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Abstract We study the asymptotic geometry of Teichmüller geodesic rays. We show that,
when the transverse measures to the vertical foliations of the quadratic differentials deter-
mining two different rays are topologically equivalent, but are not absolutely continuous with
respect to each other, the rays diverge in Teichmüller space.
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1 Introduction

Let S be an oriented surface of genus g with n punctures. We assume 3g − 3 + n ≥ 1. Let
T (S) denote the Teichmüller space of S with the Teichmüller metric d(·, ·). A basic question
in geometry is to study the long term behavor of geodesics. In this paper we study the question
of when a pair of geodesic rays X1(t), X2(t), with possibly distinct basepoints, stay bounded
distance apart, and when they diverge in the sense that d(X1(t), X2(t)) → ∞ as t → ∞.

Teichmüller’s theorem implies that a Teichmüller geodesic ray is determined by a qua-
dratic differential q at the base point and that there are quadratic differentials q(t) on X (t)
along the ray found by stretching along the horizontal trajectories of q and contracting along
the vertical trajectories.

Many cases of the question of divergence of rays are already known. It is a general
principle that the asymptotic behavior of the ray is determined by the properties of the
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vertical foliation of q . The first instance is if the quadratic differentials q1, q2 defining the
geodesic rays X1(t), X2(t) are Strebel differentials. This means that their vertical trajectories
are closed and decompose the surface into cylinders. In [7] it was shown that if the homotopy
classes of the cylinders for q1 coincide with those of q2, then X1(t), X2(t) stay bounded
distance apart. In particular this showed that the Teichmüller metric was not negatively curved
in the sense of Busemann. A second known case is if the vertical foliations of q1, q2 are the
same uniquely ergodic foliation. In that case the rays also stay bounded distance apart [8].

The next possibility is the vertical foliations of q1, q2 are topologically equivalent, have a
minimal component and yet are not uniquely ergodic. (It is well-known that for any quadratic
differential, the vertical trajectories decompose the surface into cylinders and subsurfaces
in which every trajectory is dense). In that case in each minimal component there exist a
finite number of mutually singular ergodic measures, and any transverse measure is a convex
combination of the ergodic measures. Ivanov [5] showed that if the transverse measures of
q1, q2 in these minimal components are absolutely continuous with respect to each other,
then the rays stay bounded distance apart. In this paper we prove the converse.

Let q1, q2 be quadratic differentials on X1 and X2 with vertical foliations
[

Fv
q1

, |dx1|
]

and
[

Fv
q2

, |dx2|
]

and determining rays X1(t), X2(t). Our main result is then

Theorem A Suppose Fv
q1

and Fv
q2

are topologically equivalent. Suppose there is a minimal
component � of the foliations Fv

qi
with ergodic measures ν1, . . . , νp and so that restricted to

�, |dx1| = ∑p
i = 1 aiνi , |dx2| = ∑p

i = 1 biνi and there is some index i so that either ai = 0
and bi > 0, or ai > 0 and bi = 0. Then the rays X1(t) and X2(t) diverge.

In particular, this holds when the transverse measures are distinct ergodic measures.
The last possibility is that the vertical foliations of q1, q2 are not topologically equivalent.

If the geometric intersection of the vertical foliations is nonzero, then the rays diverge [5].
We prove

Theorem B Suppose q1, q2 are quadratic differentials such that the vertical foliations[
Fv

q1
, |dx1|

]
and

[
Fv

q2
, |dx2|

]
are not topologically equivalent, but i

([
Fv

q1
, |dx1|

]
,[

Fv
q2

, |dx2|
])

= 0. Then the rays X1(t)) and X2(t) diverge.

These theorems together with the previously known results completely answer the question
of divergence of rays.

The outline of the proof of Theorem A is as follows. In Proposition 1, we will show that,
for the flat metrics defined by the quadratic differentials q1(t) and q2(t), for any sufficiently
large time t , there is a subsurface Y (t) ⊂ � with its area small in one metric and bounded
away from zero in the other, while its boundary is short in both metrics. This is where we use
the assumption that the measures are not absolutely continuous with respect to each other.
We will then apply Lemma 6 to find a bounded length curve γ (t) ⊂ Y (t) which is “mostly
vertical” with respect to the metric of q1(t). It has comparable length in the metric of q2(t).
Using the fact that the quadratic differentials give comparable length to γ (t) while giving
very different areas to Y (t), Lemma 7 will allow us to show that the ratio of the extremal
length of γ (t) along one ray to the extremal length on the other is large. We then apply
Kerckhoff’s formula to conclude that the surfaces are far apart in Teichmuller space.

We will also prove

Theorem C Let ν1, . . . , νp be maximal collection of ergodic measures for a minimal foli-

ation [F, µ]. Then there is a sequence of multicurves γn = {
γ 1

n , . . . , γ k
n

}
such that γ

j
n →

[F, ν j ] in PMF .
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In other words, any two topologically equivalent measured foliations can be approximated
by a sequence of multicurves, with possibly different weights.

This result settles a question asked by Moon Duchin.

2 Background

2.1 Measured foliations

Recall a measured foliation on a surface S consists of a finite set � of singular points and a
covering of S \ � by open sets {Uα} with charts φα : Uα → R

2 such that the overlap maps
are of the form

(x, y) → (±x + c, f (x, y)).

The leaves of the foliation are the lines x = constant. The points � are p-pronged singulari-
ties for p ≥ 3. One allows single pronged singularities at the punctures. A measured foliation
comes equipped with a transverse invariant measure which in the above coordinates is given
by µ = |dx |. Henceforth we will denote measured foliations by [F, µ]. We will write F to
denote a (topological) foliation when we are ignoring the measure.

For the rest of the paper, a curve will always mean a simple closed curve. For any homotopy
class of simple closed curves β, let

i([F, µ], β) = inf
β ′∼β

∫

β ′
dµ.

The intersection with simple closed curves extends to an intersection function

i([F1, µ1], [F2, µ2])
on pairs of measured foliations. Thurston’s space of measured foliations is denoted MF and
the projective space of measured foliations by P M F .

Let �F denote the compact leaves of F joining singularities. It is well-known that each
component � of S \�F is either an annulus swept out by closed leaves or a minimal domain
in which every leaf is dense.

Definition 1 We say that two foliations F1, F2 on S are topologically equivalent, and we
write F1 ∼ F2, if there is a homeomorphism of S \ �F1 → S \ �F2 isotopic to the identity
which takes the leaves of F1 to the leaves of F2.

Note that this definition does not refer to the measures.

Definition 2 A foliation [F, µ] in a minimal domain � is said to be uniquely ergodic if the
transverse measure µ restricted to � is the unique transverse measure of the foliation F up
to scalar multiplication.

More generally, suppose � is a minimal component of [F, µ]. There exist invariant trans-
verse measures ν1 = ν1(�), . . . , νp = νp(�) such that

• p is bounded in terms of the topology of �.
• νi is ergodic for each i .
• any transverse invariant measure ν on � can be written as ν = ∑p

i = 1 aiνi for ai ≥ 0.
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Thus the transverse measures are parametrized by a simplex in R
p . Two foliations, [F, µ1]

and [F, µ2], are absolutely continuous with respect to each other if, when the measures are
expressed as a convex combination as above, the indices with positive coefficients are iden-
tical. Equivalently, they are absolutely continuous with respect to each other if they lie in the
same open face of the simplex.

2.2 Quadratic differentials and Teichmüller rays

A meromorphic quadratic differential q on a closed Riemann surface X with a finite number
of punctures removed is a tensor of the form q(z)dz2 where q is a holomorphic function and
q(z)dz2 is invariant under change of coordinates. We allow q to have at most simple poles
at the punctures.

As such there is a metric defined by |q(z)|1/2|dz|. The length of an arc β with respect to
the metric will be denoted by |β|q . There is an area element defined by |q(z)||dz|2. We will
denote by Areaq � the area of a subsurface � ⊆ X .

Away from the zeroes and poles of q there are natural holomorphic coordinates z = x +iy
such that in these coordinates q = dz2. The lines x = constant with transverse measure |dx |
define the vertical foliation

[
Fv

q , |dx |
]
. The lines y = constant with transverse measure |dy|

define the horizontal measured foliation
[

Fh
q , |dy|

]
. The transverse measure of an arc β with

respect to |dy| will be denoted by vq(β) and called the vertical length of β. Similarly, we
have the horizontal length denoted by hq(β). The area element in the natural coordinates is
given by dxdy.

We denote by �q = �Fv
q

the vertical critical graph of q . This is the union of the vertical
leaves joining the zeroes of q .

The Teichmüller space of S denoted by T (S) is the set of equivalence classes of Rie-
mann surface structures X on S, where X1 is equivalent to X2 if there is a conformal map
f : X1 → X2 isotopic to the identity on S. The Teichmüller metric on T (S) is the metric
defined by

d(X1, X2) := 1

2
inf

f
{log K ( f ) : f : X1 → X2 is homotopic to Id }

where f is quasiconformal and

K ( f ) := ||Kx ( f )||∞ ≥ 1

is the quasiconformal dilatation of f , where

Kx ( f ) := | fz(x)| + | fz̄(x)|
| fz(x)| − | fz̄(x)|

is the pointwise quasiconformal dilatation at x .
Teichmüller’s Theorem states that, given any X1, X2 ∈ T (S), there exists a unique (up

to translation in the case when S is a torus) quasiconformal map f , called the Teichmüller

map, realizing d(X1, X2). The Beltrami coefficient µ f := ∂̄ f
∂ f is of the form µ f = k q̄

|q| for
a unique unit area quadratic differential q on X1 and some k with 0 ≤ k < 1. Define t by

e2t = 1 + k

1 − k
.
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There is a quadratic differential q(t) on X2 such that in the natural local coordinates w =
u + iv of q(t) and z = x + iy of q the map f is given by

u = et x v = e−t y.

Thus f expands along the horizontal leaves of q by et , and contracts along the vertical leaves
by e−t .

Conversely, any unit area q on X determines a 1-parameter family of Teichm̈uller maps ft

defined on X . Namely ft has Beltrami differential µ = k q̄
|q| where e2t = 1 + k

1 − k . The image
surface is denoted by X (t) and X (t); t ≥ 0 is the Teichmüller ray based at X in the direction
of q . On each X (t) we have the quadratic differential q(t).

2.3 Extremal length and Annuli

We recall the notion of extremal length. Suppose X is a Riemann surface and � is a family
of arcs on X . Suppose ρ is a conformal metric on X . For an arc γ , denote by ρ(γ ) its length
and by A(ρ) the area of ρ.

Definition 3

ExtX (�) = sup
ρ

infγ∈� ρ2(γ )

A(ρ)
,

where the sup is over all conformal metrics ρ.

We will apply this definition when � consists of all simple closed curves in a free homot-
opy class of some α. In that case we will write ExtX (α). It is also worth noting that if q is a
unit area quadratic differential then ExtX (α) ≥ |α|2q since q gives a competing metric. (Here
again |α|q denotes the length of the geodesic in the homotopy class of α.)

The following formula due to Kerckhoff [6] is extremely useful in estimating Teichmüller
distances. For X1, X2 ∈ T (S)

d(X1, X2) = 1

2
log sup

α

ExtX2(α)

ExtX1(α)
. (1)

We will also need the following inequalities, comparing hyperbolic and extremal lengths.
They are given by Corollary 3 in Maskit [12]. The first says that

ExtX (α) ≤ 1

2
lσ (α)e

1
2 lσ (α)

where lσ (α) repsesents the length of the geodesic, in the homotopy class of α, with respect
to the hyperbolic metric of X . The second says that as lσ (α) → 0 we have

ExtX (α)

lσ (α)
→ 1/π.

Definition 4 Suppose there is an embedding of a Euclidean cylinder in R
3 into X which is

an isometry with respect to the metric of q . The image is called a flat cylinder. The cylinder
is maximal if it cannot be enlarged. In that case there are singularities on each boundary
component of the cylinder.

We need a definition and estimates found in [3] and [14]. We first adopt the following
notation. If two quantites a and b differ by multiplicative and additive constants that depend
only on the topology, then we will often write

a 
 b.
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Definition 5 Given a quadratic differential with its metric q , an expanding annulus A is an
annulus where the curvature of each boundary component has constant sign, either positive or
negative at each point, the boundary curves are equidistant and there are no zeroes inside A.

Let d(A) be the distance between the boundary components of an expanding annulus. It is
universally bounded. The following statement can be found as Corollary 5.4 of [3].

Lemma 1 Suppose q is a quadratic differential of area 1 on X with its hyperbolic metric σ ,
and β is a sufficiently short curve.

(1)

1

lσ (β)

 max(Mod(F(β), Mod(A(β)),

where F(β) is the maximal flat cylinder, A(β) is the maximal expanding annulus with
one boundary component the q- geodesic in the class of β and

(2)

Mod(A(β)) 
 log
d(A(β))

|β|q .

(3) the other boundary component of A(β) contains a zero of q.

We will also need the following result from [13]. Minsky gives a useful estimate of the
extremal length of a curve, which uses collar decomposition. For 0 < ε1 < ε0 less than
the Margulis constant, let A be the collection of pairwise disjoint annular neighborhoods of
the geodesics of hyperbolic length at most ε1, whose internal boundary components have
hyperbolic length ε0. Then the union of A with the collection of components of X − A is
the (ε0, ε1) collar decomposition of X . For a subsurface Q ⊂ X , and α a homotopy class of
curves, we denote by ExtQ(α) the extremal length of the restriction of the curves in α to Q.

Theorem 1 [Theorem 5.1 in [13]] Let X be a Riemann surface of finite type with boundary
lengths in the hyperbolic metric at most �0, and let Q be the set of components of the (ε0, ε1)

collar decomposition of X. Then, for any curve α in X, then

ExtX (α) 
 max
Q∈Q

ExtQ(α)

where the multiplicative factors depends only on ε0, ε1, �0 and the topological type of X.

2.4 Limits of quadratic differentials

We need the following convergence result for quadratic differentials where one or more
curves have extremal length approaching 0. The proof follows more or less immediately
from results in [11].

Theorem 2 Suppose Xn is a sequence of Riemann surfaces, qn is a sequence of unit area
quadratic differentials on Xn, and γ1, . . . , γ j is a collection of disjoint simple closed curves
such that

• the extremal length of each γi goes to 0 along Xn

• the extremal length of every other closed curve is bounded below away from 0 along the
sequence.

• there is no flat cylinder in the homotopy class of γi
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Then by passing to a subsequence, for any subsurface �n ⊂ Xn bounded by the geodesic
representatives of the γi , whose qn-area is bounded away from 0, there is a surface �∞ with
punctures and a nonzero finite area quadratic differential q∞ on �∞ such that qn restricted
to �n converges uniformly on compact sets to q∞.

The convergence means that for any neighborhood U of the punctures on �∞
(1) for large enough n there is a conformal map Fn : �∞ \ U → Xn

(2) F∗
n qn → q∞ as n → ∞ uniformly on �∞ \ U.

Proof Using the compactification of the moduli space of Riemann surfaces (see [2]), by
passing to a subsequence we can assume Xn converges to a limiting Riemann surface X∞
with paired punctures corresponding to each γi so that (1) holds above. Then again passing
to a subsequence we can assume qn converges to some finite area quadratic differential q∞
on each component �∞ of X∞; the convergence as in (2). We need to show that that if �n

has qn-area bounded below then q∞ is not identically 0 on the corresponding �∞. For each
paired punctures on X∞ pick holomorphic coordinates 0 < |zi | < 1 and 0 < |wi | < 1 on the
corresponding punctured discs. For n sufficiently large, for each i there is a ti = ti (n) which
goes to 0 as n → ∞ such that Xn can be recovered from X∞ by removing the punctured
discs 0 < |zi | < |ti | and 0 < |wi | < |ti | and then gluing the annulus |ti | ≤ |zi | ≤ 1 to the
annulus |ti | ≤ |wi | ≤ 1 by the formula

ziwi = ti .

This produces an annulus in the class of γi . In forming Xn , we also allow a small defor-
mation of the complex structure of X∞ in the complement of the union of the discs. We need
to consider the punctured discs 0 < |zi | < 1 contained in �∞ and the corresponding annulus

Ai = {zi : |ti |1/2 < |zi | < 1} ⊂ Xn .

In the coordinates of Ai the qn-geodesic in the class of γi lies outside any fixed compact
set K for n large enough. Fix now the index i and suppress that subscript. By the Corollary
following Lemma 5.1 in [11], we can express qn in A = Ai as

qn = an/z2 + fn/z + tgn/z3,

where an, fn, gn are uniformly bounded family of holomorphic functions of z. It is easy to
see that the last term integrated over A goes to 0 as t = ti goes to 0. Since there is no flat
annulus in the class of γi , by Lemma 5.3 of [11], we have

−|an |1/2 log |t | ≤ 1.

This implies that the first term of the expansion of qn also has small integral over A. Since
we are assuming that the integral of |qn | is bounded away from 0 on �n we must have that fn

converges to a nonzero function on the disc 0 < |z| < 1, and so q∞ is not identically 0. �

3 Lemmas relating length, slope and area

We need to recognize instances when the area of a subsurface is small. As a consequence
of the preceeding Theorem we show that if all bounded length curves have small horizontal
length, then the area is small.

Lemma 2 With the same assumption as in Theorem 2 suppose q ′
n is another quadratic dif-

ferential on Xn such that hq ′
n
(α) → 0 for any fixed homotopy class of curves in a nonannular

component �n of the complement of the curves γ1, . . . , γp. Then Areaq ′
n
(�n) → 0.
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Proof By passing to a subsequence we can assume �n → �∞ and q ′
n → q ′∞. Now each

geodesic α of q ′∞ has horizontal length equal to 0 which is impossible, since �∞ is not a flat
cylinder. �
The next lemma compares areas of flat cylinders with respect to different flat metrics.

Lemma 3 Suppose q1, q2 are quadratic differentials with the same horizontal foliation |dy|
and whose vertical foliations are topologically equivalent with transverse measures ν1, ν2.
For any B > 0, there exists ε0, M such that for all ε < ε0, if C1 = C1(β) is a maximal flat
cylinder for q1 with core curve β with the properties that

• The absolute value of the slope of β in C1 is at least 1.
• |β|q1 ≤ ε0.
• Areaq1(C1) ≥ B.
• Any horizontal segment I crossing C1 satisfies ν2(I ) ≤ ε

then, if C2 is the maximal flat cylinder defined by q2 in the class of β, we have Areaq2(C2) ≤
2εε0. Moreover the ratio of lengths of vertical arcs crossing the cylinders are comparable.

Proof We may represent C1 as a parallelogram with a pair of horizontal sides that are glued
to each other by a translation. Let I be an oriented horizontal segment crossing C1 starting
at a singularity P0 on one boundary component. Let Q0 be the endpoint of I on the other
boundary component. Assume without loss of generality that the slope of β in C1 is negative.
This means that there is a vertical leaf through P0 that enters C1 in the positive direction and
returns to I without leaving C1 and translated by h1 := hq1(β) ≤ ε0. Starting at P0, for ε0

sufficiently small compared to B, there will be at least two additional returns for the vertical
leaf through P0 before the leaf leaves the cylinder. Since the vertical foliations of q1 and q2

coincide, the same is true for the vertical leaf of q2 leaving P0, although now the translation
amount, denoted h2, is different.

Given any three consecutive intersections with I of the leaf starting at P0, there is a closed
geodesic with respect to q2 homotopic to β through the middle point on I . Thus C1 contains
closed geodesics, with respect to the flat structure of q2, homotopic to β. That is, there is
a maximal flat cylinder C2 some of whose core curves are contained in C1. Since maxi-
mal cylinders have singularities on their boundaries, either P0 is on the boundary of C2 or
possibly outside it. It is possible that Q0 is in the interior of C2, so if we take the closed
geodesic β of q2 through Q0 it does not pass through a singularity. However in that case,
if we similarly take a horizontal segment I ′ crossing C1 starting at a singularity P1 on the
same boundary component of C1 as Q0, then β cuts I ′ in its interior. This implies that the
horizontal distance across C2 is at most ν2(I )+ ν2(I ′) ≤ 2ε. Since the height of β is at most
ε0, we get the desired area bound for C2. Since the horizontal foliations coincide, the lengths
of corresponding vertical segments coincide and the lengths of vertical segments crossing
the cylinders are comparable. �

The next Lemma gives a lower bound of extremal length of a curve family in terms of the
area of the surface it is contained in and the length of the boundary.

Lemma 4 Let X be a Riemann surface. Let q be a unit area quadratic differential on X. Let
� be a subsurface with geodesic boundary and which does not contain a flat cylinder parallel
to a boundary component. If the length |∂�|q is small enough, then for any homotopy class
of curves α ⊂ � with geodesic representative α,

ExtX (α) ≥ |α|2q
Areaq(�) + O

(
|∂�|2q

) .
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Proof Note that this lemma does not simply follow from the definition of extremal length
since the area of � may be smaller than 1. Let ε = |∂�|q . Define a metric ρ on X as folows.
Let ρ coincide with the q-metric on Nε(�), the ε-neighborhhood of � and the q metric
multiplied by a small δ on �′ = X \ Nε(�). Let α′′ be any curve in the homotopy class
of α. If α′′ is not contained in � then α′′ and a segment of ∂� bound a disk. The fact that
dρ(�′,�) = ε and ∂� is a geodesic implies that we can replace an arc of α′′ with an arc of
∂� to produce α′′′ ⊂ � with smaller length. We conclude that the infimum of the length in
the metric ρ is realized by the geodesic α in �. By definition,

ExtX (α) ≥ infα′′∼α ρ(α′′)2
q

A(ρ)
≥ |α|2q

Areaq(�) + O(ε2) + δ Areaq(�′)
.

The term O(ε2) in the inequality above comes from Areaq(Nε(�) \ �). Since δ is arbitrary,
we have the result. �
Definition 6 Given a quadratic differential q and δ > 0, a geodesic γ in the q metric is
called almost (q, δ)-vertical if vq(γ ) ≥ δhq(γ ).

Note that δ may be small in the above definition.

Lemma 5 Let q be a quadratic differential on X a surface without boundary. For any δ > 0
there is a curve β which is almost (q, δ)-vertical.

Proof If �q �= ∅ there is a vertical saddle connection which is obviously almost (q, δ)-ver-
tical . If a vertical leaf is dense in a subsurface then the boundary of the subsurface contains
a vertical saddle connection. Thus we can assume that the vertical foliation is minimal. Let
A be the area of q . The first return map of the foliation to a horizontal transversal I with an
endpoint at a singularity defines a generalized interval exchange transformation. Choose a
horizontal transversal I of length λ satisfying

λ2 <
A

δ
. (2)

The transversal I determines a decomposition of the surface into rectangles {Ri }, with heights
hi and widths λi , whose horizontal sides are subsets of I . Each rectangle has two horizontal
sides on I . Consequently, if we count each λi twice we have

∑
i

λi = 2λ.

Since we count each λi twice we have
∑

i

hiλi = 2A.

We conclude that

max
i

hi ≥ A

λ
(3)

Let hi realize this maximum. There are two cases. The first case (see Fig. 1) is that the hori-
zontal sides of Ri are on opposite sides of I . Fix a small neighborhood N of I . We form a
simple closed curve β = β1 ∗β2. Here β1 is a vertical segment in Ri whose endpoints p and q
are on the boundary of N , and β2 is an arc transverse to the horizontal foliation in N joining
p and q . Then β is also transverse to the horizontal foliation. Its geodesic representative has
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Fig. 1 β is the union of β1 and
β2

the same vertical length as β, namely, hi . The horizontal length of β is at most λ. Together
with (2) and (3) we have that

vq(β)

hq(β)
≥ hi

λ
≥ A

λ2 ≥ δ.

In the second case (Fig. 2), both horizontal sides of Ri are on the same side of I (call
it I +). Then there must also be a rectangle R j with top and bottom on I−. We may form a
simple closed curve β which consists of a vertical segment in Ri , a vertical segment in R j

and a pair of arcs in N which are transverse to the horizontal foliation. Similar to the case
above, the ratio of vertical and horizontal components of β is at least δ. �
Definition 7 Given a unit area quadratic differential q on a surface X without boundary, a
subsurface � � X is said to be (ε, ε0)-thick if the following conditions hold:

• ∂� is a geodesic in the metric of q .
• ExtX (∂�) ≤ ε

• the shortest non-peripheral curve in � has q length at least ε0.

The surface X itself is ε0-thick if it satisfies the third condition above.

The following Lemma says that we can find almost (q, δ) vertical saddle connections in
thick surfaces.
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Fig. 2 β is the union of
β1, β2, β3 and β4

Lemma 6 For any B > 0, ε0 > 0 there exists ε > 0, δ > 0, D > 0 and m0 such that for any
(ε, ε0)-thick subsurface � ⊂ X which does not contain a flat annulus isotopic to a boundary
component and such that Areaq(�) ≥ B, the following two conditions hold:

(1) there is an almost (q, δ)-vertical geodesic γ whose interior lies in � and such that
|γ |q < D.

(2) For any saddle connection γ which is not vertical or horizontal, there is an m ≤ m0 and
a collection ω1, . . . , ωm of disjoint vertical segments so that for every horizontal leaf H

|card(H ∩ γ ) −
m∑

i = 1

card(H ∩ ωi )| ≤ 2.

Proof For the proof of the first statement, we argue by contradiction. Suppose the statement
is not true. Then there is a sequence Xn of surfaces, a sequence of unit area quadratic dif-
ferentials qn on Xn and a sequence of (1/n, ε0)-thick proper subsurfaces �n with qn-area at
least B such that the shortest almost (qn, 1/n)-vertical curve on �n has length at least n. We
now apply Theorem 2 to find a subsequence qn which converges uniformly on compact sets
to q∞ on a limiting surface �∞. The uniform convergence implies that �∞ is ε0/

√
B-thick.

By Lemma 5, taking δ = 1, there is a simple closed curve β on �∞ such that

vq∞(β)

hq∞(β)
≥ 1.

123



202 Geom Dedicata (2010) 144:191–210

By uniform convergence, vqn (β) → vq∞(β), and hqn (β) → hq∞(β) and thus for large
enough n,

vqn (β)

hqn (β)
≥ 1/2

and furthermore, |β|qn ≤ |β|q∞ +1. This is a contradiction to the assumption that the shortest
(qn, 1/n)-vertical curve has length at least n, proving the first statement.

We prove the second statement. Begin at one endpont p of γ and take the vertical leaf
�1 leaving p such that γ lies in the π/2 sector between �1 and a horizontal leaf leaving p.
Move along �1 as far as possible to a point x1 in such a way that the segment ω1 of �1, from
p to x1, a horizontal segment κ1 from x1 to a point y1 ∈ γ and the segment γ1 of γ from p
to y1 bounds an embedded triangle �1 with no singularity in its interior. If γ1 = γ we are
done. We take ω1 as the desired vertical segment. If not, then there is a singularity p1 in the
interior of κ1. At p1 one vertical leaf enters �1. Choose the vertical leaf �2 at p1 that makes
an angle of π with the vertical leaf that enters �1 and such that the horizontal leaf κ1 through
p1 on the side of �1 is between them. Then horizontal leaves through points on �2 near p1

will intersect γ before returning to �2. Now repeat the procedure with �2 in place of �1 and
find a maximal embedded quadrilateral �2 disjoint from �1 in its interior consisting of a
pair of horizontal sides, a segment of γ and a segment ω2 ⊂ �2. We repeat this procedure, if
necessary with a new �3 until the last segment on γ ends at the other endpoint. There are a
fixed number of singularities, hence a fixed number of horizontal sides leaving them and so a
bounded number of such embedded quadrilaterals. Say the bound is m0. The desired vertical
segments are ω1, . . . , ωm , where m ≤ m0. �

For the sequel we will need the following result, due to Rafi, [15] relating hyperbolic and
flat lengths of curves in a thick subsurface. The first statement is Theorem 1, the second is
part of Theorem 4 in [15]

Theorem 3 For every (ε, ε0)-thick subsurface Y of a Riemann surface X with hyperbolic
metric σ and quadratic differential q, there exists λ = λ(q, Y ) such that up to multiplicative
constants depending only on topology of X

(1) For every non-periferal simple closed curve α in Y ,

|α|q 
 λlσ (α),

the multiplicative constants depending only on the topology of Y .
(2) Areaq(Y ) ≤ λ2

We will now compare extremal lengths of curves that are contained in the “same” subsur-
face � measured with respect to the metrics defined by two different quadratic differentials
q1, q2 on surfaces X1, X2. Specifically, if � is a subsurface with geodesic boundary with
respect to q1, and � does not contain a flat cylinder isotopic to a boundary component, then
we denote by � ⊂ X2 the subsurface containing the same set of simple closed curves and
with geodesic boundary with respect to q2. If � is a flat cylinder with respect to q1, then we
denote by � the (possibly empty) maximal flat cylinder in the same homotopy class ( with
respect to q2.

The following Lemma allows us to find curves with very different extremal length if a
subsurface � has very different areas with respect to two quadratic differentials and one of
the surfaces is thick.
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Lemma 7 For any B, M, δ, ε0 > 0, there exist ε, C, D > 0 so that the following holds. If
q1 and q2 are quadratic differentials on X1, X2, and � is a proper subsurface with geodesic
boundary with respect to each quadratic differential, which does not contain a flat cylinder
with respect to q1 parallel to a boundary component and such that � satisfies

(i)

Areaq1(�) ≥ B, Areaq2(�) < ε

(ii) for any almost (q1, δ)-vertical curve γ ⊂ � that satisfies |γ |q1 ≤ D, the vertical
components satisfy

1

C
≤ vq1(γ )

vq2(γ )
≤ C

(iii) |∂�|q2 < ε

(iv) � is (ε, ε0)- thick with respect to q1

then there exists a curve γ in � so that

ExtX2(γ )

ExtX1(γ )
≥ M.

Proof By Lemma 6, for some δ and D there is an almost (q1, δ)-vertical curve γ ⊂ � such
that

ε0 ≤ |γ |q1 < D (4)

Let σi be the hyperbolic metric on Xi and lσi (γ ) denote the length of the geodesic γ in
the hyperbolic metric. By Theorem 3,

lσ1(γ ) < C1|γ |q1/

√
Areaq1(�) ≤ C1 D/

√
B (5)

where the constant C1 depends only on the topology of the surface. Also by Maskit’s com-
parison of hyperbolic and extremal lengths,

ExtX1(γ ) ≤ 1

2
lσ1(γ )elσ1 (γ )/2 ≤ 1

2
C1 D/

√
BeC1 D/2

√
B . (6)

Set C2 = 1
2 C1 D/

√
BeC1 D/2

√
B , so that

ExtX1(γ ) ≤ C2 (7)

On the other hand, by (4), assumption (ii) and the fact that γ is almost (q1, δ)-vertical

|γ |q2 ≥ vq2(γ ) >
1

C
vq1(γ ) >

δ

C(1 + δ)
|γ |q1 ≥ ε0δ

C(1 + δ)
. (8)

and by Lemma 4,

ExtX2(γ ) ≥ |γ |2q2

Areaq2(�) + O
(
|∂�|2q2

) (9)

Putting the inequalities (7), (8), (9) together and using assumptions (i) and (iii), we obtain

ExtX2(γ )

ExtX1(γ )
≥ ε2

0δ2

C2C2(1 + δ)2
(

Areaq2(�) + O
(
|∂�|2q2

)) ≥ C3

ε + O(ε2)
(10)
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where C3 = ε2
0δ2

C2C2(1 + δ)2 . Now, setting ε sufficiently small compared to C3
M guarantees that

the Lemma holds. �

4 Areas of subsurfaces along rays

The proof of the main theorem is now based on the next proposition. We have the
following set-up. Suppose q1, q2 are quadratic differentials on X1, X2 such that the vertical
foliations Fv

q1
, Fv

q2
are topologically equivalent and have a minimal non uniquely ergodic

component �. Suppose also that with respect to the invariant ergodic measures ν1, . . . , νp

on �, |dx1| = ∑p
k = 1 akνk , with a1 > 0, while |dx2| = ∑p

k = 1 bkνk with b1 = 0. Suppose
Fh

q1
= Fh

q2
. Let |dy| denote the transverse measure to this common horizontal foliation. We

normalize so that ∫

�

a1dν1|dy| = 1. (11)

Proposition 1 With the above assumptions, let X1(t), X2(t) be the corresponding rays, and
let q1(t), q2(t) be the quadratic differentials on X1(t), X2(t) respectively. For any sequence
of times tn → ∞, there is a subsequence, again denoted tn, and constants ε0 > 0, c > 0,
so that for sufficiently small ε > 0, there is t0, such that for tn ≥ t0 there is a subsurface
Y1(tn) ⊂ � satisfying

(i) Y1(tn) is (ε, ε0) thick with respect to q1(tn).
(ii) Areaq1(tn)(Y1(tn)) ≥ a1(1 − cε).

(iii) Areaq2(tn)(Y1(tn)) < cε.

Proof of Proposition 1 Since Fv
q1

is minimal and not uniquely ergodic, we can apply
Theorem 1.1 in [9], which says that the ray X1(t) eventually leaves every compact set in the
moduli space as t → ∞. (That theorem was stated in the case when the minimal component
was the entire surface. The proof in the case of a minimal non uniquely ergodic component is
identical. In fact the main idea of the proof is repeated below in a slightly different context).
Passing to a subsequence we conclude that there exist γ1(tn), . . . , γm(tn) ⊂ � such that

ExtX1(tn)(γi (tn)) → 0

and such that the extremal lengths of all other curves are bounded away from 0.
Again, passing to a subsequence, we can apply Theorem 2 to find ε0 > 0 such that for n

sufficiently large, there is a nonempty collection {Y (tn)} of disjoint (ε, ε0) thick subsurfaces
contained in �. We can assume that each Y (tn) is either a flat annulus or it does not contain a
flat annulus isotopic to a boundary component. There is a uniform bound N for the number
of these surfaces. Let ftn : X1 → X1(tn) denote the corresponding Teichmuller map.

Assume first that Y (tn) is not a flat cylinder. Then by passing to a subsequence, we can
assume Y (tn) converges to a limiting punctured surface Y∞; the corresponding q1(tn) con-
verges to a limiting q1,∞ on Y∞. Thus for any neighborhood U of the punctures on Y∞,
letting K := Y∞ \ U ,

(1) for large enough n. there is a conformal map Fn : K → Y (tn)

(2) F∗
n q1(tn) → q1,∞ as tn → ∞, uniformly on K .

For each such U , for n large enough, the curves γi (tn) whose lengths are approaching 0
satisfy

γi (tn) ∩ Fn(K ) = ∅.
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Since Y (tn) does not contain a flat cylinder in the homotopy class of a component of ∂Y (tn),
we may find U large enough so that

Areaq1(tn)(Y (tn) \ Fn(K )) ≤ ε/2. (12)

Now, since νi , ν j are mutually singular measures, there exists δ > 0 and a finite set I of
horizontal transversals I to the vertical foliation in � such that for any νi , ν j , i �= j there is
a transversal Ii, j ∈ I such that

|νi (Ii, j ) − ν j (Ii, j )| > δ. (13)

Let �i be the set of generic points for νi and the transversals I ; that is, �i consists of
the set of points x such that, if lT (x) is the vertical leaf segment of Fv

q1
through x of length

T , then for each I ∈ I

lim
T →∞

1

T
card(lT (x) ∩ I ) = νi (I ). (14)

The sets �i are pairwise disjoint. With respect to the measure νi , on every transversal almost
every point belongs to �i , and, with respect to the area element defined by q1, almost every
point in � belongs to ∪p

i = 1�i . Let �i (tn) = ftn (�i ).
We claim that for n big enough the following holds. Let R be a coordinate rectangle with

respect to the flat structure of q1,∞ (i.e. sides are vertical and horizontal) that is contained
in K . Then there does not exist a pair of indices j �= i and points yn,i ∈ ftn (�i ), yn, j ∈
ftn (� j ); i �= j such that

zn,i := F−1
n (yn,i ) ∈ R, zn, j := F−1

n (yn, j ) ∈ R.

For suppose there were points with this property. There is a coordinate rectangle R′ ⊂ R
whose vertical sides Li , L j have endpoints at zn,i , zn, j . For every horizontal segment H of
q1,∞

∣∣card(H ∩ Li ) − card(H ∩ L j )
∣∣ ≤ 2.

Let Li,n, L j,n be the vertical leaf segments of q1(tn) through yi,n, y j,n of the same length
such that F−1

n (Li,n) converges to Li and similarly with L j,n . As tn → ∞, since the length
of In = ftn (Ii, j ) goes to infinity, we have

1

card(Li,n ∩ In)
|card(Li,n ∩ In) − card(L j,n ∩ In))| → 0.

Mapping Li,n back to X1 by f −1
tn , using the fact that

card
(

f −1
tn (Li,n) ∩ Ii, j

)

| f −1
tn (Li,n)|

is bounded, we then have for all large n,

1

| f −1
tn (Li,n)| |card( f −1

tn (Li,n) ∩ Ii, j ) − card( f −1
tn (L j,n) ∩ Ii, j )| ≤ δ/2

and we have a contradiction to (13) and (14). Thus for each rectangle R, there is some
i = i(R) such that for all j �= i and for all x ∈ R we have

χFn(R)(Fn(x))χ� j (tn)(Fn(x)) → 0. (15)
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Now we take a covering of K by such rectangles. If any two rectangles R, R′ overlap then
i(R) = i(R′). It follows from the connectedness of K , that there is a single i such that for
all R, i(R) = i . Thus for n large enough, for all j �= i , (15) holds. ¿From this it follows that
for n large enough, for j �= i

∫

Y (tn)

dν j |dy| ≤ ε (16)

We would like to prove an estimate similar to (16) in the case that Y (tn) is a flat cylinder.
To do that we need a uniform version of generic points. The reason for that is that there is
no natural limiting surface in the case of flat cylinders, and so the previous argument does
not quite work. For each T0, let �

T0
i consist of those x ∈ �i such that for T ≥ T0, for each

I ∈ I,

| 1

T
card(lT (x) ∩ I ) − νi (I )| < δ/2. (17)

Choose T0 so that with respect to the measure dνi , except for a set of measure at most ε,
every point of I belongs to �

T0
i .

Now suppose Y (tn) is a flat cylinder with core curve βn . Set B = a1(1 − Nε) and let
ε0 < 1 be a constant such that Lemma 3 holds. Since ftn is area preserving, without loss
of generality, for n large enough, we can also assume that at time tn , the core curve βn is
(q1(tn), 2)-almost vertical and has length smaller than ε0. This means that we can fit coordi-
nate rectangles inside Y (tn) with vertical sides of length at least 1

2 |βn |q1(tn). We can choose n
large enough so that 1

2 |βn |q1(tn)etn ≥ T0. This means that if we pull back the vertical segment
to X1 its length is at least T0 so that we can apply (17). Then the same argument given
previously shows that for all but at most one j

ftn

(
�

T0
j

)
∩ Y (tn) = ∅.

Otherwise, for a pair i �= j , we can again find a coordinate rectangle contained in the cyl-

inder with one vertical side passing through a point of ftn

(
�

T0
i

)
and the other vertical side

passing through a point of ftn

(
�

T0
j

)
, and we find |νi (I ) − ν j (I )| < δ, and again we have a

contradiction. Thus we conclude that for n large enough, for all but one j , for any horizontal
segment crossing Y1(tn) we have

ν j (I ) < ε. (18)

Then except for all but at most one index j , (16) also holds for flat cylinders.
Now let Z1(tn) be the union of those Y (tn) such that (16) holds for the index j = 1. Then

Z1(t) � � for otherwise we would have
∫

�

dν1|dy| < Nε,

contradicting (11), for ε sufficiently small. Let Y1(tn) = � \ Z1(tn), and so we have

Areaq1(tn)(Y1(tn)) ≥ a1

∫

Y1(tn)

dν1|dy| ≥ a1(1 − Nε) = B.

This proves (ii).
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We prove (iii). Again the issue is to compare surfaces in different metrics. In the case that
Y1(tn) is not a flat cylinder, let α be any closed geodesic of q1,∞ in Y∞. By (15), for j �= 1,

∫

Fn(α)

dν j (tn) → 0

where ν j (tn) is the push forward measure of ν j under ftn . But this is then also true for the
geodesic in the class of Fn(α). Then (iii) holds by Lemma 2. If Y1(tn) is a flat annulus we
know that for j �= 1, the ν j (tn) measure of any horizontal segment crossing Y1(tn) is bounded
by ε. We now apply Lemma 3 to give the desired bound on the area. �

Proof of Theorem A We begin by assuming that the horizontal foliations of q1 and q2 coin-
cide. Without loss of generality we can assume that for some minimal component � we have
a1 > 0 and b1 = 0. By (1) it suffices to show that for any M > 0 and for any sequence
tn → ∞, for tn sufficiently large there is a simple closed curve γ (tn) with

ExtX2(tn)(γ (tn))

ExtX1(tn)(γ (tn))
> M. (19)

For all ε > 0 small
we now apply Proposition 1. We find a fixed constant B such that for tn sufficiently large,

the subsurface Y (tn), given by that Proposition, satisfies

Areaq1(tn)(Y (tn)) > B

Areaq2(tn)(Y (tn)) < ε

and

ExtX1(tn)(∂Y (tn)) ≤ ε/M.

If |∂Y (tn)|q2(tn) ≥ √
ε, then ExtX2(tn)(∂Y (tn)) ≥ ε, and we are done; we may choose

γ (tn) = ∂Y (tn). Thus assume

|∂Y (tn)|q2(tn) <
√

ε.

If Y (tn) is not a flat cylinder, for ε small enough, we can apply Lemma 6 to find a bounded
length (q1(tn), δ)-almost vertical curve γn ⊂ Y (tn) and then Lemma 7, which says that γn

has the desired property (19).
Thus assume Y (tn) is a flat cylinder. Let βn be a core curve of Y (tn) with tn chosen so

that |βn |q1(tn) < ε. Fix some δ0 > 0. Suppose first that βn is (q1(tn), δ0)-almost vertical. The
reciprocal of the modulus of the cylinder is an upper bound for ExtX1(tn)(βn), and we have

ExtX1(tn)(βn) ≤ |βn |2q1(tn)

Areaq1(tn)(Y (tn))
≤ |βn |2q1(tn)

B
(20)

We now want to estimate ExtX2(tn)(βn). The assumption that βn is (q1(tn), δ0)-almost vertical,
since the vertical lengths coincide, implies by (8) that

|βn |q2(tn) >
δ0|βn |q1(tn)

(1 + δ0)
.

Now there is an annulus A(tn) which is a union of the flat annulus Y (tn) and an expanding
annulus Y ′(tn). By Proposition 1 the q2(tn)-area of Y (tn) is bounded by cε for some fixed
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c > 0. The extremal length of a (homotopy class) curve and the hyperbolic length are asymp-
totically equal as the quantities go to 0. Then by Lemma 1 there are constants c′, c′′ > 0
depending on c and δ0 but independent of ε and tn such that

ExtX2(tn)(βn) ≥ c′�X2(tn)(βn) ≥ c′

Mod(Y (tn)) + Mod(Y ′(tn))

≥ c′
Areaq2 (Y (tn))

|βn |2q2(tn )

− log |βn |q2(tn)

≥ c′′
ε

|βn |2q1(tn )

− log |βn |q1(tn)

.

Comparing with (20) we see that for ε small enough, βn is a curve that satisfies (19).
Suppose now the core curve βn of Y (tn) is not (q1(tn), δ0) almost vertical. We can find a

smaller time at which the slope of the cylinder is at least 1. This means we can apply Lemma 3
to find a corresponding cylinder with respect to the metric q2(tn). If Y (tn) is nonseparating,
choose a nontrivial isotopy class of arcs in the complement of Y (tn) joining the top and
bottom of Y (tn). If Y (tn) is separating, choose two nontrivial isotopy classes, one that joins
the top of Y (tn) to itself and the other which joins the bottom to itself. These families can be
chosen to lie in the thick part of the surface X1(tn) and as such have extremal length bounded
independently of tn . In the first case we also take a family of arcs αn crossing Y (tn) that
intersect any vertical arc crossing Y (tn) at most once. In the second case we take a pair of
(families of) such arcs crossing Y (tn). These arcs are δ-almost vertical with some uniform
constant δ. Now we can form a closed curve γn as a concatenation of an arc outside Y (tn)

and an arc αn , or, in the separating case, a pair of arcs outside and a pair of arcs crossing. By
Theorem 1, for some constant c′

ExtX1(tn)(γn) ≤ c′ ExtX1(tn)(αn) = c′ inf |αn |2q1(tn)

Areaq1(tn)(Y (tn))
≤ c′ inf |αn |2q1(tn)

B
(21)

We consider the corresponding arcs αn crossing the cylinder with respect to q2(tn); defined
so that they intersect the vertical arcs crossing the cylinder at most once. (These arcs may
intersect the arcs perpendicular to the core curve βn many times). Their lengths are compa-
rable to the lengths with respect to the metric q1(tn). The corresponding curves γn formed
this way are longer than the arcs αn crossing the cylinder. We have for some constant δ′
depending on δ,

ExtX2(tn)(γn) ≥ ExtX2(tn)(αn) = inf |αn |2q2(tn)

Areaq2(tn)(Y (tn))
≥ inf δ′|αn |2q1(tn)

cε
.

Comparing to (21) we are done for ε small enough. We have proven the theorem in the case
that the horizontal foliations coincide.

Now consider the general case where the horizontal foliations of q1 and q2 are distinct.
Pick a quadratic differential q3 with the same vertical foliation as q1 and the same horizontal
foliation as q2. The rays determined by q3 and q2 diverge by what was already proved. The rays
determined by q1 and q3 stay bounded distance apart as a special case of Ivanov’s result [5]. �
Proof of Theorem B Denote the foliations simply by F1, F2. The first case is if the minimal
components, if any, coincide. Since the foliations are not topologically equivalent, and yet
have 0 intersection number, there must be some curve β which is a core curve of a flat cylinder
with respect to one quadratic differential, say q1, but is not the core curve of a flat cylinder
of q2. Since β is isotopic to the core curve of a flat annulus of q1 we have

ExtX1(t)(β) ≤ ce−2t ,
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for some c. Since β is not a subset of a minimal component of F2, we must have β ⊂ �q2 , the
critical graph of q2. Now the length of β in the metric of q2(t) satisfies |β|q2(t) = |β|q2 e−t →
0. Now β determines an expanding annulus. We apply the upper bound for the modulus of
that annulus as given in Lemma 1 and hence the lower bound for extremal length to say that

ExtX2(t)(β)

ExtX1(t)(β)
→ ∞.

The second case is if one of the foliations, say F1, has a minimal component �1 which
is not a minimal component of F2. Since i(F1, F2) = 0, every curve β ⊂ �1 satisfies
i(F2, β) = 0, so that β ⊂ �q2 , the critical graph of q2. Since β ⊂ �1, we have hq1(β) > 0
and so the flat length of β with respect to qt satisfies

|β|q1(t) ≥ hq1(β)et .

This gives

ExtX1(t)(β) ≥ h2
q1

(β)e2t .

It suffices to find an upper bound for ExtX2(t)(β). Now β is either on the boundary of a min-
imal component �2 of F2 or is on the boundary of a flat cylinder. In either case it determines
a maximal expanding annulus A. Since �2 is minimal, the shortest saddle connection γ (t)
contained in �2 satisfies |γ (t)|q2 → ∞ as t → ∞ and hence

et |γ |q2(t) → ∞.

This means that for a constant c > 0, d(A) ≥ ce−t . Since |β|q2(t) 
 e−t , by Lemma 1 the
modulus A is bounded below and so the extremal length of β is bounded above. �
Proof of Theorem C We note that each γ

j
n may itself be a multicurve. Fix a finite set of curves

α1 . . . , αN such that the intersection of any measured foliaiton with these curves determines
the foliation. Choose a unit area quadratic differential q on some surface X whose verti-
cal foliation is

[
F,

∑p
i = 1 νi

]
. Denote by |dy| the measure on the corresponding horizontal

foliation. Let X (t) be the corresponding ray. For any sequence of times tn → ∞ by Propo-
sition 1 there is B > 0 and a collection of disjoint domains Y1(tn), . . . , Yp(tn) such that the
area of Yi (tn) with respect to the measure dνi |dy| is at least B. Suppose first that Yi (tn) is
not a cylinder. By the first part of Lemma 6 we may pick a (q(tn), δ) almost vertical curve
γi (tn) ⊂ Yi (tn) of length at most D. We claim that γi (tn) → [F, νi ]. As before, let �i (tn)

be the image of the generic points inside Yi (tn); generic with respect to the transversals for
the set of αi . The generic points are dense, and γi (tn) is a union of a bounded number of
saddle connections, so we can find a bounded collection

{
ω j (tn)

}m
j = 1 of vertical segments

beginning at generic points satisfying the second conclusion of Lemma 6. By construction
of the ω j (tn), for any fixed αk ,

i(γi (tn), αk)∑m
j = 1 i(ω j (tn), αk)

→ 1. (22)

Since ω j (tn) is a vertical segment through a generic point,

card(ω j (tn) ∩ αk)

|ω j (tn)|q(0)

→ νi (αk).

Summing over all 1 ≤ j ≤ m we have

i(γi (tn), αk)∑m
j = 1 |ω j (n)|q(0)

→ νi (αk).
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However ∑m
j = 1 |ω j (n)|q(0)

vq(0)(γi (tn))
→ 1,

and so if we let sn = 1
vq(0)(γi (tn))

then we have for each k,

lim
n→∞ sni(γi (tn), αk) → νi (αk)

and we are done.
Finally suppose Yi (tn) is a flat cylinder with core curve γi (tn). As in the proof of Propo-

sition 1 we can assume that tn is chosen so that γi (tn) is (q(tn), 2)-almost vertical. As in that
argument we find a dense set of generic points �

T0
i , generic for the transversals to the αi . We

then can find vertical segments ω j (tn) through generic points such that (22) holds and the
rest of the proof is the same. �
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