGS and H3K9 methylation at at least

one transposon locus that generates 24-nt siRNAs [126]. A novel

small RNA species, 22 nt in size, was recently characterized in

Arabidopsis and its accumulation was found dependent on DCL2

[13,14]. The 22-nt siRNA accumulates during infection by at least one

RNA virus and also derives from the dsRNA precursors of tasiRNA,

which are normally processed by DCL4. Whether the 22-nt siRNA has

any functionality remains currently unknown.

Recent crystallographic data from the Giardia intestinalis Dicer –

an enzyme that generates 25-nt siRNAs – provides some hints as to

how siRNAs of specific sizes might be generated by different Dicers

[127]. It was found that the 65 Å distance between the PAZ and

RNase III domains of the Giardia Dicer matches the length spanned

by 25 bp of RNA, suggesting that Dicer is a molecular ruler that

cleaves at a specified distance from the helical end. The existence of

specific Dicers with specific products in plants provides a good

opportunity to challenge this model experimentally, although inter-

rather than intra-molecular interactions might also influence the

final size of small RNAs in vivo. Hence, specific PAZ domain-

interacting proteins could modulate the cleavage specificity of any

given Dicer, for instance by acting as hinges on modification of the

PAZ steric environment. This might explain, for instance, why DCL2

has been implicated in production of both 24-nt and 22-nt siRNAs in

separate sRNA biosynthetic pathways in Arabidopsis [84,91].
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transcriptional silencing complex, RITS, characterized in
fission yeast [98]. This complex could contain AGO4,
because ago4 mutants have phenotypes overlapping with
those of rdr2, dcl3, nrpd1a and nrpd2 [11]. At loci affected
by these mutations, methylation of CNG and particularly
of CNN is strongly reduced, whereas loss of CG
methylation is less pronounced, consistent with the
observation that MET1-dependent promoter CG methyl-
ation could be maintained in the absence of a virus-
encoded RNA trigger of transcriptional gene silencing
(TGS) [99].

Possible targets of casiRNAs include nascent tran-
scripts (Figure 3a) or DNA itself (Figure 3b). In the
S. pombe heterochromatic RNAi pathway resulting in H3
K9 (but not cytosine) methylation, target transcription by
Pol II is required for siRNA action, and Ago1 associates
with nascent transcripts [100]. siRNA-directed histone
methylation of the human EF1A promoter was also
dependent on active Pol II transcription [101]. However,
direct siRNA–DNA base-pairing cannot be excluded. For
instance, in experiments involving virus-derived
promoter-directed siRNAs, the methylated DNA interval
on targeted promoters matched the primary siRNA source
and did not extend any further into transcribed regions
[99]. If siRNAs indeed interact directly with DNA, how
does the double helix become available for siRNA pairing?
www.sciencedirect.com
Pol IV could facilitate this access, for instance by moving
along the DNA with associated helicases.

The precise molecular mechanisms underlying
sequence-specific recruitment of cytosine and histone
methyl-transferases to silent loci also remain elusive,
because associations between sRNA and such enzymes
have been reported only once, in human cells [101]. In fact,
there seems to be a self-sustaining loop in which siRNA
production and DNA/histone methylation are mutually
dependent at endogenous silent loci, raising the possibility
that production of chromatin-directed siRNAs in vivo
might even be a consequence, rather than a cause, of DNA
or histone methylation (Figure 3).

The RDR2–DCL3–NRPD1–AGO4 pathway has clear
roles in taming transposons and in maintenance of
genome integrity in plants, because loss of casiRNA
caused by mutations in the factors in the pathway
reactivates transposon activity [11,91]. This pathway
could also maintain heterochromatin at centromeric
repeats, which appears mandatory for accurate chromo-
some segregation in S. pombe [102]. The 24-nt siRNA-
generating machinery can also act to silence protein-
coding genes. For example, expression of the key negative
regulator of flowering FLC is maintained at a low level in
an early-flowering Arabidopsis ecotype because of the
presence of an intronic transposon that causes repressive
chromatin modifications through the action of a pathway
dependent of NRPD1a and AGO4 [103]. Nevertheless,
several additional mechanisms, not necessarily mediated
by siRNAs, account for epigenetic regulation of gene
expression in plants. For example, in Arabidopsis,
mutation of the chromatin-remodeling factor DDM1 has
much broader consequences on chromatin silencing than
any known single mutant in the RNA silencing machinery
[104,105]. In addition, gene regulation by Polycomb-like
proteins in Arabidopsis has not been linked to RNA
silencing [106].

Future directions: integrating plant silencing pathways

into the global scheme of gene expression pathways

Although the data summarized here indicate that
diversification and specialization of RNA silencing path-
ways have contributed to specific modes of sRNA-directed
gene regulation in plants, the division into pathways
presented here should be merely considered as a
conceptual guide. It is indeed becoming increasingly
clear that diverse RNA silencing mechanisms intersect
in plants, as illustrated by the sophistication of tasiRNA
and nat-siRNa biogenesis. However, such intersections
can also have more subtle, yet highly significant,
manifestations. For instance, the chromatin silencing
component NRPD1a was originally identified from the
weak S-PTGS defects of nrpd1a mutants [92], and rdr2,
met1 and ddm1 mutants show similar defects at late
developmental stages [107]. This suggests that chromatin
modifications might contribute to reinforce S-PTGS
siRNA synthesis, for example by promoting aberrant
transcription. One of the challenges facing the plant
RNA silencing field will be to apprehend fully the output of
such interrelated sRNA networks. A second challenge will
be to tie RNA silencing into other components of gene
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Figure 3. Chromatin-targeted RNA silencing. The scheme illustrates two of many non-mutually exclusive scenarios that possibly account for siRNA-directed chromatin

modifications at endogenous loci. Note that both scenarios are based on circular and amplified schemes in which siRNA production and chromatin modification reinforce

one another. (a) A nascent Pol II or Pol III transcript is cleaved through the action of siRNA-programmed AGO4, resulting in a truncated RNA that is converted into dsRNA by

the action of RDR2. The dsRNA is then processed by DCL3 into 24-nt siRNAs that direct further cleavage of nascent transcripts and might possibly guide sequential activities of

histone deacetylases (e.g. HDA6), histone methyl-transferases (e.g. KYP or SUVH2) and/or DNA methyl-transferases (CMT3 or a DRM). It is unclear whether histone

modification precedes DNA methylation or not. The process might also involve siRNA-directed chromatin remodeling factors, such as DRD1. The positions of Pol IVa and Pol

IVb in those reactions are currently ill defined. (b) The same effectors are involved but, in this scenario, RDR2 uses nascent transcripts as templates and siRNA-loaded AGO4 is

recruited to guide chromatin modifications rather than RNA cleavage.
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expression pathways. There are already predictable links
to transcription elongation, termination and mRNA
degradation, but there are also specific connections to
dsRNA editing [108]. Finally, the induction of the S-PTGS
pathway in xrn4 mutants [18] suggests that the silencing
machinery might have broad quality control functions in
addition to its currently recognized regulatory roles.
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