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182 C. ALVAREZ
1. Introduction

According to K. Kuratowskf, the first volume of the Polish mathematical journal
FUNDAMENTA MATHEMATICAE marked the birth in 1920 of the Polish School of mathe-
matics. One important feature of this journal was its novel section of unsolved problems.
Kuratowski noted that in this section the editors wanted to give the mathematical com-
munity an idea of the activities and problems under discussion in set theory and the
foundations of mathematics.

The third problem of the first issue of this journal states:

Un ensemble ordor@n(lineairement) sans sauts ni lacunes et tel que tout ensemble de ses
intervalles (contenant plus qu'wiément) n'emgétant pas les uns sur les autres est au
plus cenombrable, est-il&cessairement un continu &aire (ordinaire)?

This problem was stated by the Russian mathematician Michel Souslin, who did
not formulate any conjecture about the answer. Nevertheless, in the literature on set
theory the hypothesis of a positive answer became knovBvoaslin’s hypothesighe
issue remained unresolved until 1967, when S. Tennenbaum and T. Jech $tiosved
non-provability of Souslin’s hypothesisg. the impossibility of providing a proof for
an affirmative answer to the question formulated by Souslin. Two years later, in 1969,
M. Solovay, D.A. Martin and S. Tennenbaum shotvédat Souslin’s hypothesis is
independent of the Zermelo-Fraenkel axioms, and that it was impossible therefore to
answer the problem within the framework of these axioms.

Itis difficult to reconstruct how Souslin came to formulate the problem, since the few
details that are known about his mathematical career are mostly related to his famous
achievement in descriptive set theory: his definitioranélytic setswhich generalize
Borel sets Souslin was a brilliant pupil of Nicholas Luzin. Under Luzin’s influence he
beganin 1916 to study Lebesgue’s memoir “Sur les fonction&€sgmtables analytique-
ment”> Souslin found a counter-example to Lebesgue’s statement that the projection
(and even any continuous image) dBaneasurable set is alsdBameasurable set; this
remark gave rise to a new class of point sets, the analytic sets (also kn@®ausin
setg defined as the continuous imageBafeasurable sets. In 1917, Souslin published
a short note concerning this new class of sets in thel@ES RENDUS DE L'A CADEMIE
DES SCIENCES DE PARIS® establishing their primary properties. One important property
proved by Souslin states that the continuum hypothesis holds for this new class of sets:
any infinite analytic set is either countable, or has the power of the continuum.

In fact, Souslin’s approach to Lebesgue’s memoir was very close to the main topics
of research investigated by Luzin and his pupils, known as the “Luzitanian group”.

1 Kuratowski 1980, p. 32.

2 “s a linearly ordered set, with no jumps and no gaps, and such that any collection of non
overlapping intervals is at most countable, necessarily an (ordinary) linear continuum?”. Souslin
1920.

3 Tennenbaum 1968; Jech 1967.

4 Solovay, Tennenbaum 1970; Martin, Solovay 1970.

5 Lebesgue 1905.

6 Souslin 1917.
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Between 1914 and 1917 this group studied the theory of functions of a real variable and
set theory. A good example of how Souslin’s work on analytic sets relates to these topics
can be found in a note published in 1916 by P. Aleksandrov (an eminent “Luzitanian”),
who studied the power &-measurable setsnd proved that the continuum hypothesis
holds for these sets. This theorem is analogous to the one proved by Souslin one year
later and published in the @1pTES RENDUS, and even their proofs followed the same
pattern: they showed that any infinite and non-countable subseB-ahaasurable set,
or of an analytic set, containsperfectsubse®

After 1918, when Luzin and Souslin moved from Moscow to the Polytechnic Institute
in lvanovo, Voznesensk, the activity of the Luzitanian group decreased. Although Souslin
was still very young and had no experience in teaching, he became a professor at Ivanovo.
But, according to P. Aleksandrov, quoted by A.P. Youshkevich, “Souslin didn’t get on
in lvanovo and soon lost his job ther®The main reason seems to have been that his
research activity was not substantial; in fact, his published work consists only of the
small note in the GMPTES RENDUS of 1917, the text of his “problem”, published in
1920 (one year after his death) and an article written by Kuratowski from a posthumous
memoiri®

It seems that the first to remark on the importance and the difficulty of Souslin’s
problem was W. Sierpiski in his book_egns sur les nombres transfire$ 192811 In
Sierphski’s view, Souslin’s problem concerned mainly the theory of ordered sets and
order types. Following F. Hausdorff, Siefgki characterized the order typef the set
of real numbers of the open intenv@, 1) by the following three conditions:

1. The open interval has neither a first nor a last element.

2. Itis continuousn Dedekind’s sense.

3. It contains a countable subgetwith the property that between any two elements of
the set there is a member of the sub¥di.e. the subseN is order-densén (0, 1)).

Thus any set satisfying these conditions is order-isomorphic to the open interval
(0, 1), and its order type i%. But Sierphski remarked that any continuously ordered set
satisfying condition 3 also satisfies the following condition:

4. Any family of non-overlapping intervals is at most countable.

Since any ordered set of typealso satisfies this new property, Sidrgki could
explain the sense of Souslin’s problem:

7 Aleksandrov 1916.

8 A perfect setP (of the real line) is a set which is closed and dense in itselfPse P'.
Cantor proved the important property tha#ifis a perfect set thejp| = 2%,

9 Yushkevich 1991, p. 13.

10 Souslin 1923. In this paper Souslin provided an example of a non-countable algebraic field
of real numbers, which is different from the set of all real numbers. With this example Souslin
gave an answer to another problem also published in the first issue of the Polish journal (problem
8, stated by M. Mazurkiewicz).

11 Sierpiski 1928, pp. 151-153.
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Or, on ne sait pas sitout ensemble orderjauissant des prof@tes 1, 2 et 4 estetessairement
du typex, et ce probtme (di & M. Souslin) semble és difficile 12

Souslin’s problem is equivalent, according to Siaggi, to the question of whether
the order type. of the open interva(0, 1) could be characterized, in a slightly differ-
ent way, through properties 1, 2, and 4. It seems that Souslin merely asked whether
a linearly ordered continuous sét, having the property that every family of non-
overlapping open intervals is at most countable, containsrdar-densecountable
subsetN. In other words, Souslin asked about the possible equivalence of two prop-
erties of the ordinary linear continuum: that of having a countable order-dense subset
— theseparability condition- and the property that any family of non-overlapping in-
tervals is at most countable — theuntable chain conditiariThe proof of one implica-
tion is immediate and was seen by Siégki when he commented on the problén,
but it was for the converse implication that the difficulties appeared. As we have al-
ready said, the proofs given by Solovay, Tennenbaum and Martin between 1967 and
1969 show that indeed this implication cannot be proved within the frame of the Z-F
axioms.

Even though the deduction of the countable chain condition from the separability
condition is immediate, it was not until Souslin’s problem arose that the logical relation
between them became the heart of a set-theoretical question. In fact, when these two
properties were characterized for the first time as holding for the “ordinary continuum”,
no remark was made concerning their possible logical relation. Since our aim is to fol-
low the theoretical debates and mathematical strategies which aimed at the solution of
Souslin’s problem, we must first understand the context in which these two conditions
were seen as “properties” for the “ordinary continuum”. With this in mind we will begin
our study of the history of Souslin’s problem by considering the origins of the theory of
order types, emphasizing aspects related to linearly ordered continuous sets and the role
of the separability condition. Next, we will examine the context in which the countable
chain condition was first studied.

The history of Souslin’s problem is that of the progressive recognition of the diffi-
culties and the discovery of logical links between apparently different domains, and we
cannot avoid explaining the mathematical conditions in which the problem was stated.
Mathematics and history are linked here in a very interesting way, which we hope to
express correctly.

As we stated above, Souslin’s hypothesis is an independent proposition for Z-F set
theory, but long before methods for “independence proofs” in set theory were developed
in the sixties, significant attempts to prove it had been made. We will analyze some of
these attempts, concentrating on the emergence of different methods to find equivalent
versions of the problem. Our study will thus focus on the variety of attempts to solve
Souslin’s problem, and the concomitant lack of a thorough understanding of this problem.

12 “But we don't know if any ordered set satisfying properties 1, 2 and 4 is necessarily of type
A, and this problem (stated by M. Souslin) seems very difficlitfd., p. 153.

13 For any order-dense and separable set, a family of non-overlapping intervals satisfies the
condition that for each interval at least one element of the countable dense subset lies on it; so the
family is at most countable.
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We will, however, pay special attention to the work developed by D. Kurepa between
1934 and 1937; we claim that in some sense he established in this period the theoretical
framework for all the further studies.

Subsequently, we will analyze the emergence of some other propositions related
to Souslin’s hypothesis, some of them equivalent to it and others which are sufficient
conditions for its proof. Our aim is to understand the role which these propositions
played in the later proof of the independence of Souslin’s hypothesis from the Z-F
axioms.

2. The context of the problem: order types, separability
and countable chain conditions

2.1. Early contributions to the theory of continuous order types

As we stated above, Sieffski thought that Souslin’s problem was mainly related
to the theory of order types. This theory was created by G. Cantor in 1883, but his first
paper on the subject, submitted for publication toTA MATHEMATICA in 1885, was
rejected by the editor of the journal, G. Mittag-Leffler and it remained unpublished until
197014 The first published paper by Cantor on the subject appeared in two different
issues of the MTHEMATISCHE ANNALEN —in 1895 and 1897 — under the general title of
“Beitrage zur Begindung der transfiniten Mengenlehf€ At the turn of the century
some remarkable studies on the subject were published by Huntington, Veblen and above
all Hausdorff 16 so by 1928 when Sierpski published his book (and even in 1920 when
Souslin stated his problem) the theory of order types was a well-known branch of set
theory.

Cantor defined in 1895 the order type of a &ets

den Allgemeinbegriff, welcher sich aug ergibt, wenn wir nur der Beschaffenheit der
Elementen abstrahieren, die Rangordnung unter ihnen aber beibeHRalten.

According to this definition, two ordered setsandY have the same order type
if a one-to-one function fronX ontoY, preserving the order relation, can be defined. In
Cantor’s notationy = X = Y . When two sets have the same order type, then, regard-
less of the nature of their elements, they can be considered as “the same” set; this means
that the properties characterizing the order type of the set determimaiagorical way
the set itself. In this context Cantor gave three conditions to completely characterize the

order typen of the seQ of rational numbers, with the obvious conclusion that if a¥set

14 Cantor 1885.

15 Cantor 1895-1897.

16 Huntington 1905-1906; Veblen 1905; Hausdorff 1908 and Hausdorff 1914.

17 “The general concept which results from if we only abstract from the nature of the
elementsn, and retain the order of precedence among thép:.cit Cantor 1932, p. 297.
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satisfies these three conditions, then an order isomorphism can be definex &noto
Q.18 The ordered se satisfies:

1. Itis a countable set.

2. It has no first and no last element.

3. Itis aneverywhere-densset (iberalldichte Menge This means that given any two
distinct elements of the set, another element of the set lies between them.

After this characterization for the order type= Q, Cantor looked for a definition of
the continuity property in terms of the order relation; he looked for those conditions that
could describe the linear continuum [ in a unique way and as an ordered set. Even
if the definition of the continuity property given in his fifth memoir on trigonometric
seried® provided him with the necessary background for this new characterization of
the linear continuum, previous references to the metrical properties had to be avoided.
An important concept introduced for this purpose is that of an incredsimdamental
sequencef elements in an infinite linearly ordered sétit is a subsetb, } of X such
thatb, < b, wheneven < .29 A limit point of an increasing fundamental sequence
{b,} is an elemenkg € X with the following properties:

i) For every element, of the sequence,, < bg.
i) Foranyelement € X, suchthak < bo, there exists an elemehy of the sequence
such thatr < b,.

Clearly if a limit point exists for a fundamental sequence, then it is unique. Two in-
creasing fundamental sequen@eg and{b, } are said to beoheren{zusammengéhig),
{a,}II{by}, iffor every element, of the first sequence there is an elenignof the second
such that;, < b,,; and also, for every, of the second sequence there is an elemgoit
the first such thab, < g,. Analogous definitions are made for decreasing fundamental
sequences. The following two statements are immediate consequences:

Proposition. If a fundamental sequence K has a limit point inX, any fundamental
sequence which is coherent with it has the same limit point.

Proposition. If two fundamental sequences have one and the same limit pokt in
they are coherent.

Whenever a seX has the property that any of its elements is the limit point of a fun-
damental increasing or decreasing sequekids,said to balense in itselfinsichdichte
Mengg. On the other hand, if every fundamental sequenceé mas a limit point inX,
thenX is aclosedset @bgeschlossene Mengé# X is both closed and dense in itself,
thenX is aperfectset perfekte Menge

Cantor stated that the order type (the tyjeof the closed interval [01] is given
through the following two properties:

18 The same argumentis used in statinguthiversal propertyf the order type: any countable
ordered set is linearly isomorphic to a subseQof

19 Cantor 1872.

20 In the original definition, Cantor only considered sequences whose index runs through the
setN of natural numbers. Further developments on the theory of linearly ordered sets stated that
the index could run over some transfinite ordinal number.
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(C1) The interval [Q 1] is aperfect ordered sekvery point in [Q 1] is the limit of an
increasing or decreasing fundamental sequence, and any increasing or decreasing
fundamental sequence contained in the intervallJthas a limit point in this
interval.

(C2) The interval [Q 1] contains a denumerable subset which is order-dense in it: there
isasubses C [0, 1], whose order type ig (the order type of the s€), such that
for any two pointsy, y € [0, 1] (x < y), there is always a point € S such that
xX<s<y.

These two properties characterize the closed intervdl][@s acontinuousordered
set without making any reference to metrical properties for convergent seqééites.
limit of a fundamental sequende,} contained in the closed interval,[0] is clearly
the least upper bound (sup) (if the sequence is increasing) or the greatest lower bound
(inf) (if it is decreasing) of the sequence, considered as an ordered subset contained in
[0, 1]. From this point of view Cantor’s characterization is equivalent to the continuity
condition for an ordered set given by R. Dedekind in his fan®tetigkeit und irrationale
Zahlerf? of 1872, which Siergiski and Hausdorff used to characterize the order type
of the open interva(0, 1). Dedekind’s condition for thessential quality of continuity
states that:

(D) An ordered seX is acontinuousset if, whenevert and B are two disjoint subsets
whose union is equal t& and such that every elemente A is smaller than any
y € B (A < B), thenA has a least upper bound aBdcas a greatest lower bound.

By 1877 Dedekind had explained to Carffoin what sense his conditiop should
be understood as giving the essential quality of continuity for an orderex:seis
a condition that should be added to the conditiordefse orderWithout condition
D, an order-dense set might hayaps like the setQ of rational numbers; without the
condition of dense order, the set might haweps

These two characterizations given by Cantor and Dedekind ensure the continuity of
the set; nevertheless, there is a slight difference between them. In Cantor’s characteriza-
tion for aperfectlinearly ordered set, a first and a last element should be included in it.
The open interval (0, 1) and the closed interval [0, 1] both satisfy Dedekind’s condition
D, but the first one is not perfect sein Cantor’s sense since neither a decreasing se-
guence whose limit is 0 nor an increasing sequence whose limit is 1, defined in the set,
have limit points within the set.

Despite this difference, both the closed intervall[Pand the open intervaD, 1)
satisfy conditionC2 given by Cantor; they are boleparable set<learly a separable
ordered set is also order-dense, and we have already remarked how Dedekind intended
that this last condition should be added to condifib(and the same could be said for

2! This means that the limit of a sequeniag} is not defined as a point having the property
that for any positive real number there exists a member of the sequence whose distance to the
limit point is smaller tharz.

22 Dedekind 1872,

23 |etter sent to Cantor on May 18, 1877 Qorrespondance Cantor-Dedekiretlited by Jean
Cavailles and Emmy Noether, published in Cawslll962.
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conditionC1) in order to give a complete characterization for the continuity property.
But for Cantor, conditiorC2 says something more: not only does it state that the set is
order-dense, but it also states that the set containsiatableorder-dense subset which

is indeed a subset of typg According to the original concept of ttader typeof a

set, any linearly ordered sétwhose type is. (as characterized by Sieffgki) oro (as
characterized by Cantor) is linearly isomorphic(@ 1) or to [0, 1]. The only way to
show the existence of an isomorphism between thé setd the open or closed interval

is by defining it as an extension of the already existing isomorphism between their
countable and order-dense subsets of typks we already said, the condition that the
set be order-dense should be added to condittinsf Cantor andD of Dedekind; only

in this case the ordered set ig@antinuousordered set. But only when thlseparability
conditionholds for the continuous ordered set is this setisomorphic to the closed interval
[0, 1] or the open intervalo, 1).

Since for any continuous ordered set to be isomorphic to the “ordinary continuum”
it is necessary and sufficient that it beparable any definition for this ordinary con-
tinuum should state, either directly or through an equivalent condition, the existence of
a countable and order-dense subset. According to Sijthis is the core of Souslin’s
problem.

2.2. Veblen. The deduction of the separability condition

The question raised by Souslin was not the first search for an equivalence for the
separability condition; an important study on this subject had already been made in the
years 1904-1905 by the American mathematician Oswald Veblen. Despite the role of
the separability condition for the characterizations of the order typmsdo, Veblen
remarked that it involved the concept of an infinite cardinal number which he considered
external to the theory of ordered sets, since for an ordered set to be separable it must
contain an order-dense subset whicleasintable On December 30, 1904, Veblen de-
livered a communication to the American Mathematical Society under the general title
“Non-Metrical Definition of the Linear Continuum”. One month later, he submitted a
paper based on this taf¢.Veblen looked for a complete characterization of the ordinary
linear continuum only in terms of the order relation; to achieve this, he introduced five
groups of postulates in order to define a linear continiurithe separability condition
was not included, but he deduced it from these groups of postulates. These groups of
postulates for the se&X are:

1) General postulates of order.
II) The postulate otontinuity(in Dedekind’s sense).
[lI) The postulate of density.
IV) A slight variation of the Archimedean postulate (the groupséudo-Archimedean
postulates):
IV.i) There exists an increasing sequefigg} in X (n = 1, 2, 3,...) such that if
p € X andp; < p, there exists a numbersuch thatp, > p.

24 Veblen 1905.
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IV.ii) There exists a decreasing sequefyeg in X (n = 1,2, 3,...) such that if
p € X andp1 > p, there exists a numbersuch thatp, < p.

V) A group of postulates founiformity. for every pointp € X and for every integer
n, there exists an open intervgl , containingp such that
V.i) For a fixed pointp, the family {7, ,} (» = 1,2,3,...) forms a nested se-
guence of intervals.
Vi) {p} = ﬂ;il Iy p.
Viiii) For any open intervaV’, there exists a number, such thatV ¢ 1, , for
everyp.

Veblen first proved that for any linearly ordered sétsatisfying the postulate of
continuity the following three conditions hold:

a) Any bounded subset has a least upper bound and a greatest lower bound.

b) Every infinite bounded subset has at least one limit point.

c) Heine-Borelproperty: if every element of a (closed) interval, [;] belongs to at
least one (open) interval of a family of open intervils, }, then there exists a finite
collection of intervals of the familyt/1, Ua, ..., U,, such that every point off], ¢]
belongs to at least one of the intervals, U, ..., U,. In other words, every open
covering for a closed interval has a finite subcovering.

A few months earlier, Veblen had already shown that théne-Borelproperty
could be considered as a continuity axiom since it is equivalent to Dedekind’s postulate
of continuity. More precisely, in a note published in 1904 Veblen had provire
following:

Theorem (V.1). Assuming the ordinal relations of the real number system, the Heine-
Borel property is a consequence of Dedekind’s postulate and the latter is a consequence
of the Heine-Borel property.

This theorem is to be understood as stating that for the set of real numbers the
continuity property holds if and only if any closed interva) p] satisfies théieine-Borel
property?® Once Veblen obtained the equivalence of Dedekind’s continuity principle
and theHeine-Borelproperty, he was ready to show (in his text of 1905) the logical
relations between the different groups of postulates. It was his aim to prove that the
separability condition, which is not included in these groups of postulates, could be

25 Veblen 1904, p. 437.

26 Besides this theorem, Veblen introduced a generalization dfitfiee-Borelproperty; the
so-calledH-B property: a set of real numbeks(or any linearly ordered set) has tHeB property
if given any family{U,} of intervals, with the property that every elemenfbelongs to at least
onel,, afinite collection/;, Uy, ..., U, can be selected such that every elemer¥ dklongs to
atleastond/, (k =1, ..., n). Now, after defining a closed set as one which includes all its limit
points, he stated the following theorefhid., p. 438.):

Theorem (V.2). A necessary and sufficient condition for a boundedXsetf real numbers to
have the H-B property is thaf be closed.
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deduced from the five groups of postulates given by hina,ib] is any (closed) interval
contained in a linear continuum satisfying the groups of postulates I-V, then the family
{IVO,,,} constitutes an open cover for this interval, for any fixed value vg, whenp
runs through 4, b]. Because of théleine-Borelproperty, a finite collection of points
{P°. Py, ..., px°} exists, such that the finite family of open intervals

{]vo’P,-VO }:’l:l 2)

is also a cover ford, b]. The extreme points of these intervalg (@ints), which clearly
depend upon the fixed numbeg, become a countable collection when making=
1,2,.... LetY.5 C X be this countable collection of points. By propertyiiy, for

any two pointsx, y € [a, b] an integer numbeng exists such that no intervd}, ,
contains the intervale, y); this means that at least one of the extreme points of the finite
cover of intervals (2.1), belonging to the countable family of poirjts,), lies between

x andy. This proves that the countable collecti®p ;) is order-dense in the closed
interval [a, b].

Based on th@seudo-Archimedeapostulates, it is possible to say that there exist
two countable sequencég, } and{g,} contained inX and an integer number, such
thatg, < p,2’ and such that any point € X lies in a closed intervalg, «, p.1«] for
which an order-dense countable suldggt, . .., €xists. Since a countable order-dense
SetY[y, .x. paii] EXists for each closed interval,[,«, pa44] (k =1, 2,...), the set

o0
Y = Ytk pusal .11
k=1

is a countable subset of points which is order-denseé.in

As far as we know, this proof by Veblen constitutes the first attempt to deduce the
separability condition from other conditions of the linear contini§m.

According to this proof, it is possible to obtain the separability condition for a
continuous ordered set whenever the pseudo-Archimedean and the uniformity conditions
are added to the first three groups of postulates. But it is possible for a continuously

ordered set to satisfy the groups of postulates I-lll, and still not be sepati.abthijs
condition is independent of the postulates I-lIl. Veblen showed this by considering the
example of a linearly ordered continuous set satisfying the groups of postulates I-lll, but

27 {p,} is an increasing sequence, whilg} is a decreasing sequence.

28 At the end of his paper, Veblen introduced two new postulates that are substitutes for the
uniformity condition. Therefore the separability condition can also be deduced from them: by
taking Cantor’s concept of a fundamental (increasing) sequence, where clearly the limit point is
the least upper bound of the sequence, Veblen stated that

1) Every point of the set is a limit point.
Il) For any limit point P, a family of sequencefP” ,, } exists such that:
i) Each sequence is increasing and Rass its limit point.
i) If P”andP” are two limit points f” < P""), there exists a numbeyf such that there is
no point P’ for which P,, < P”, P < P’, wheneverP,, is an element of a sequence
whose limitisP’.
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which is not separable: the skt= {(x, y); x € R, y € [0, 1]} with thelexicographical
ordering?® This is a continuous and densely ordered set, but it is not separable (an
element of an order-dense subset should exist for everR).

According to what we said before, a continuously ordered set should satisfy the
postulates of density and the postulates of continuity, but the above example shows that
the separability condition could fail for a continuous set. A continuous ordered set may
be separable, as in the case of the “ordinary continuum”, or may be not separable, as in
the above exampl&

We can be sure that the independence of the separability condition for the continuous
sets, and its necessary role for the “ordinary continuum”, were well known by 1920 when
Souslin formulated his question about the linear continuum. In this sense fSidipi
understanding of the essence of Souslin’s problem seems right: the question is if it is pos-
sible to deduce the separability condition from another different condition. But, whereas
Veblen’s aim was to deduce this condition from other postulates where only the order
relations were considered, Souslin seems to have asked whether this condition could be
deduced from another condition which is known to be an immediate consequence of it.

As we said before, a peculiar aspect of this question is that the countable chain
condition, despite the fact that it could be considered as a possible substitute for the
separability condition, was also a very well known property of the “ordinary continuum”.
But such a property had first been known and characterized in a set-theoretic context
independent of the theory of order types.

2.3. Cantor. The first characterization of a family of non-overlapping intervals

The fact that the countable chain condition can be deduced from the separability
condition is clear enough, but none of the studies on the linear continuum we have talked
about so far ever mentioned this possible deduction. When the countable chain property
was stated for the first time for the linear continug® 1), it was not conceived as a
conseguence of the separability condition. This happened in 1882, in the third memoir
on the infinite linear set of pointsUber unendliche lineare Punktmannigfaltigkeiten
3”31 when Cantor gave a first step towards an “abstract” theory of sets by stating that
the concept of theowerof a set should not be restricted to linear sets of points:

Auch derMéachtigkeitsbegriffwelcher den Begriff der ganzen Zahl, dieses Fundament
der GbRenlehre, als Spezialfall in sich faf3t und als das allgemeinste genuine Moment bei
Mannigfaltigkeiten angesehen werdédirftie, ist so wenig auf die linearen Punktmengen
beschéankt, daR er vielmehr als Attribut einer jeglichenhldefinierterMannigfaltigkeit

2% This order relation is defined in the following way: given two elements of thigisety;)
and(xz, y2), (x1, y1) < (x2, y2) if x3 < xo, Orif x1 = xp andy; < y».

30 This example also shows that this postulate of uniformity is independent of the other pos-
tulates, since it supports the proof of the separability condition: for the continuous &éttje
postulate of uniformity holds, but for the continuous Xgust defined, this postulate fails.

31 Cantor 1882.
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betrachtet werden kann, welche begriffliche Beschaffenheit inre Elemente auch haben

mogens?

The existence of two different infinite powers for the linear sets of points, together
with the hypothesis, only partially formulated by that time, that only these two infinite
powers could exist for sets of points, led Cantor to the question of whether these two
infinite powers could also exist for other kinds of sets. Cantor first claimed that given
any infinite set, a countable subset existsX(ifs an infinite set, then a sequenjog}
in X always exists). According to the order relation provided in 1878 for the powers of
sets3 this statement ensured that the power of the sequence of positive integer numbers
is the “smallest” infinite power that can be found for infinite setsghdlichen Mengén

Cantor tried to formulate the foundation for the study of this first infinite power in
two other statements related to countable sets:

1) Any infinite subset of a countable subset is also countable.

2) Given any countable set whose elements are also countable sets, the set obtained by
the union Zusammenfassuhgf the elements belonging to all these sets is in its
turn a countable séf.

Cantor considered that arithmetic and algebra provide several examples of countable
sets. Yet in his inquiry of the basic property of countable sets he proved the following
theorem which in his opinion provided a geometrical example of a countabfe set:

Theorem (C.1).If in an infinitely extended and continuousdimensional spac®”,
infinitely many:-dimensional continuous partial domains are submitted to the condition
that they do not intersect each other, or that they intersect each other at most at the
boundaries, then the set of these partial domains is always countable.

Since it was considered as a geometrical example, the proof for this theorem was
given through a geometric transformation: a projective transformation of the
n-dimensional spacB8” to anr-dimensional unitary sphet® contained in ani{+ 1)-
dimensional spacB”**. Through this transformation, eagkdimensional subset of the
spaceB” has a corresponding-dimensional subset df" whose “size” or “measure”
(Rauminhalf is bounded, since it is contained in the unit sph€render this transfor-

32 “Also the concept opower, which comprises as a special case the concept of an integer
number, the very foundation of the theory of quantities, and which may be considered as the most
general and genuine moment of sets, is not limited to linear sets of points; it can be considered
as an attribute of any well defined set, no matter which might be the conceptual nature of its
elements”lbid. Cantor 1932, p. 150.

33 Cantor 1878. In this memoir Cantor introduced the following definition: for two 4etad
B the power ofA is smaller than the power df (in formula:|A| < | B]) if a one to one function
from A to B can be defined, but no one to one function fréro A can be defined.

34 In his memoir on the infinite and linear set of points Cantor does not provide a proof for this
statement. The proof is not difficult, but it requires the axiom of choice.

35 Cantor 1882; Cantor 1932, p. 153.

36 1t is important to notice that at this stage of his work, Cantor had no precise definition for
themeasureof a set. His definition of the measure was first introduced in his sixth memoir on the
infinite linear sets of points [Cantor 18&4and in his memoir on the power of perfect sets [Cantor
1884).
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mation the family of non-overlapping partial domaingaifis transformed into a family
of non-overlapping domains of the unitary sphéfe For any given numbey > 0,
the number of domains in the sphere whoseasures greater thary is necessarily
finite since their sum ought to be less than theasureof the sphere (2t for n = 2).
The family of non-overlapping domains of the sphere can be arranged in a countable
sequence according to their decreasimepsure

Cantor’s conclusion from this general theorem, in the @asel, is the following:

Der Falln = 1 liefert folgenden Satz, welchdirfdie weitere Ausbildung der Theorie der
linearen Punktmengen wesentlich igtder Inbegriff von getrenntenpbhistens in ihren
Endpunkten zusammenfallenden Intervallens), welche in einer unendlichen geraden
Linie definiert sind, ist notwendig ein aizibarer Inbegriff®”

In this third memoir on the infinite linear point sets, the countable chain condition
was not conceived by Cantor as a consequence of the fact that the linear continuum
possesses an order-dense countable subset. However six months later, in his fourth
memoir38 this condition became the keystone in proving that an infufigeretesubset
M C B" is always countable. For each pointe M, Cantor considered the existence
of a neighborhood,,, (m) of m which contains no other point @f; the neighborhoods
Vo, (m) can be defined so that they do not intersect each other, or they intersect at most
at their boundaries.

3. Attempts to prove Souslin’s hypothesis. Kurepa’s work on ordered
and ramified sets

3.1. First step: the acknowledgment of the difficulty

Aswe have said, besides the remark made by Siskpin hisLegons surles Nombres
Transfinis no serious study was published concerning Souslin’s problem until D. Kurepa
started to publish his notes related to it in 1934. The core of his studies is found in his
memoir Ensembles Ordoras et Ramié§ written in 1935 as a doctoral thesis. In the
introduction to this work Kurepa pointed out what he considered to be the three main
problems of the theory of sets:

1. The possibility of well-ordering any set.
2. The guestion of the existence of a cardinal number betweserd Z.
3. Souslin’s probleni?

37 “The casen = 1 gives rise to the following theorem, which is very important for the future
development of the theory of linear sets of poirggery collection of disjoint interval&x, 8),
defined in an infinite straight line and intersecting each other at most in the extreme points, is
necessarily a countable collectibrCantor 1882; Cantor 1932, p. 153.

38 Cantor 1883.

39 Itis a remarkable fact that these three problems, which Kurepa considered as the main prob-
lems for set theory, are indeed related to threlependenpropositions in Z-F axioms: the axiom
of choice, the generalized continuum hypothesis and Souslin’s hypothesis. The independence
proofs for the first two problems was given by P. Cohen in 1963.
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For Kurepa, Souslin’s problem merely raised the following question:

si tout ensemble ordo@ncontinuE, avec la condition de la ciree cenombrable, est
nécessairement identique, au point de vue de l'ordre, au continiematigue'®

In this memoir Kurepa gave no definitive answer to Souslin’s problem. He did not
prove that a continuous linearly ordered set satisfying the countable chain condition is
necessarily separable, nor could he give an example of a continuous ordered set for which
the countable chain condition holds, but which is not separable. Kurepa’s achievement
was to state equivalent conditions for a positive answer to the problem.

Kurepa started his study in 1934, with four successive notes presented to the Academy
of Science and published in theo@pTES RENDUS in February, March, April and July
of 193441 Without any doubt these four notes constitute an important background for
his 1935 memoir, even if, according to the style of theoMBTES RENDUS, results
were only claimed and no proof was provided for the main theorems. In these notes
Kurepa outlined his approach to Souslin’s problem by introducing the main concepts
that support the logical structure of his 1935 memoir. But we must point out that there is
an important difference between these four notesEameembles Ordoras et Ramiés
The difference concerns his own confidence in the possibility of giving a positive answer
to the problem; in the notes of 1934 Kurepa claimed that he had obtained a proof for
Souslin’s hypothesis, while, as we said, no definite answer was provided one year later.

Already in his February note Kurepa claimed to have a proof for the positive answer
to Souslin’s problem; this was given through the following theorem:

Theorem (CR.l.1). Theorem on the linear continuum. The following 7 propositions
are equivalent for a linearly ordered sgétand any one of them makes this set equivalent
to the seR of real numbers.

A1 The setE is continuous, homogeneddsand is not the (Cartesian) product of two
continuous sets.

A2 The sefF is continuous, it has neither a first nor a last element, and every continuous
subsetF C E has the same order type &5(E is irreducible).

A3z The setE is continuous, it has neither a first nor a last element, and any family of
non-overlapping intervals of is at most countable.

A4 The setE is continuous, it has neither a first nor a last element, and is perfectly
separable (in the sense ofdehet)*

40 “whether any continuous ordered s€t satisfying the countable chain condition, is nec-
essarily equal, according to the order relation, to the mathematical continuum”. Kurepa 1935,
p. 1.

41 The February note, Kurepa 1984he March note, Kurepa 1984the April note, Kurepa
1934%; and the July note, Kurepa 1984

42 Kurepa defined a sé to behomogeneous it is homeomorphic to any of its intervals.

43 In his book of 1928 (Fechet 1928), Fachet gave the following definitions: a sBtis
separable if there exists a countable sub&stich that any point € E is the limit of a sequence
of distinct points ofV. Further on, he stated that a separableZsistone having a countable subset
N such that any point of is a point of N or an accumulation point a¥. For a sett where
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As The setE is continuous, it has neither a first nor a last element, and is metrizable
(a set® of Fréchet).

Ag The setE is connected, it has neither a first nor a last element, and is metrizable.

A7 The setE is dense, it has neither a first nor a last element, is metrizable and is
complete**

The affirmative answer to Souslin’s problem came from the conclusipr> Ay,
as Kurepa said:

Linclusion A; — A, donne la solution (affirmative) d’un pralshe de Souslif?

Through the different characterizations for the linear continuum given by these seven
propositions, it is possible to see the source of Kurepa's confidence regarding a positive
answer to the problem. Even if he emphasized the implicatigrn> A4, he certainly
did not have a direct proof at hand; but through these propositions Kurepa tried to
connect the property of being “the smallest” continuous ordered set (conditipns
and A») with the countable chain conditignand the property of being a metrizable
set (conditionsAs, Ag and A7) with the separability condition So for the chain of
implicationsA; — A, — Az — --- A7 — Aj of this theorem, Kurepa took into
account not only the properties of the set of real numbers conceived as an ordered set, but
also those properties of the set of real numbers conceived as a metrizable set as studied
by Fréchet inLes Espaces Abstraif§ It appears from his 1935 memoir that one year
later Kurepa was still searching for the relation between the countable chain condition
and the condition for a continuous set to be metriz&ble.

3.1.1. First strategy: cardinal functions associated with continuous ségsides the
possible relation between separable and metrizable sets, Kurepa began to explore two
characteristic properties in relation to the continuous ordered sets. The first one deals
with the possibility of defining some cardinal functions, the values of which depend on
the properties of the set. This idea was explored for the first time in his second note
of March 19348 where he stated that Souslin’s problem could be formulated through
the relation between two (infinite) cardinal numbers: the cardinal number of a family
of non-overlapping intervals of a continuous ordered set, and the cardinal number of
a dense subset of the same set; if the first cardinal number were akRgy@&duslin’s

no distancebetween its points is defined but only a system of neighborhoods is defined for each
point, Feéchet said that it is perfectly separable if there exists a countable fafibf subsets
such that for any point € E, the family of sets belonging t& and containing: as an interior
point is equivalent to the family of neighborhoodsaodiefined in the sek. Fréechet showed that
both conditions, being separable and perfectly separable, are equivalent for a metrizable set. This
is not true in general.

4 Being a metrizable set, the terms connected and complete are well defined.

45 “The implicationA; — A, gives the (affirmative) solution to a problem of Souslin”. Kurepa
1934.

46 FréchetOp. cit

47 Cf.theoremEOR1 below.

48 Kurepa 19354.
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hypothesis would say that the second cardinal number should algg. Gghese two
cardinal numbers are defined by Kurepa for any continuous orderédl set

p1E =inf{|F|; F C E is a dense subset @f}

p2E = sup{|Z|; # is a family of disjoint and non-empty open intervalskf

Once these cardinal numbers were formally introduced, the truth of Souslin’s hy-
pothesis was claimed in the following terms:

Pour tout ensemble ordoarnnfini, p,E = p,E; si E est dense alorg, E = p1E [...].
Le fait quep  E = Rq si E est continu ep,E = R, constitue la solution d’'un probime
de Souslirf®

According to this last statement, Souslin’s hypothesis would be merely a particular
case (the countable case) of a more general equality between the cardinal npndbers
andp, E. But this renewed conviction regarding Souslin’s hypothesis, which was based
on the belief thapo E = p1 E for any continuous s€f, had to be reconsidered one year
later. The relation that Kurepa established without any doubt in his mdinsgmbles
Ordonrés et Ramiésis that if E is an ordered set, it is possible to conclude from the
equalityp1 E = k thatpo E = «. Inotherwords, the inequalify, E = p1 E can be stated
between the two cardinal numbé&%Concerning the equalityoE = p1E claimed in
his March note, Kurepa stated in 1935 the following question, which is equivalent to
Souslin’s problem:

Le probEme si, pour deg continus, laborne s@pieurep, E est atteinte et si elle eagale
ap1E, se eduit, comme on le voif cette question: soieAtun ensemble ordor@tontinu
etZ une famille d’intervalles éterminantz’; existe-t-il recessairement une sous-famille
disjonctive deZ ayant la puissancg, E !

This more prudent attitude towards the truth of Souslin’s hypothesis can also be
clearly seen by looking at the new version that he provided in this memoir for theorem
CR.1.152

Theorem (EOR.1).For an ordered seE the following statements are equivalent and
each of them characterizes the order type of a closed interval of real numbers

Bo E has the order typé .
By Eis continuous and irreducible (which means that every continuous subBasof
similar to E).

4% “For every infinite ordered sep,E = p,E; if E is dense thep,E = p,E [...]. The fact
that p1 E = Rg if E is continuous ang, E = R, gives the solution for a problem of Souslin”.
Ibid. In this note the symbol&; E andm,E are used in place gf; E and p, E respectively.

50 As we will see hereafter, Kurepa proved thgpifE < p, E then there is no cardinal number
between them.

51 “The problem, for a continuous sgt, of knowing if the upper boung, E has been reached
and if it is equal top, E, reduces itself, as we can see, to the following questionElee an
ordered continuous set and It be a family of determining intervals di. Is there necessarily
a disjoint subfamily of# with the powerp; E?” Kurepa 1935, p. 66.

52 |bid., p. 123. In this memoir Kurepa makes no reference to his the@rhl
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By 1 Eis acontinuous set such that E = Ro.

B3 Eis continuous and metric.

B, Eis dense, with first and last elements, metric and complete.
Bs Eis dense, metric and compact in itself.

Propositiond1, By 1, B3, Bs, were already stated in theorddR.1.1(A2, A4, As and
A7), butthe important difference is that propositig) which in this new theorem would
be a propositiorB, » (E is a continuous set such thpsE = Ro), is absent. Kurepa
provided a proof for theorefBOR.1which he had been unable to give one year before
because of this propositioks; but this time he stated clearly and precisely the relation,
which in theoremCR.l.1 he had only suggested, between the conditions involved in
Souslin’s problem and the necessary fact that the continuous isanetric:

A cause de linclusionBs; — By, il suffirait, pour obtenir la @ponse affirmative au
probeme de Souslin, de prouver que, sous I'hygstB, ,, E est distanciablé?

If in February 1934 Kurepa claimed that a continuous ordered set satisfying the
countable chain condition separable one year later he stated clearly that a suitable
way to prove this implication would be to show that this set is metrizable. In view of
the difficulty of this proof, between 1934 and 1935 he confirmed Siekps opinion
on Souslin’s problem: this seemed indeed to be a very difficult problem to solve.

PropositionBy » is related to the cardinal number of a maximal family of subsets of a
linear continuum. The fact that it can be deduced from proposRion(B2,1 — B2,2)
follows from the well known implication thatseparableset satisfies the countable chain
condition. But the difficulty of answering whether the equajityz = p, E always holds
— and so of answering positively whether the implicatRyy, — B> 1 holds — indeed
arose from the fact that while; E is the cardinal number of a subset of the continuous
setE, poE is the cardinal number of a family of subsets of the samé saind so it is
the cardinal number of a subset of the power sét,d E. Kurepa thought that besides
the well known relation implying1 E = p>E, no other possible relation between these
two cardinal numbers could be obtained within the frame of the theory of order types. A
new insight into the nature and the structure of continuous ordered sets was necessary
to overcome this difficulty.

3.1.2. Second strategy: the complete development of a continuousT$et.solution
proposed by Kurepa derived from a concept that was introduced in his first note of
February 1934 and which is related to a second characteristic property of a continuous set
E': the possibility of giving a@omplete developmefutr any continuous set. The February
note opened with a definition that would become very important for his investigations
in the subsequent notes and in his 1935 memoir: that ocbmplet® development for

a continuous setFollowing Hausdorff's theory of the general product and power of a
set, Kurepa considered the case when an ordered continuofscset be seen as the

53 “Because of the implicatioB; — By, it would be enough, in order to obtain the affirmative
answer to Souslin’s problem, to prove that under the hypottBasisE is metrizable”lbid., p. 125.
Kurepa calls a metrizable set “distanciable”.
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union of a family{E,}, r of pairwise disjoint intervals of, with F C E anda € E,.
In general, ifF is a subset of and{E,},cr is a disjoint family of intervals of, the
union|J,.r E. is an ordered subset &f, where every point € E, is smaller than any
pointy € E;, whenever < b (E, < E, if a < b). When the equality

E=|JE, (3.)
aceF
holds, adevelopmentor E is obtained according to its subsEt Each subsek, is a
closed interval off, with the possible existence of at most two semi-closed intervals.
EachE, can reduce to a single poifit}. Kurepa stated that whefi is a continuous
subset, any continuous sEtaccepts a development (according to the continuous subset
F):

Pour qu’un continE soit ceveloppable suivant son sous-ensenthlgfaut et il suffit que
F soit sans lacunes [.] dans le cas o est continu, le @veloppement = | . E.
est unique?

This concept of a development for a gefis related to propositiond; and A, of
theoremCR.1.1 Kurepa'’s purpose in that theorem was to show that the countable chain
condition holds for a continuous sg&tif no development, according to a proper subset
of typed, is possible for this set (with the only exception of the “trivial” development,
where eactE, = {a}).%° Since theorenCR.l.1stated that the type is in some sense
the smallest continuous type (propositiép), and that a separable continuous order set
(whose type is\ or #) could notbe obtained as a non-trivial development according to
a continuous subset of type(propositionA 1), a proof for Souslin’s hypothesis would
reduce to proving that any continuous ordered set whose type is differentAfrmm
6 accepts a non-trivial development according to a subset ofdype that case the
only continuous and ordered sets with the countable chain condition would be those sets
whose type is. or 6.

Inthe March note, the complete development for a continuous s&de it possible
to state that whenever the equality 3.1 holds, eAghis a (continuous) interval which
can be developed according to a (continuous) subgef E,. In this way, a sequence
of developments is obtained:

54 “In order for a continuous séf to have a development according to a sulsétis necessary
and sufficientthat” hasnogaps|. . . ]if is continuous, the developmefit= | J__ E, isunique”.
Kurepa 1934.

% This idea was already clear with Cantor’s definition of the product of two order types.
According to the definition, the tyg® = 6 x 6, which is the order type of the square [ x [0, 1]
with the lexicographic order, is perfect, thus continuous. But the countable chain condition does
not hold, and so this set is not separable. The orderef sef0, 1] x [0, 1], whose order type is
62, has a development according to the suliset [0, 1] x {0}: for eacha € F let

acF

E, = {(avx);x € [07 1]} s

then, fora # b, E, N E;, = ¢ and 3.1 holds.
As we saw in section 2.2, Veblen used a similar model to prove the independence of the
separability condition.
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Eo= | Ea (3.1

beF,
is a development foE, and, recursively, it is possible to define:

Ea--ap= | Eap--ayus - (3.111)

atx+1eFao---aa

Each subset with index + 1 that is to be developed is an interval of a previously
developed subset with index But a subset whose index is a limit ordinal numbds
defined through the previous subsets:

Ey = an...az.“ = ﬂ an“.a( . (‘?’IV)

<o

For this sequence of developments, Kurepa claimed that it is possible to write:

E:UEaz U Eab:m:UEa. (3.V)

acF acF;beF,
Allthe setsF, Fy, ..., F,) are called thargumentof the development. Their type
is 6 or 1 and they are subsets of the sB{sE,, ..., E[4], Which are theermsof the

development. Now, there is always an ordinal numbsuch that the sefig reduces to
a single pointE is then equal to the union of its points:

E=|JEs . (3.VI)
B

The order typed or 1) of eachargumentdepends on whether the respectigen
is a continuous subset or reduces to a single poinf;oéll the indexes run over the
arguments

In order to understand the source of the central concept introduced by Kurepa in his
memoirEnsembles Ordoras et Ramiés, let us take a closer look at the developments
described through equations 3.1to 3.1V. Through these developments a fwfilyub-
sets ofE appears that is organized in the following way: first a development, according
to a subsef of E, is obtained for the sef itself; this gives rise to a disjoint family
{E.}.cF Of subsets ofE. When each subsédi, is developed according to a subggt
of E,, another family{ £}, r, Of subsets of£, is obtained for each subsgt,. The
family of sets?¥ is formed by the sek, by all the subsetg,, of E, by the subsetg,;, of
eachE,, etc. Clearly the famil\& obtained in this way has the property that any two of
its sets are disjoint or one of them is a proper subset of the other; and sincefhtssdt
belongs to the family, it is clear that any membefRoif a proper subset of this first set.
Kurepa called a family of sets with this propertyeanified table of set2® According to
this definition the family of subsets @& obtained from a (complete) development, the
termsof the development, form a ramified table of sets. Kurepa’s aim in 1935 was to
obtain a new comparison betwegnFE and p E through this ramified table of sets.

56 A Tableau Ramiéi d’Ensembles
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Inthis 1935 memoir the following recursive definition for the ramified tahleshich
reproduces the steps 3.1-3.1V, is introduted

1. The first member of the family is the setk itself,
RoT=E .

2. If the sets forming the subfamilg, T have been defined, the sets forming the sub-
family R,+1< are obtained from those @, when for each§ € R, T a partition
P(S) = {Sa}aer B is defined,

Ryi1T ={S, € 2(S); S € R, T} .

3. For alimit ordinak, each set of the subfamilg, T is defined by taking the intersec-
tion of a nested family of subsets, one (and only one) for each RV&I({ < ).

RyX =1{ () E;: E; € Re¥ andE; € () E,
¢<a n<¢

Denoting byy ¥ the order type of the set of all ordinalssuch thatrR, T # @,
the ordinal numbey T is defined as theeightof the ramified table of set¥.5° T is

then the family of sets belonging to all the levélsT (T = U, ., + R.T).% In this

way it becomes clear that the familyy is partially ordered by the inverse relation for
contention: for two sets of the famil§, E, andEg (E, € R, T andEg € RgT), it

is said thatE, < Eg wheneverEg C E,.5! In the notes he wrote in 1934, Kurepa
studied thecompletedevelopment of a continuous set. Now, the ramified table of&ets
is complete when the following conditions hold:

i) UT=EcZ.

i) If AeTandif|A| > 1,thenA = | Ro(A, .).6?
i) If & c T is a monotone subfamily, théR & € T.
iv) Foreveryx e | T =E, {x} € T.

57 This new definition was introduced for the first time in the July note of 1934.

%8 This means tha$, N S, = @ (a # b) and that J,,_; S, = S.

%9 This definition fory T was given in the memoir of 1935; in his July note, the heigh¥ pf

¥, was defined as the si; R, T # 7}.

% Eacha-level, R, T , is just the O-level (the “first level”) ofT — (J,_, RsT).

61 And clearly, according to the recursive definition this is possible ordy+ 8.

62 The symbolRy(A, .) is to be understood in the obvious way: it is the first level of the
subfamily of sets, contained ifi, which are properly contained if. Property {i) then states that
a partition ofA is made up by the disjoint familjA, } of subsets of that forms the first level of
(A,).
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For a complete ramified table of s@sthe sefE is the only set belonging to the first
level RpT. The ordinal number(x) = « states thafx} is an element of the-level,
R,T, of T.

Kurepa defined® as av-complete partition off if forany A € T (A C E), the
family of sets forming the first level o, {A,} = Ro(A, .), has order type.53

The questions of how far it is possible to go for the complete development of a
continuous sef (in other words, whether or not the ordinal numbpér) is the same
for all the pointsx € E), and what is the height of the ramified table of s&fslepend
in some sense on the nature of the Batself. In the memoiEnsembles Ordoras et
Ramifésthe following theorem provided a partial ansviér:

Theorem (EOR.2).If T is a complete development of any ordered getsuch
thatpoE = 8g (poE = SUp{|F|; F C E is a well-ordered subset @}5%), theny T =

WL+1.

3.2. Second step: the conditions for an answer

The ramified table of sets obtained through a complete development of tiie set
whose arguments are subsets either of yp® 1, is clearly a-complete partition.
With this particular ramified table of sets, Kurepa intended to establish the conditions
under which the cardinal numbgg E could be equal tp; E. This was done as follows:
every intervalS of a continuous ordered sét contains a closed interval(S) whose
order type i99; {S4}4e0(s) IS the disjoint family of subsets ¢f giving the development
of § according top(S) (the family 2(S) = {Si}seq(s) IS @ partition forS so that
S = Uaeqs) Sa)- Kurepa considered the ramified table of sgfsvhich comes out from
the complete development &f, but also the following subfamily¢’¥ contained ing,
which is also a ramified table of sets:

YT ={XeT;|X|>1 (D.3.1)

If T is af-complete development &, then for every: € E, {a} € R, ¥, and so
two disjoint subsets can be defined:

E1 = {a € E; v(a) is a successor ordirjal (D.3.2)
and
Es ={a € E; v(a) is alimit ordina} . (D.3.3)

Since the order type af(S) is 0, p1[¢(S)] = Ro, and there exists a denumerable
subseto(S) whichiis order-dense ip(S) (¢o(S) = n). By defining the following subset
of E:

83 Clearly, forA; andA; € {A,} = Ro(A, ), itis said that4; is smaller thamd; (4; < A;)
whenever every point od; is smaller, according to the order relation in A, than any poimn af
Of course the order typeof {A,} = Ro(A, .) is smaller than the order type df

64 Kurepa 1935, p. 113.

8 F could also be a reversed well-ordered subset of
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Fi= [ ¢o(S) . (D.3.4)
Sev¥

itis clear thatFy is dense in_J¢. g+ ¢(S). Now, for everya € Eq, {a} € R, ()T, where,
according to the definition of the sét, v(a) = 8 + 1, this means that is a point of a
subsetS of E whose order type i8 (S = ¢(S)), which is a member of thg-level of £
(a € S € RgT; S € WT). This shows that; C gy ¢(S); it follows then thatFy
is dense ink;.

Kurepa defined another subsetff

F> = {a € E; ais an extreme point of a portiafie ¥} . (D.3.5)
Two important properties have to be stated for this subset:

i) WhenW¥Z¥ is infinite then
WT| = |Fp| . (3.vin

il) FoisdenseinEs: since¥ is a complete developmentdfe Eo andl is an interval
of E containinga, a = (&, where = {A € UT; a € A}; so there is at least one
element of¥ which is completely contained ih

Kurepa defined in this way the set= F; + F> (which is dense irtE = E1 + E>).
Clearly

[F1] = Ro [WT] (3.vII)
and from 3.VIl and 3.VIII follows
|F| = 8o |WUZT| . (3.1X)
From the fact that is dense ing, it follows that
pE = |[F|=Ro|VET] . (3.X)

Kurepa then introduced a new cardinal number:

b (¥Z) =sup{|7|; 7 is adisjoint or a monotone family of¢'T)} . (D.3.6)
He easily proved the following equality:
p2E = Nob (UT) . (3.X1)
From 3.X and 3.XI, follows
Rob (W) = poE = p1E = Ro |VT| . (3.X11)
But Kurepa went farther and he proved that indeed

p1E = |F| =R |VT] . (3.XI111)
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The main conclusion from 3.XII (and 3.XIl11) is that whenever the following equality
holds

b(WT) = |UT| (3.XIV)

thenpsE = p1E.

A proof for Souslin’s hypothesis would then be provided if for the ramified table
of sets¥ obtained from a continuous ordered getatisfyingp, E = Rg, the equality
3.XIV were to hold.

Kurepa’s aim inEnsembles Ordoras et RamiéiSwas precisely to analyze, within
a new framework, the necessary and sufficient conditions for a ramified table @f sets
so that 3.XIV holds. Concerning this new framework, we have underlined the important
contributions made in his 1934 notes. A remarkable fact is that in the note published in
the GMPTES RENDUS in July 1934, Kurepa claimed the truth of Souslin’s hypothesis
precisely in this form: he stated that 3.XIV holds.

Theorem (CR.IV.1).Fundamental theorem: L&t be a ramified table of sets; W< is
infinite, there exists a subfamily’ ¥ of pairwise disjoint sets which has the same power
asvz®.

Remarkably this theorem is the only one for which Kurepa provided a sketch of a
proof (“une esquisse de preuve”). In the next section we will analyze the gist of his
arguments; but here we stress that with this theorem Kurepa claimed for the last time
the truth of Souslin’s hypothesis. As theor@R.IV.1shows, in the last note he sent to
the Acadgmie des Sciencégfore his 1935 memoir, Kurepa knew exactly the condition
that should be proved for a ramified table of sets in order to prove Souslin’s hypothesis.
But while this condition was claimed to hold in July 1934 Ensembles Ordoras et
Ramifésit was only stated as aquivalentondition to be proved. Certainly, as we have
said, in 1935 he had not abandoned his faith, but he realized that the question whether
3.XIV holds had to be answered not only for the particular ramified table ofiséts
but for any partially ordered sé&t having the same (partial) order relation®g. This
became the main subject of research in his memoir of 1935.

3.3. Third step: the redefinition of the problem

3.3.1. Partially ordered sets and ramified tables. Ensembles OspenRamiésis
devoted to the study of a particular kind of partially ordered setamified tableis a
partially ordered seT satisfying the following conditions:

1. For any three elemenis b,c € T, if a < ¢ andb < ¢ thena ~ b (which means
a=bora <bora > b).
2. For anya € T the ordered subsét, a);r = {x € T; x < a} is well orderec?®

66 The fact that(-, a) is an ordered subset @ is an immediate consequence of the first
condition. This definition makes clear thatamified tableT is what we call areein modern set
theory.
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Theheightof an element € T is the order type of the well ordered geta)r. The
first level of pointsRoT C T of a ramified tablel" is a disjoint subset of having the
property that any point of7 — RoT) is preceded by one (and only one) pointRyT .
Thea-level R, T C T is also a disjoint subset @f.6”

Theheightof T, y T, is now the order type of the set of ordin§ds R, T # ¥}, and
thewidthof 7' is the cardinal numbenT = sup{mu T}y, (Mo T = |RoT]).

From these new definitions it is clear that

TI= Y maT (3.XV)
a<yT
and that
|IT| = |yT| -mT . (3.XVI)

By stating that any monotone or disjoint subsefois called adegeneratesubset,
another cardinal number, analogous to the cardinal number defii®x8.8, is defined:

bT = sup{|F|; F is a degenerate subset®f . (D.3.7)

Under these general definitions the question is to find the relation between the num-
bersbT and|T|. Another question closely related to this one is whether the nuiiber
is reached (in other words, whether there always exists a degenerateBubigesuch
that|F| = bT). As for the relation between the two cardinal numbers, clearly it can be
said that

bT = |T)| . (3.XVII)

But Kurepa proved that 57 < |T|, no cardinal number exists between them.

A normal tableis defined as one whetd’ is always reached and is equal 79. In
other words7 is normalif there exists a degenerate subiBeof T such thaﬁT’| =|T|.

With all these general definitions, Kurepa stated that a proof for Souslin’s hypothesis
would be attained by showing that the ramified table of aibtained from the complete
development of a continuous ordered Bewith the countable chain conditiond. such
that po E = Rp) is anormalramified table.

Now Kurepa noticed two important implications of the equalipE = Ro:

i) SincepoE = p2E = Ry, it follows from theoremEOR.2thaty T = w1.
i) If Tisaramified table of sets obtained frairthrough av-complete partition, then
[v| = Ro.

From 3.XVI and these two remarks it follows tHat| =< R1.88 This means that the
guestion that becomes relevant in relation to Souslin’s problem is whether a ramified
tableT such thai7| = R, is a normal table.

67 As in the case of a ramified table of sets, thdevel of T, R,T, is the first level
Ro (T — U, R:T).

68 |f a ramified tableT is such thatyT = w, and each of its nodes is at most countable then
IT| =Ry
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The proof that if|T| = Rg thenT is normal presents no problem, since one of the
following two conditions hold: there exists a denumerable levél,iwhich is a disjoint
subset, or else there exists a denumerable monotone subset having one point at each level
(i.e. a “countable chain”). This was stated by Kurepa through the following the8%em:

Theorem (EOR.3).When|T| = R, there always exists an infinite degenerate subset
T, (T is normal).

This is the well-known theorem of #tig stating that aree whose height is» and
whose levels are always finite has at least cofénal branch If 7 has an infinite level
(whichis necessarily the case whehi < w), this one will be the degenerate subsef of
If, contrary to this first possibility, every level @fis finite, then by induction itis possible
to define a monotone subset: there always exists a peiatRoT such that[ao, -)| =
|T|; if up to the leveln a pointa, € R, T has been taken suchthat< a; < --- < a,
(and such thaffa,, -)| = |T]), thena, 1 is a point inR,, 1T such that,, < a,,11.

After theoremEOR.3 the only remaining question for Kurepa was to determine
whether a ramified tabl&, such thatT| = X1, is normal:

Le probEme de savoisi tout7T ayant la puissance&; est normalest d'une importance
consicerable parce que [.] il estintimement I au probkme bien connu de Souslin.
Il s’agit donc de voir siT" est normal, c’esi-dires'il contient un ensembleedgneg
non-cénombrabler;,.”°

Since the problem is now reduced to the study of a ramified t&ldé¢ powerRq,
from equality 3.XVI, two cases ought to be considered:

I. Thecase/T < w1 (lyT| = Ro).
II. ThecaseyT = w1 (lyT| = Rq).

In the first casel’ is a normal ramified table, sineeT = X1, and there exists an
ordinal number < y T such that thex-level R, T has poweti1. In this casel is said
to be awide ramified tabléfor somex < yT, moT = |cf(yT)|)."t

In the second case, T = w1, three cases are to be considered:

1.1 mT = N1.
1.2 mT < Rg.
1.3 mT = No.

For the first two cases, ik T = X1 ormT < Rg, thenT is again a normal ramified
table: in the first one, for the same argument as in caBeédwide ana-level R, T has
powerRk. Inthe second case, sined” < Xgandcf (yT) = w1, T is said to be aarrow

69 KurepaOp. cit, p. 105.

70 “The question ofvhether every” with powerR; is normalis very important since [ .] itis
closely related to the well known problem of Souslin. The question is wh&tienormal, which
means whethdt contains a degenerate and non-countable subfgétKurepa 1935, p. 106.

1 For any ordinal numbez, its cofinality,cf («), is the least ordinal number such that there
exists an increasing sequence of lengfli) whose limit is precisely.
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table (T is narrow ifmT < |cf(yT)| and wheneverf(yT) = wgy1, mT < Rg); in
this case the conclusion follows from the following theofém

Theorem (EOR.4).Each narrow ramified table has the same cardinal number as one
of its monotone subsets.

For a narrow ramified tabl€, a non-denumerable monotone subset having just one
point at each level of” exists; in this case, Kurepa says tlaiaccepts anonotone
descent

For the case I1.3|¢ T| = 81 andmT = Rg), T is neither wide nor narrow, but an
ambiguousamified table (for every ordinal < yT,m,T < |cf(T)|andifcf(yT) =
wp+1 thenmT = 8).”3 At first sight, the case of an ambiguous talileof height
w1 just seemed a generalization of the case of a tdbkuch thatjyT| = ¥¢ and
mT < Ro, which, according to theorefBOR 3 is normal. But an important example
found by N. Aronszajn and communicated to Kur&showed that this property cannot
be generalized whepT = w1 andmT = Rg. The example showed a ramified talsle
of f;%ightwl, all of whose levels are countable, but having no monotone subset of length
w1.

In accordance with the example given by Aronszajn, Kurepa defined the set

oo ={X C Q; X # @ is awell-ordered and bounded subjset

which is a ramified table of non-reached height’® And now the ambiguous ramified
tableS is defined recursively:

1. The first level ofS is defined as the first level of
RoS = Rgoop .

2. If, forevery¢ < o (¢ < w1), the levelR: S, which is a subset afg, has been defined
in such a way that the following conditions hold:

2 Ibid. p. 80.

3 This classification fowide, narrow andambiguousamified tables was already introduced
in the July note, although with some slight differences.

7 In his memoir Kurepa says that he received the example of Aronszajn at the end of June
1934.

S The existence of a ramified table of heightwhose levels are all countable, but for which
there is no monotone descent, was the first published constructiorfebamrajn treeln modern
set theory, ac-tree T is such thatyT = « and for anya < yT, m,T < k. Konig’'s theorem
proves that for &o-tree there always exists a monotone descent (it has always a “cofinal branch”).
An Aronzajn tree is &;-tree which has no cofinal branch. This fact makes clear the introduction
of ambiguousamified tables, besidegide andnarrow ramified tables.

76 The selyy is seen as a set of complexes; the elements of, are well ordered sequences
A = (ag, ai, ...a,, ...) of rational numbers whose length is smaller than The partial order
relation is defined iy in the following way: for two elements afy, A andB, A < B if the
sequencel is an initial segment of the sequenBgclearly in this case the length & is larger
than that ofA). A = Bonlyif A= B.WhenA £ B, B # AandA # B, itis said thatdA »* B.
With this partial ordepy is a ramified sequence. Cantor’s theorem assures ugdgat «,, and
sinceppQ = Ry, this height is not reached.
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i) |ReS| = Noforeveryt < a.

i) If&+1<aandA € RS, then the nodRo(A, )5 = {B € Re41S5: A C B}
is a countable set and an order relation is defined on it such that it has no first
element.

Then thex-level R, S is defined in the following way:

2.1. fa =B +1,

R.S= | Ro(A. )o -
A€RgS

2.2. If o is a limit ordinal numberR, S can be any countable subsetc R,o0
dense in the segmet o)s = (s, R¢ S, and such that this segment is in its
turn dense irF. Since|(-, a)s| = R, R0 is an ordered subset which is dense
in (-, )4, and so is also dense (n )5, this makes possible the definition of
RS in this cas€’

The ambiguous tablgis defined as = |, _,,, R:S. Thefactthas isanambiguous
table whose height; is not reached is easy to prove: by construction for every limit
ordinal numbekrx between 0 ang' S, the subsets., «)s and R, S are dense one over
the other.S is an ambiguous table and cleash§ = yop; therefore this height is not
reached.

3.3.2. Aronszajn tables and distinctive ramified sequenckss not clear why Aron-
szajn did not himself publish this first example of Aronszajn ramified tablebut
certainly it had a great influence on Kurepa'’s further studies related to Souslin’s prob-
lem. This example exhibited an ambiguous and normal tdbkdth an uncountable
disjoint subsefS; having just one point at each leve§ -admits adisjoint descentBut

this example also showed an ambiguous table for which the following conditions hold:

i) Va € S,andVa < yS, 3b € R,S such thath ~ a (whenever a ramified tablg
satisfies this condition it is calledramified sequenge’®

ii) Sis ambiguous and admits no monotone descent.

i) Va € S, |alg = {x € S; (-, x) = (-, a)} has the poweRyp; the setla|s is called the
nodeof a.

7 Once the ramified relation was defined for the&gtKurepa defined aomplete orderfor
any two elementd andB of o9, A < B inthe complete order ii < B according to the ramified
relation, but wherA » B, A < B if a, < b,, where thec-level is the first one where, # b,.
This generalization to a complete order can be given for any ramified faklose elements are
complexesWhene is a limit ordinal number, and and B are two complexes o belonging to
R, S, suchthatA < B according to this complete order, then at a certain Igvel «, the element
ag is smaller tharb, (with this we assume that = b; Vi < ). Since each node is infinite and
has no first element, a compléxof lengthv (8 < v < «) such that; = a; Vi = 8 but such that
cp+1 > api lies betweem andB. This proves that the subsget o), is dense inR, S. From this
fact it follows clearly that the subs&, S is dense ir(-, @) if every complex of lengtl8 < « can
be continued up to the limit ordinal.

8 Kurepa defined theortion of a, [a]s = {x € S; x ~ a}. This condition {) says that§ =

UaeRaS[a]S-
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Kurepa defined distinctive ramified sequencgas one satisfying condition§)£
(iii ). The example given by Aronszajn and Kurepa is then a distinctive ramified sequence
accepting a disjoint descent.

The important role that thes&ronszajn tableplayed for Souslin’s problem was
stressed by Kurepa himselfiEinsembles Ordorés et Ramiéisand also in an important
memoir published two years later and devoted to these ambiguous tables accepting no
monotone descerif Souslin’s hypothesis would be proved if every Aronszajn table
accepts a disjoint descent:

La condition recessaire et suffisante pour que é@anse au probme de Souslin soit
affirmative c’est que tout tableau rangifie M. Aronszajn contient un sous-ensemble non
denombrable de points de@deux incomparablés.

The importance of this remark lies in the fact that it shows the precise theoretical
point at which Kurepa had to recognize that he was unable to provide a definite answer
to Souslin’s problem: it was not possible for him to prove that every Aronszajn table
is normal The difficulty came from the following fact. Given an ambiguous tablef
heightw; with no monotone descent, Kurepa considered the subset

To={aeT;|a,)rl =Ro} . (D.3.8)

Since|Ty| = |T| = Ry, if the equality holds, themgTp = N1 and soT; =
RoTy C T is a disjoint subset an@ is normal But when|Tp| = Ko, the existence
of an uncountable degenerate suli&etannot be proved in general. However, in this
case Kurepa found thatdistinctiveramified sequencg c T can be defined such that
wheneverT is anabnormal table S is alsoabnormal®! Despite the impossibility of
providing a definite answer to Souslin’s problem, the existence of an abnormal distinctive
seguence contained in an abnormal table is one of the most important facts established
by Kurepa. This importance will be underlined in the following section, since no proof of
the equivalent conditions for Souslin’s hypothesis is possible without this construction.
We think that it is very enlightening to compare this construction of Kurepa’s with the
similar procedures which Miller and Siefgki introduced several years later and which
we will analyze below.

The definition of the distinctive ramified sequerte- T goes as follows. Making
T1 = T — Ty, it turns out thaTy| = |T| = R1 and|[a, ), | = |T1| Va € Ti, so that
Ty is an ambiguous sequence whose heighis not reached? Now for everya e T1,
the setT, = [a, ), is a ramified (ambiguous) sequence having at least one infinite
level (since otherwise, ifigp € T1 is such tha a’o = [ao, .)7, has no infinite levels,
thenT, is a narrow ramified table and it must accept a monotone descent, contrary to

7 Kurepa 1934.

80 “The necessary and sufficient condition in order that the answer to Souslin’s problem be
affirmative is that any Aronszajn ramified table contains a non-countable subset of pairwise in-
comparable points’ibid., p. 134.

81 This means that no disjoint or monotone subsef dias the same power @f.

82 |ndeedT; is an ambiguous sequence of non-reached heighis is7 itself, butT; has the
property that for every point, the power of the set of points above it is not countable.
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the hypothesis). It is possible then to define recursively a distinctive ramified sequence
S C Ty of heightw,:83

1. The first level ofS is equal to the first level ofy,
RoS = RoT1 .
2. Ifforeveryv < o (¢ < w1), the countable leveR, S has been defined, the disjoint
setR, S is defined in the following way:
2.1. Fora =B +1,
RyS= |J Reliyy
i€eRgS
whereq; gives the index of the first infinite level of the ambiguous sequence
[i, ')T]_'
2.2. For alimit ordinaly
RyS = RgT1 ,

wherep = sup{n; R,T1 N (Ug<a R§S> # (ZJ}.
With these two steps, the distinctive sequence

S=J RuS

a<wi

is defined.

At this point we can take a closer look at Kurepa'’s sketch of a proof for theorem
CR.IV.1 which we mentioned at the end of section 3.2. As we have said, atthe end of June
1934, afew weeks before he presented his July note Atid&mie des Sciencdsurepa
received the first example of @&wronszajn ramified tablBut even if this example made
clear to him the possible existence of an ambiguous table not reaching its height, he still
believed in the possibility of findingdisjoint descenfor such tables. For an ambiguous
tableT of heightw; with no monotone descent, Kurepa introduced the subtipées
in D.3.8, and its complemef; = T — Ty, and he defined recursively the sequence
T' = {ay}y <0, as adisjoint subset df:

1. The first element of’ is any element of the first level af,
ap € RoT1 .

2. For any ordinale < w1, the element,, is any element of the-level of 7y which is
not comparable to any of the previous elementé < o) already defined:

ay € Ry | Th — U [ag, .)Tl

E<a

83 Being a distinctive sequence, its height is not reached.
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One year later Kurepa became aware of the problems related to this argument: this
procedure defines a disjoint descent only if for every< w; the a-level Ra(Tl —
U [ae. -)Tl) is not empty.
E<a

So in Ensembles Ordomas et Ramiésthe only possible conclusion was that the
ramified tableT contained a distinctive sequengef heightw;, so that ifS is normal
thenTy andT are normal; but iff" is abnormal, the distinctive sequengés abnormal.
This is formulated through the following theordf®R.584 which became a meaningful
device that allowed Kurepa to prove thguivalencdetween Souslin’s hypothesis and
the property that every ramified table of powars normal (the equivalend® <«— Psg
of the theorenEOR.7hereafter).

Theorem (EOR.5).If T is an abnormal table of heighb; it contains an abnormal
distinctive sequencé of heightw;.

As we have already seen, the hypothesis that every ramified table of power
normal implies Souslin’s hypothesis:

D’apres les esultats des derniers paragraphispothése que tout tableau ranefide
puissance?; est normalou ce qui revient au Bme, que tout suite distinge de rangy;
admet une descente disjonctiesitrane la reponse affirmative au pradaine de Souslif?

As a consequence of this last statement, from the negation of Souslin’s hypothesis
(the possible existence of a continuous ordered setch thap, E = Rg, butp1 E = R1)
the existence of an abnormal table of height and so the existence of an abnormal
sequence of powets, could be obtained.

The proof of the converse relation reduced to showing that if an abnormal ramified
table T of power X1 exists, then there is an ordered gessuch thatpoE = Rg but
p1E = R1. As we have claimed, for this converse relation theoEEOR.5played a
crucial role.

First, given a ramified tabl& it is necessary to define an ordered 8etfor this
a complete order relation, which is a generalization of the partial order relation (the
“ramified relation”), is introduced for the sé&t: if a andb are two comparable points
of T, they keep the same order as in the partial order relation, buttifb, there is an
ordinal number < y T, and two points’, b’ € R, T, such that

i) (,a)=(,>b) (a’ andb’ belong to the same node),
i) @’ € (-,a)buta ¢ (-, b),
i) o' € (-, b) butd’ ¢ (-, a).

By defining a linear order for each node Bf it follows that the order relation
a < b can be defined whenevet < b’ according to the linear order given to the node
containinga’ andd’. Clearly this linear order defined for the ramified tablelepends

84 Kurepa 1935, p. 109.

85 “According to the results given in the last paragraphe hypothesis that every ramified table
of power; is normal(or, equivalently, that every distinguished sequence of heiglatdmits a
disjoint descentmplies the positive answer to Souslin’s probleitbid., p. 124.
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on the linear order defined on each node. For the particular case of a distinctive sequence
S of heighty S = w1, each node of has the cardinal numbe&y; S(w) is the ordered
set obtained fron$ when each node has the order typ@and, in general§(t) is the
ordered set obtained when each node has the countable order. type

For a distinctive sequencg of heightyS = w1, Kurepa stated four important
properties:

() Any ordered sebS defined from the distinctive sequen§édias the property that
p1[oS] = R1. Sop1[S(w)] = p1[S(@")] = p1[SA+ w*)] = V1.

Another important property, which can be deduced from the obvious fact that the set
S(w*) is densely ordered, is th&tis normal whenevep, [S(»*)] = |S|:

(1) If p2[S(w*)] = Ry, there exists a disjoint subs&t contained in the distinctive
sequencss, such thatR| = | S| = N1.

But another important consequence, which is also obtained from the fast(thigt
is densely ordered, is that jf, [S(w*)] = N1, this cardinal number is the same for any
order relation given to the nodes &f

(1) If p2[S(w*)] = X1, thenpz[0S] = Ry for any linear ordepsS.
Finally, Kurepa proved the converse of II:
(IV) If Sis a normal ramified sequence, then[ S(w*)] = R1.
From these statements Kurepa easily concluded the following thetfrem:

Theorem (EOR.6).In order that a distinctive ramified sequenSebe normal, it is
necessary and sufficient that for every natural orde§ op1 [0S] = p2[0S].

Kurepa’s proof is now complete: if there exists an abnormal ramified tAbdé
power X1, then there exists aabnormal distinctive sequence C T. According to
property I, p1 [0S] = R1, but according to theore®BOR.6 p2 [0S] < R1.

So, between the first question about the decomposition of a continuous ordered
setE, and the construction of a ramified table of s&tebtained through a complete
development folE, he found several conditions that allowed him to give an equivalent
formulation of Souslin’s hypothesis. As a conclusion to his whole research, Kurepa stated
the following theorem, which includes the equivalence between several conditions, each
of which could give a positive answer to Souslin’s prob&m:

Theorem (EOR.7).The following propositions are all equivalent:

Py For any ramified tableél’ the cardinal numbebT is always reached. (Ramification
Hypothesis) (Hypotse de Ramification).

P> Every infinite ramified table has the same cardinal number as one of its degenerate
subsets (Reduction Principle) (every ramified table is normal).

8 |bid., p. 129.
87 Ibid., pp. 130-132.
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P3 For any infinite ordered sek there is a family of disjoint and non empty intervals
with the cardinal numbep1 E.

P4 If Sis adistinctive ramified sequence, any orderedsedefined from it is a normal
linearly ordered set (i.ep1(0S) = p2(0S)).

Ps If S is a distinctive ramified sequence, the degree of cellularity for any ordered set
oS is always the same.

Ps Every distinctive ramified sequengehas the same cardinal number as one of its
disjoint subsets.

P; Every ramified sequence admits a disjoint descent.

Pg If Sis a ramified sequence, there exists a subtdbté S such thai 7| = | S| andT
contains no distinctive sequence of heiglst

Pg If T is a ramified table ang T is an initial regular ordinal, and if for every disjoint
subtableF of T its power|F| is smaller than|y T|, thenT accepts a monotone
descent.

A few months after this achievement Ensembles Ordor@s et Ramiis Kurepa
sent another note to thecadmie des Sciencd®sin which he clearly established his
contribution to the solution of Souslin’s problem: he enunciated a hypothesis which, in
case it were true, would imply the truth of Souslin’s hypothesis. This iRhigification
Hypothesis

Quel que soit le tableau randfi’, la borne suprieureb T est atteinte dang, c’esta-dire
qu’il existe un sous-tablealederéré deT ayant la puissander .2°

Kurepa remarked that this hypothesis is equivalent to the proposition stating that
any infinite table has the same power as one of its degenerate subtables. An immediate
consequence of thimmification hypothesis that

Tout tableau infini non @hombrable contient un sous-tableau infigigeherée non
denombrableproposition que nous ne savons ni prouverdfuter, et qui eséquivalente
a I'hypothese que la@ponse au probme bien connu de Souslin est affirmatife.

After the initial optimism of his 1934 notes, Kurepa had to accept that he was not
able to prove Souslin’s hypothesis, because he could not prove that every Aronszajn table
admits a disjoint descent. Nevertheless, with his research on the subject he introduced
an equivalent proposition which gave the framework within which all further studies on
Souslin’s problem were developed.

88 presented by Emile Borel in January 20, 1936. Kurepa 1936.

8 “For any ramified tablg’, the upper boundT is reached withirf’, which means that there
exists a degenerate subtablefohaving the powebT™”. Ibid.,

9 “Every non-countable infinite table contains a non-countable infinite degenerate subtable,
proposition which we can neither prove nor refudé@d which is equivalent to the hypothesis that
the answer to the well-known Souslin’s problem is affirmativbid., (Italics ours).
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4. Equivalent statements
4.1. The rediscovery of an equivalence

Certainly the two most famous papers related to Souslin’s problem are E. Miller’s
paper “A note on Souslin’s Problem”, published in 1943nd Sierpiski’s paper “Sur
un Probéme de la Thorie des Ensembles Equivalent au Peofd de Souslin”, published
in 1948 in the Polish journal (NDAMENTA MATHEMATICAE.?? These two articles are
clear examples of how this problem, which in its original form dealt with the theory of
order types, was “translated” into a problem about partially ordered sets.

Even if these two papers closely resemble Kurepa’'s work, no reference is made by
Miller or Sierpihski to any of his notes or articles. Itis not clear if their authors even knew
any of Kurepa’s texts. At the beginning of his paper of 1948, Siesipirefers to the book
of A. DenjoyL’Enumération Transfini& as a source of extensive information related to
Souslin’s problem. In the bibliographical notes, Denjoy includes all of Kurepa’s papers
published by that time; so Siefmki knew, at least from a bibliographical reference,
about the existence of Kurepa’'s works related to Souslin’s problem.

The papers of Miller and Sierpski are certainly better known than Kurepa'’s. Miller
is frequently considered as having been the first one to prove that a necessary and
sufficient condition for the existence of a continuous ordered sstich thaipp1 L = N1
andpsL = Ry, is the existence of aabnormalramified tablek of power; or, as the
standard mathematical terminology states, th@baslin lineexists if and only if there
exists aSouslin tre€**

We must state that even if we can analyze these two papers simultaneously since they
refer to the same problem and we claim that their approach is completely equivalent, we
must keep in mind that the authors’ respective backgrounds, and certainly their interest
in Souslin’s problem, arose from different sources.

4.1.1. Miller'stheorem: Souslin lines and Souslin tree3wo years before he wrote his
paper on Souslin’s problem, Miller had published with B. Dushnik a short but profound
study on some important properties of partially ordered ¥&the two main problems
analyzed in that paper are:

1. To find the powers of the linear subsets of a partially ordered® séee. to answer
how large a linear subsét C P can be.

%1 Miller 1943.

92 Sjerpinski 1948. This is the only article on Souslin’s problem that was ever published by the
journal that had published Souslin’s problem.

9 Denjoy 1946.

9% This is the case in two important books on set theory written by Devlin (Devlin 1974) and
Kuratowski (Kuratowski 1976).

9 Miller, Dushnik 1941.
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2. The possibility of having eepresentatiorior a partially ordered se®; i.e. to find a
family of sets?, partially ordered by inclusioff such thatP and2 are similar®’

Concerning the first problem, Miller and Dushnik were interested in the relation
between the size of the monotone subsets of a partially ordere®], setd the size of
its disjoint subsets. First, they proved that when a partially ordere#t sétpowerN,
admits no disjoint subsets of powj, then almost all of its elements are comparable
with ®1 elements. A second important fae a generalization of theoreEBOR.4for
partially ordered sets — gives a clearer relation between monotone and disjoint subsets:
if a partially ordered seP of powerX1 admits only finite disjoint subsets, then there
exists a non-countable monotone (linear) sutssef P.

These facts were stated through the following theof8ms

Theorem (M-D.1). If P is a partially ordered set of power; and if every subset
G C P of power®; contains two comparable elements, then there exists an element
x € P which is comparable t&; elements of.

Theorem (M-D.2). If P is a partially ordered set of powek; and if every subset
G C P of powerrg contains two comparable elements, then there exists a linear subset
F C P of powerks.

For the second problem, the representation of a partially ordere®l, déiller and
Dushnik showed first that@anonicalrepresentation always exists fBr by taking for
everya € P the subset?, = {x € P; x = a}, the family? = {Z,},cp, Ordered by
inclusion, is similartoP: a < bin P ifandonly if , < Z in 2.

The question that arises immediately is related to the possible existence of another
representation foP, besides thisanonicalrepresentation. A family/ of intervals de-
fined on alinearly ordered setis an example of a partially ordered setwhich is represented
by the same se¥; but Miller and Dushnik tried to find the answer for the converse prob-
lem: under which conditions a partially ordered #etould be represented by a family
of intervals defined on a linearly ordered set. They found that such a representation is
possible whenever the (partial) order relation carirvertedin such a way that the
disjoint subsets become monotone subsets and the monotone subsets becom&Xisjoint:

Theorem (M-D.3). A necessary and sufficient condition for a partially orderedRet
to have a representation by means of a familyf intervals on some linearly ordered set
L is that there can be defined ghanother (partial) order relation, defining a partially
ordered set, such thatt ~ y in P if and only ifx »# y in Q.

9% This means that fof, % € 2, the ordei?’< % is defined whenevet’ € %. SoifZ ¢ ¥
and? ¢ Z',thenZ » %.

9 This means that there exists a one to one function f@mnto 2 preserving the order
relation.

9% Miller, Dushnik 1941, pp. 606—-608. For theoreii®.1-MD.4 we have modified slightly
the terminology employed by the authors in their paper.

% |bid., p. 602.
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Itis important to look closely at the proof provided by Miller and Dushnik, because it
can give us some insight about why, two years later, Miller turned to Souslin’s problem,
and how he found the equivalence betw&auslin treesindSouslin lines

In order to prove that the existence of a representation for a partially orderBdsset
sufficient to define orP another partial order relation satisfying the desired condition,
let arepresentation fa? be given through a familyz = {I,},.p of intervals on alinear
setL, such that fox € P, I, C L is the corresponding interval. i andy are two
non-comparable elements Bf then none of their corresponding intervals contains the
other, so forl, andI, their left-hand extreme points must be different — since if these
extreme points coincide then one of these intervals contains the other or else they are
equal. The partially ordered sétis defined as follows: ik # y in P, then the relation
x <g y holds (and sox ~ y in Q) if the extreme left point o, precedes irL the
extreme left point of,. Under this definition? and Q satisfy the required condition.

Conversely, lef? andQ exist as (partial) order relations on the sameSsstisfying
the condition that for any two elementsy < S one, and only one, of these two
conditions holdsx ~¢ y orx ~p y. LetSp andSy denote the partially ordered st
with the order relation® or Q.19 Two linear order relations can be defined$in

1. Arelation~ 4: for any two elements, y € S,x ~4 yif x ~p y orx ~¢p y;inthis
case itis said thad = P + Q.

2. Arelation~g: for any two elements, y € S, x ~p yif x ~p y Oorx ~p+ y;in
this case it is said that = P + Q*, (whereQ* is the inverse relationaf: x < y
if and only if x > g, y).

LetagainS, andSp be two such linearly ordered sets, andlldte a linearly ordered
set whose order type is the same as thatef and suchthak NS = @. If C = LU S4
is defined in such a way that, S4) is acutin C, and if S is given the order relation
B*, then for eachx € S, x € Sp+ andx’ € L is the corresponding element bf Since
at the same time it is possible to consider that ewegyS is an element of 4, forx € §
letl, =[x, x] c C.Ifforx,y € S,x <p y, thenclearlyx <4 yin S andy’ < x’
so thaty’ < x’ < x < yin C and/, C I,. On the other hand, if, y € S are such
thatx #p y thenx ~¢ v, let us suppose that <¢ y; in this casex <4 y in S4 and
x' < y'inLandsox’ <y’ < x < yin C and sol, does not contaid, nor is it
contained init {, # 1,).

From this proof, itis clear that for the familf = {I,},p of intervals on a linearly
ordered se€ which represent the partially ordered gstthe non-comparative relation
between two intervals reduces to the fact that none of them contains the other, but not
necessarily to the fact that they are disjoint.

Besides theorer-D.3, Miller and Dushnik showed that for any set of powara
partial order relation can be defined on it, so that it can be represented by a family of
intervals defined on a linearly ordered set. But they also showed that any set offpower
could be represented by a family of intervals with no uncountable monotone or disjoint
families: if N is any set of poweR; andQ = sg(w1) = {@; « is an ordinal number
< w1}, two (one to one) functions can be defined:

100 Two elements: andy are comparable i if and only if they are incomparable isy,.
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1. f:N - R.
2.g:N —- Q.

A partial order can be defined a¥: for x,y € N, x < yif f(x) < f(y) and
gx) < g(» (f(x) and f(y) are always comparable iR, andg(x) and g(y) are
comparable in2, soif f(x) < f(y) andg(x) > g(y) thenx » yin N). For a subset
M C N of power®y, the subself (M) has power; and a pointyg € M exists such
that f (xp) is acondensation poirfor f(M); so there are two points, z € M such that
f(») < f(xo0) < f(2), and also such that(xg) < g(y) andg(xp) < g(z). This makes
xo < z andxp % y in N. So for any setv of power; it is always possible to define a
partial order relation where every subsétc N of powerX; contains two comparable
elements and two non-comparable elements.

With this partial order relation defined oM it is easy to see that it satisfies the
condition of reversibility of theorermM-D.3, soN can be represented by a famify of
intervals defined on a linearly ordered set having the following properties:

1. Every non-denumerable subfamiy/ c # contains two comparable intervals.
2. Every monotone subfamily of is at most countable.

Z is a non-denumerable family of sets with the property that every subfamily of
disjoint sets is at most countable and also every subfamily of nested sets is at most
countable; but for this family the non-comparability of its sets does not correspond to
the fact that they are disjoint.

Let us callG this last condition:

(G) Afamily of setsZ is said to satisfy conditiof if any two of its elements are either
disjoint or one is a subset of the other.

The next step was to find the conditions for a partially orderedPssb that the
family of sets representing it satisfies conditi®nA partial answer was given for the
family 2 = {Z,},cp, the “canonical representation”: if the partial orderAirdoes not
“split”, then the non-comparable relation iA corresponds to the fact that the subsets
are disjoint®%:

Theorem (M-D.4). If the partially ordered sef is such that, for any three elements
a,bandc, ifa < banda < c thenb ~ ¢, then for the canonical representationany
two of its sets are disjoint or else one is contained in the other.

For two non-comparable elementsiyfx # y,if ,.NZ'y # @, thenforz € Z:NE,

z < x andz < y, but, according to the hypothesis, it should be concludedxthaty,
contrary to the assumption that* y.

A completely equivalent theorem could be obtained by considering, for the partially
ordered seP, the family of sets”? = {#,},cp Where eacl¥, = {x € P; x = a}, and
defining the (partial) order relation i by stating that¥, < %, if %;, C %,. In this
case, for the family%, representing the partially ordered s&t the non-comparable
relation between two sets is equivalent to the fact that they are disjoint whenever the

101 |pid., p. 604.
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following condition holds: ift andy are two non-comparable elementsiyfthen there
exists noz € P such thatr < z andy < z. In this case, the condition for the order
relation in P so that the family% satisfies conditiofs is that it would not “converge”.

The problem was then to state the conditions that a partially orderef siebuld
satisfy so that it could be represented through a family of intervals defined on a linearly
ordered set, and satisfying conditiGn As we noticed, Miller and Dushnik had already
proved that a se¥ of powerRX1 could be considered as a partially ordered set satisfying
the (double) condition that it accepts no uncountable chain and no uncountable anti-
chain, and that it could be represented through a fa#ilyf intervals defined on a
linearly ordered sek. If the family # satisfies conditio® then the seL should admit
at least a countable family of non-overlapping intervals.

Two years later Miller found that a representation is possible for a partially ordered
set P not accepting any uncountable disjoint or monotone subsets, through a family
of intervals of a linearly ordered set that satisfies condi@rif P satisfies the “non-
splitting” condition stated in theoreii-D.4 (or the “non-convergent” condition). Two
facts were immediately remarked by Miller: the first one is that the linearly ordered set
L on which the family of intervals is taken should satisfy the countable chain condition.
The second one is that after the conditions stated for the partially orderdt (et
accepting any uncountable disjoint or monotone subsets), only two possibilities seemed
acceptable for its power (and so for the power of the family of intervals): this power
could beR; or Rg. Miller remarked immediately that the most interesting case is that of
an uncountable partially ordered s&tthe problem for him, as it was for Kurepa, was
to find out if such conditions for a partially ordered gebf powerX1 could exist.

Miller's paper of 1943 showed that the conditions which he found for a partially
ordered setP of power®; to obtain the desired representation are equivalent to the
existence of a continuous linear ordered etith no first and no last element, which
satisfies the countable chain condition, but is not separal3e\alin ling. The core of
his paper was the following theoret®

Theorem (M.1). In order that there exist a linear orddt which possesses the proper-
ties:

1. It has no first and no last element,
2. ltis continuous,
3. Any set of non-overlapping intervals éris at most countable, but which does not
satisfy the following condition:
4. There exists a denumerable subBetf L such that between any two elementd. of
there is an element db,
it is necessary and sufficient that there exist a partially orderedPsef powerXy
such that
m.i) if 9 ¢ P and|Q| = X1, thenQ contains two comparable elements and two
non-comparable elements,
m.ii) if x andy are non-comparable elementsBf then there exists noe P such
thatx < zandy < z.

102 Miller 1943, p. 673.
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In some sense we can say that the course followed by Miller is the opposite of the
one followed by Kurepa. There are two reasons for saying this:

1. Kurepa started studying the development of a continuous ordered set; this problem
led him to study a family of intervals of the set, obtained from the (complete) de-
velopment of the set, which constituted a partially ordered family of sets satisfying
conditionG. In contrast, Miller tried to find the conditions that a partially ordered
set P should satisfy in order to be represented by a family of intervals of a linearly
ordered set satisfying the same condit®n

2. Kurepa started his study on the development for a continuous set, and so the study
of partially ordered sets, by trying to give an answer to Souslin’s problem. Miller
found that an answer to his problem of the representation for a partially ordered set
P of powerR; could be obtained from a negative answer to Souslin’s problem.

4.1.2. Siermski's search for an equivalent statement to a non-proved hypotiisis.
have already said that in his book published in 1928 W. Shakpiwas the first ever

to remark on the importance and the difficulty of Souslin’s problem, but he only pub-
lished one paper related to this problem which appeared in the jouona AMENTA
MATHEMATICAE in 1948. Sierpiski knew Souslin personally and he was present when
Souslin talked with Luzin about his discovery of the “error” in Lebesgue’s metfdir.
Sierpihski was captivated by Souslin’s discovery, which, as we said in the Introduction,
gave rise to his important contribution in descriptive set the@ythe class ofinalytic

sets and he published several papers on this téfsfc.

It seems to us that Siefski’s paper on Souslin’s problem belongs to the group of
inquiries concerning the quest for equivalent conditions to some unsolved set-theoretic
problems. After the first issue ofNRDAMENTA MATHEMATICAE, Sierpiski embarked
on this kind of research by proving equivalences or consequences of the continuum hy-
pothesis; the theorems that establish equivalent statements to the continuum hypothesis
form the kernel of the first chapter of his bobypothese du Continef 1938.

Aremarkable factis thatin 1928 Siengki identified Souslin’s problem as a problem
related to the theory of ordered sets and order types; but twenty years later, he gave an
equivalent statement to Souslin’s problem in the general theory of sets.

Sierpiiski posed the followingroblem Pof set theory:

Let # be an infinite family of sets having the following properties:

s.) Any two sets belonging t& are disjoint or one is a subset of the other,

s.ii) Every subfamily of# of disjoint sets is at most countable,

s.iii) Every subfamily of nested sets is at most countable and has a maximal element.
Under these conditions, is the fami#§ necessarily countable?

103 This is related by K. Kuratowski in Kuratowski 1980, p. 68.

104 Some of these paper are: “Sur quelques pédsides ensembles)((with Luzin) (1918).
“Sur un ensemble non mesural@&(with Luzin) (1923). “Sur une propété des ensembles)’
(1926). “Sur une propégite caracéristique des ensembles analytiques” (1927). “Sur la puissance des
ensembles analytiques” (1930). “Leetheme de Souslin dans lagbrie grérale des ensembles”
(1935).
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Souslin’s problemgroblem $is stated by Sierpiski in the following terms:

Un ensembld. ordonre linéairement, dense et tel que toute famille d'intervalled.de
n’empietant pas les uns sur les autres est au ffuaschbrable, contient-ilétessairement
un sous-ensemble au plugrbmbrable dense dang'°®

Sierpiski stated the following theoref®®

Theorem (S.1).A positive answer to problem P is equivalent to a positive answer to
problem S.

It is clear that the family of set is partially ordered and that it indeed forms a
ramified table of sets. Conditions.{i) and &.iii) state that every monotone or disjoint
subfamily is at most countable, so the question of whethgr= X9 becomes com-
pletely equivalent to Kurepa’s formulation: a positive answer to Souslin’s problem can
be obtained if (and only if) under the above conditi¢gs = Ro; i.e. if no abnormal
ramified table of sets of powe¥; exists.

Miller’s formulation for his theorem seems more general than Siskik since it
refers to a partial ordered sBtof power; and not to the special case of a ramified table
of sets. But in any case, they both proved the existence of a ramified table (oPsets)
of powerX1 having no uncountable monotone or disjoint subseg&o(aslin treg under
the assumption that a continuously orderedIseixists, which satisfies the countable
chain condition but which is not separableSauslin ling.

We follow here the construction of @ouslin treggiven by Miller; it is equivalent,
except for minor details, to Siefski's construction. Proceeding by induction Miller
defined:

1. I is any (open) interval of &ouslin lineL.

2. Fora < w1 itis assumed that an intervéd has been defined for evepy < «, in
such away thafz contains no extreme point of any of the intervhlsy < 8. Since
the extreme points of all these intervilg }ﬂ<a form a countable subset &f there
exists an interval which contains no point of this subsét;is any interval properly
contained in/.

By construction it is clear that whenevgr< «, thenl, C Ig orI, NIz = @. Let
¥ = {I4; @ < w1}, and for this set the following partial order is defindg, < I, if
I, C Ig,andl, # Ig if I, N Ig = @; clearly|2| = R1. Now if £ is an uncountable
subset oft, then& is not a disjoint subset (formed only by incomparable elements)
since, in this case;) would be an uncountable collection of non-overlapping intervals
of L, contrary to the assumption thatsatisfies the countable chain condition. But the
same subsef is not a monotone subset, since if it were, it would be an uncountable
increasing sequendé, }y -, C ¥. If x4 is the extreme left point of the intervdl,
then the collection of intervalgxy, x4+1)}, <, IS @n uncountable and non-overlapping

105 “Does a linearly ordered sét, which is dense and is such that any family of non-overlapping
intervals ofL is at most countable, necessarily contain a countable dense sub&&tSierpinski
1848, p.165.

108 Ipid., p. 165.
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family of intervals; again contrary to the assumption that the countable chain condition
is satisfied.

With this construction Miller proved not only the first part of theorbihd, i.e. that
if a Souslin lineL exists, then a partially ordered set= { satisfying conditionsrfi.i))—

(m.ii) exists; he also proved that for the orderediséte family of intervalst satisfies
conditionG and is a representation of the partially ordered&se®ierpinski proved with
an equivalent construction that a negative answ@rablem Sgives a negative answer
to problem P the family of sets satisfies conditionss(i)—(s.iii) but is an uncountable
family of sets.

We must point out that according to this construction of Miller and Siesidj the
fact thatL satisfies the countable chain condition implies that no uncountable disjoint
or monotone subset & can exist; and it is the assumption thatis not separable
which makes théeightof £ equal tow;. Kurepa’'s approach is now clearly stated: the
coexistence of the two conditions forSouslin lineL, satisfying the countable chain
condition and not being separable, is possible if and only if i@maified table(a tree)

L of heightw; it is possible that all of its monotone and disjoint subsets are at most
countable.

Concerning the sufficiency proof, Miller and Siempki showed that given a partially
ordered seP of powerX; satisfying the conditionan.i) and (n.ii) of theoremM.1, or
given a non-denumerable family of sefssatisfying conditionsg.i))—(s.iii) of theorem
S.1 aSouslin lineL can be defined. But this proof first requires the definition of a subset
A C P (and a completely equivalent argument makes it possible to prove the existence
of a subfamilyz c &), which, as we stated above, iglistinctive sequenceas defined
by Kurepal®’

Although Miller gave in theorenM.1 a weaker condition than the one Sidrgki
gave for his theoren$.11%8 with the help of theoremM-D.1 andM-D.2 he showed
the desired equivalence. For a partially orderedsef power; satisfying condition
(m.i), theoremM-D.1implies that almost every element Bfis comparable t&; of its
elements. From the two conditions §) and n.ii) it is possible to remove a countable
subset fromP to obtain a partially ordered subset ¢ P of powerX;. P’ satisfies the
following conditions:

i) Conditions (n.i)) and (.ii),
i) Forevery element € P/, at most¥g elements of?’ are smaller tham,
i) For every element € P/, ®1 elements ofP’ are greater than.

The subset C P is defined recursively in the following terms:

1. First a subsefi; c P’ is defined, whose existence is guaranteed by Miller from
theoremM-D.2 and conditionifn.i), which is a maximal and countable subset, all of
whose elements are mutually incomparable. From this subysehother countable
subsetQ1 of P’ is defined:

107 The definition of these subsets given by Miller and Sierpinski shows that thee@#R5is
a necessary previous lemma for the complete proof of theok&rhandS.1
108 This fact would be remarked by T. Jech in 1967. (Jech 1967).
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O1={xePix<yyeA} . 4.0
Q1 is countable by virtue of the condition )

2. Ifthe subsetsl g and Qg have already been defined for any ordinal number o,
(¢ < w1), in such a way that they satisfy the conditions:

) |Ag| =Roand|Qp| = Ro,
ii) The elements ofAg are mutually incomparable and

Apc P =] (Au+0u) . (4.11)

u<p

besides thisd g is maximal relative to

P’ — U (Au+0u) -
n<p
iii) Qg is the subset of elements 8f that are smaller than some elementof.
Op={xePix<yyeAg} . 4.1
Then the subsets, andQ,, are defined:

2.1. Fora =B+ 1,ifx € Ag let

B, = yeP’—U(AIL+QM);y>x . (4.1v)
n<p
It is clear that|B,| = ®¥1 and it is possible to define a subget ¢ B, which
is a maximal denumerable subset whose elements are all mutually incomparable.
Miller then defined

A= Cx (4.v)
X€AR
and
OQuw={xePix<yyecAd} . (4.VI)

Conditions {)—(iii) hold for A, andQ,.

2.2. For alimit ordinalr, the setd, is defined as a maximal and denumerable subset of
P =] (4p+ Qp) .

B<a

all of whose elements are mutually incomparable. Th&sets defined as in 4.VI.
The set
A= U Ag 4.vi)

a<wi

satisfies the following properties:
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. JAl =RrandA, NAg =0 if o # B,

. If x € A, thenx is smaller tharig elements ofd,, 1,

. Ifx € Ay andy € Ag (@ > B) thenx > yorx + y,

. If x € A, there is only one elemente Ag (¢ > B), such thate > y. Indeed, by
writing in this casey = xg, a sequence; < xp < --- < xg < --- < x is defined.

From the partially ordered sekt a linear extensior.” is defined by giving to each
“node” of A, which is denumerable, the order typef the setZ of integer numbers.
For an element € A, if x € A,, a sequence; < x2 < --- < xg < --- of all
the elements ofA which are smaller tham is obtained by property 4. This element
x can be written in the form = x,,,,15..4, t0 denote its “path” (each; € Z), it
states thatk is the element that takes the placein A1, x» takes the place; in the
node formed by the immediate successorsfn Ay, and so on. For two elements
x,y € A the order forL’ is defined by stating <, y if x <4 y; butif x % y, with
X = Xpynona... aNAY = Yimymoms..., X </ y if the sequencenons. . . is smaller than
the sequenceiymoms. .. according to the lexicographic order. The &éthas no first
and no last elements because of the order tygiwen to each node oA, and from this
conditionL’ is densely ordered. No denumerable subset is order-derisesince for
any denumerable substof A, there exists an ordinal < w1 suchthaD C (g _, Ap.
So it cannot be an order-dense subset, since the order-dense sulisetb@ild have
points at each level afi. Finally, any collection of non-overlapping intervals i is
denumerable: for any set of non-overlapping intervals it is always possible to choose an
elementin each one of them in such a way that these elements are mutually incomparable
in A. The setL is defined as the completion that fills the gapd.afin this way L is
the Souslin linewhose existence is proved from the assumed existenceSaiualin
tree

We have seen how Souslin’s problem was first analyzed by Kurepa in the general
context of continuous ordered sets. Thereafter, Kurepa defined a ramified table of sets
from a complete partition of the continuous ordered set, and in this way he translated
Souslin’s problem into an equivalent question in the field of partial ordered sets. The
conclusion is that Souslin’s hypothesis claims the non-existenceatirmormalcontin-
uous setE such thatpo E = Rg (a Souslin ling, and is equivalent to the non-existence
of anabnormalramified tablel” of heightw, (a Souslin treg So Kurepa, as did Miller
and Sierpaski after him, translated the original question concerning the possibility of
deducing theseparability conditiorfor a linearly ordered set from the fact that it sat-
isfies the countable chain condition into a question concerning the possible existence
of a particular linear ordered set and a particular partial ordered set. The approach
to Souslin’s hypothesis shifted from a question concerning the possibility of proving
an implication to the question concerning the existence or non-existenc8aisin
tree

A WN P

4.2. Souslin’s hypothesis and measure Boolean algebras

Besides the equivalence betwe®ouslin treesand Souslin linessome open ques-
tions related to the theory of Boolean algebras gave rise to another equivalent version of
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Souslin’s problem. In 1947 D. Maharam published a pHffewhere she studied the
“purely algebraic conditions” required for a non-atomic Booleaalgebra( so that it

be ameasure algebrarhe question came from the work of M. Stone, particularly from

his profound article on the representation of Boolean algeifaand the theorems
included in that paper concerning the fact that every Boolean algebra is isomorphic to a
field of sets!! The question concerning the necessary and sufficient conditions for the
existence of aneasuren a field of sets became for Maharam equivalent to the question
concerning the necessary and sufficient algebraic conditions for the existence of a real
valued non-negative function, defined on a Booleaalgebrall, 1 : A — R which

is:

1. Countably additive: ifa,} is any countable sequence of pairwise disjoint elements
of 2, (two elementst andb are disjoint whem A b = o) then

M (\/ an) = Zﬂ(an) )
n=0

n=0

2. u(0) =0, u(a) > 0 wheneven # o andu(l) = 1,
3. fa=0bthenu(@) = u®) (@ =06Hif a— b = o).

Two facts make this paper important for our study of Souslin’s problem. The first
one is that Maharam found that among the necessary and sufficient conditions for the
existence of a real measure 8h one of them could be weakened only if Souslin’s
hypothesis is true. The second fact, which is a consequence of the first one, is that a
new version of Souslin’s problem could be stated in terms of Boolean algebras. This
algebraic version became a very useful tool for the studies related to the independence
of Souslin’s hypothesi&!?

4.2.1. Adeduction of Souslin’s hypothesiszirst Maharam introduced the definition of
aweaker measure @f anouter measuravhich satisfies conditions 2 and 3 stated above
for the real valued and non-negative functiordefined on(, and also the following
two conditions:

Vop@vy = p@)+u®),

109 Maharam 1947.

110 Stone 1936.

111 This means that any Boolean algeBfa&an be identified with a collectiof of subsets of
a non-empty sef which satisfies:
i) SeZF,
i) if X,YeZ, thenXUYeF,XNYeF,andX —Y € .
So the algebraic operations defined on the Boolean algébrvaand A, correspond to the union
and intersection of sets. ¥ is a Boolearv-algebra, the field of setg representing it is closed
under countable unions and intersections.

112 This is clear in Martin, Solovay 1970 and Solovay, Tennenbaum 1971.
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4. If {r,};2 1 is an increasing sequenge(y,) — i (\/fj‘;l g,,).

Moreover, the outer measurebecomes a&ontinuous outer measurewhenever
{r,} — 1, which means that

limsup(z, +201 = \ | V/ (@n—0)V@—1a)|=0,

n\m=n

thenu(t,) — w(x).
Clearly a continuous outer measure is a measure if and only if condition (1') becomes

an equality in the caseA y) = o.
The main theorem of the paper states tHat:

Theorem (MA.1). 2l admits a continuous outer measure if and only if it satisfies the
following two conditions:

I. Adistributive law: For any double sequen{@n} which, for each fixegh, decreases
monotonically ta asn — oo, i.e.

/\Epn:D )
n

there exists a positive integer-valued function n(i, p) such that
limsup{cmip} = /\ [\/ g,,,,(,-,,,)} = 0. @a.viy
i b4

Il. There exists a countable family = {€1, €», €3, ...} of subsets ofl, where each
¢; satisfies the condition that for every sequefigg C ¢;,

limsup(e) = A\ | \V/ @) |#0
nlm=n

and such that if) c 2 is any other countable subset satisfying this same condition,
theny) is contained in one subsef, of the family.#.

If besides these two conditions the following condition Il holds, then a continuous
measure onl becomes a measure.

lll. The setss; of the familyZ can be chosen so as to satisfy the requirements that the
/
setC; +2 (Civ1) = {xi +2pir1 ki € Ciupipa ¢ Cia} € Cipa.
And also that if;, ) € €; 11 andx Ay = o, thenr vy € €;.

A remarkable fact is that if a Booleanalgebra?l satisfies condition I, it also
satisfies the “countable chain condition” for a Booleaalgebra:

113 Maharam 1947, p. 159.
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ccc U satisfies thecc condition if [X| = Ko for any X C U satisfyingr A y) = o
whenever, 1y € X andy #1).

From theorenMA. 1it appears that thiscccondition should be necessarily satisfied
by 2l when a continuous outer measure is defined onit. Butin away completely analogous
to Souslin’s when he formulated his problem, and closely related to this problem (as
we will see), Maharam asked whether condition Il could be replaced by the weaker
condition in order to prove, together with condition I, the existence mdm trivialt14
outer measure o?l. Maharam proved that this substitution is possiniéy if Souslin’s
hypothesis is truél®

Theorem (MA.2). If conditions (I) andcccalways suffice for the existence of a non-
trivial outer measure on a Booleanalgebra?l, then Souslin’s hypothesis is true.

For this theorem Maharam described her version of Souslin’s hypothesis: A family
of sets.e7 is aSouslin systerifi it satisfies the three conditions:

ma.) If a,b € o/, thena Cborb Caoranb =4y,
ma.i) For# C ./ suchthatifa,b € % (a # b),a Nb = @, then|%#| = Ro,
ma.iii) For# C .« suchthatifa,b € %4 (a # b),anNb # @, then|B| = Ro.

It is easy to see the close relation between these three conditions and the condi-
tions (s.)—(s.iii) that Sierphski would give one year later in his theor&i. Of course
Maharam could not make any reference to Sieski's work1® but it is remarkable
that, earlier than Sierpski’'s proof, she already identified Souslin’s hypothesis with the
assumption that eveigouslin system? should be countable:

It was conjectured by Souslin that eve3puslin systerns countable!’

With this version of the problem, the proof proceeds by assuming first that Souslin’s
hypothesis is false, and then proving from this assumption the impossibility of deriving
the existence of an outer measure on a Booteatgebra®, satisfying conditions | and
ccg defined from &ouslin systena/. The most important contribution in this sense is
precisely the definition of the Boolearnalgebra which satisfies conditiatc first, if
</ is a non-countablSouslin systerit is possible to conceive that = (J,_,, Ze,
where eache/,, is a family of pairwise disjoint subsets (which is at most countable);
thus.»Z is aSouslin treewhose elements are sets, a( is its a-level. For each set

114 A measureu on U is non-trivial if whenevert e U — {o}, there exists an element<
such that O< w(y) < w(x). Maharam stated that this condition cannot be omitted, since every
Boolean algebra admits a “trivial” measure: by takin@) = 1 for everyy # 0 andu (o) = 0.

115 1bid., p. 164.

118 |n contrast, Sierpinski declared in a note at the end of his paper of 1948 that while he was
reading and correcting the first printings of his text, he had had the opportunity to read Maharam’s
paper of 1947.

117 1bid., p. 164. Certainly this version of Souslin's hypothesis was obtained by her from Miller’s
paper of 1943, which is not quoted in this 1947 paper, butis quoted in her paper of 1948 (Maharam
1948).
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ay € o/, two or more disjoint subsets, 11 C a, belong toeZ,1.1181tis also possible
to assume that for each € .7 there are uncountably many subskts .o/ such that
b C a. Maharam used three properties of tBsuslin systeny/:

l.ifa > B eacha, € o/, is contained in a uniqueg € /g,
2.if o > B eachag contains somey,
3.if a > B eachug contains at least two disjoint sets.

Now amaximal decreasingequence” = {a1, az, ..., a,, ...} C .o/ (the fact that
& isdecreasingmeansthat> a» O --- D a, D ---)is called goint, andS is the set
of all thesepoints ¢,, = {¥ € ©; ay € &} is the set of all theoints“passing through
aq”, andCq = {cq, } for a fixedae < w1, is a set of subsets & .

€= [ G

a<wy

€Ay’

is a new uncountabl8ouslin systerdefined frome/.

Without any reference to the published works of Kurepa or Miller, Maharam defined
from the Souslin system7 a set ofpoints © and theSouslin systerft as a partially
ordered family of subsets @®; i.e. if y € € theny € ¢, for somea < wj, and
S0L = ¢4, is a subset of5 (ay € .74). Up to this point this procedure introduced
just one innovation in relation to the previous constructions $baslin treefrom the
tree.o/ a new set satisfying thecc condition, the set of “maximal branches” &f, is
taken!1® But the real innovation appeared when an algebraic structure was introduced
for a family of subsets of. Clearly no algebraic structure (for the set operations of
union and intersection) is satisfied by t8euslin systert, so Maharam defined first
the set ofpointsreaching thex-level:

Sy = U Caq
aq €Ay
and its complement:
Ny =5-54 .
Then she defined two sets of subset&of

N = {n C ©; suchthan c N, for somea}
and, for eaclr < wy, the set

D = {1: 1 is any union of subsets, for a fixeda |,

18 If a441 C aq as sets of the familyZ thena, < a.41 in the partial order relation of the tree
o
119 This procedure was already used when an ordered sehgblexesvas defined from a tree.
The relation between a tree and the set of its maximal branches was studied in relation to some
properties of ordered sets and continuous ordered sets by W.iSikir@i. Novak and M. Novoti
in a series of papers published iIDMDAMENTA MATHEMATICAE between 1949 and 1952.
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all of which give rise to

For the setsd andt the symmetric difference is defined:
D4 N={Od-—nnUm—=>0);neN,dbeD} .
The major properties of these sets are given through the following proposifion:

Lemma (MA.3). The sef® +, %t is a Boolearv-algebra of sets an® is ac-ideal of
D+ 9.

From this lemma the Boolearntalgebra
C=®+2) /N (4.1X)

is defined (fon, y € D +2 N, r ~ y whenever — ) U (Y — ) € N).

© is a non-atomit?! Booleans -algebra which satisfies tloeccondition as well as
the distributive law (1).

The proof for theorenMA.2 now proceeds as follows: The negation of Souslin’s
hypothesis implies the existence of a Booleaalgebra®&, defined through 4.1X, satis-
fying the distributive law (1) and thecccondition, but Maharam proved th&tcannot
admit a non-trivial outer measuye because in this case the Souslin systémvould
be countable!?? Clearly € is a subset o and if an outer measure is defined ors,
thenu(c,,) > O for any element,, e €.123 For any rational numbey € Q consider
the setS, = {caa €€ uleg,) = q}. Each element o, is contained in a maximal
elementg = gy, € € (B < @) having the same property (this means thatC g,
andg,, € €y); let &, be the set of all these maximal elements, this subset is countable
since all theses,,’s are pairwise disjoint and thus = (J, .o &, is also countable.
Now sincep(c,,) > O there exists a rational numbgre Q such thatu(c,,) > g;
there also exists a sete ® such that O< u(d) < ¢ andd C ¢4, (1 is a non-trivial
measure). For any,, C d (y > «a) clearlyc,, C ¢q, andu(cy ) < q. The set, is

. . 14 Y A Y 14
thus contained in a sab, and soc,, N G, 7 0. ¢ is a Souslin system, W, C Cq,
since,u(ghﬂ = g < p(cq,). At mostRg setsc,, contain the sely and there are at
mMostRo setsg = qy,; this proves that is countable.

A more simple way to define a non-atomic Booleaalgebra satisfying thecc
condition from aSouslin systerof sets is gived by Solovay and Tennenbatfthgiven
the family o7 a topology is defined by defining, for amye <7, the setO, = {b €
o/;b C a} and by taking the set®, as a basis for the open sets. Now by tak-
ing B1 as the Boolearr-algebra generated by the open setsatf J1 = {2 €

120 1pid., p. 165.

121 This means that for any sek € there exists another € € such that C c.

122 Maharam says in her paper that the idea for this proof was based on an observation made
by Godel and communicated orally.

123 For anyb € ®, u(b) is defined ag (5) whereb is the equivalent class &fin &.

124 Solovay, Tennenbaum 1971.
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B1; Z is a nowhere-dense subsetd} is ac-ideal andb = B1/3J1 is the non-atomic
Booleano-algebra with thecccondition12®

4.2.2. An algebraic equivalenceln any case, from theoremA.2 it is possible to
assert that a Boolean-algebra satisfying the distributive law (l) and the conditome
exists whenever a non-countaBleuslin systemxists. A few months later Maharamtried
to find out whether the converse condition also hdffsyith this she gave a complete
argument to prove a “purely algebraic property equivalent to Souslin’s hypothesis”:

Theorem (MA.4). Souslin’s hypothesis is true if and only if each non-atomic Boolean
o-algebra?l satisfying the countable chain condition contains a double sequence of
elementdt,;} such that:

\/ foi =1 (4.X)

and for every function (n),

Ao =0 . (4.X1)

To prove that Souslin’s hypothesis is a necessary condition for the existence of
a double sequencl,;} contained in a non-atomic Booleartalgebra satisfying the
countable chain condition, Maharam followed the same argument used in thidér@m
First, if the existence of an uncountable Souslin systérs assumed, then, as it was
stated in 4.IX, a non-atomic Booleanalgebra® = (D 4, %) /9 satisfying theccc
condition can be defined such that it contains another uncountable Souslin 8ystéin
The new Souslin systerd has, besides the propertiand.)—(ma.iii), the following
propertiest2’

ma.iy) € =y, Co,

ma.y If @ < B, then for eachyg e €4 there exists an, € &, such thatg < ¢,
mav) If o < B, ce =\ {p:¢p < caf,
ma.vi) For each: € €, there exists an < w1 such that

EZ\/{CQ;CQ<§} .

According to the hypothesis there existsna double sequenc,;} satisfying
conditions 4.X and 4.XI. The proof for this part is obtained by showing again&hst
countable. For a given positive integereachc € € for which¢ < f,; (for somei) is
contained in a maximal element@fatisfying the same condition. This means that there
exists an element (c, n) € €suchthat < g;(c, n) < f,;:if c = cg thenforeach < g,

125 with the topology given for the se¥/ it is possible to prove thad is isomorphic to the
Boolean algebra akgular opersets of.o/.

126 Maharam 1948, p. 590.

127 These properties state that the partial order relatidghas a Souslin tree is the inverse order
relation of € as a subset df.
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according to iha.y), there is a unique, such thatg < ¢, in this casey;(c, n) = ¢y
for the smallestx for which ¢, < f,;. For a fixedn let Q, = {q;(c, n)};en @and clearly
if g;(c,n), q;(,n) € Q, then eithery;(c,n) = q;(c’,n) or q;(c,n) A q;(c’,n) = 0.
So eachy, is countable as well a8 = | J,, .y £ The desired contradiction showing
that(€ is countable is obtained from the fact that each(€ is greater or equal to some
ai(c, n), for somen. Now if & = {fj()}, .y Property 4.Xl states that iri ; = o (for
each functiornj : N — N), so givenc € € there is a positive integefy and a function
i : N — N such thatf,;;,,) < c¢. Since€ is a non-atomic Boolean algebra there is
an element € € such thato < ¢ < f,5is); DY Vvirtue of (ma.vij) there also exists
another element = ¢, such that, < ¢ < f,,i,) and, as stated before, an element
Gitng) (¢/, no) € € exists such thai; ) (¢, no) < fngitng) <

For the proof of the converse statement the axiom of choice is required,aisif
a non-atomic Boolean-algebra which satisfies tteec condition, Maharam deduced
the existence of a maximal subsgtc 2 which satisfies conditionsr(a.)—(ma.iii) of
a Souslin systenif Souslin's hypothesis is assumed, thén= {s,}°° ; is a countable
system and € S; let[ = 3.

Itis proved that:

I. Foranys; € & there exists another elemes} € © such thats,, < 3;: A is a
non-atomic algebra and there exists an elemen?®l suchthab < < 3;;ifr € ©
there is nothing to be proved, butiif¢ © then becaus& is maximal, there exists
an elemens,, € S such thats,, At # 0. This means that,, A 3, # o, but then
3 < 8 Or 8¢ < 3, and only the first one is possible.

. Ifatermt, = /\?Sl) ¢;3; is defined, where eac; is 1 or —1 and the function
¢ :N — Nissuchthat = ¢(1) < ¢(2) < ..., then{f,} is an infinite decreasing
sequence. Now ifi € 2l is smaller than any elemefit of the sequence, then= o;
for if a # o, thena € & (if a is not an element o® it could be adjoint to it), so
a = 3, butaccording to what has been proved in |, there is an elespert a = 3y,
which is a contradiction since it has been assumedcthats,, 3,,. It follows from
this, and the fact tha® is countable, that\,~ ; f, = o.

lIl. If, on the other handk; = {&}, &), ..., &}, ...} is an infinite sequence whose terms
are+1 or—1, itis clear that two such sequendesk; are different if at least for
two teris:,Z, &7, one of them is 1 and the other4sl. A double sequencl,;} is
defined inl as follows:

p(n)

=\ (e’m) (4.X11)

j=1

where again eaolff} is 1 or—1 and the functiop : N — N satisfies 1= ¢(1) <
¢(2) < ---.Sinces; = [, then it follows from conditionsrfa.)—(ma.iii) that for
the elements of the double sequeffizg} 4.X and 4.XI hold.

A Boolean algebr& is said to bap-distributive if for a double sequende,; }, the
distributive law is satisfied:

/\\/rni = \/ /\rnj(n) .
noj

jENN n
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A non-atomic,Ro-distributive and complete Boolean algel¥asatisfying theccc
condition is called &ouslin algebraSince 4.X and 4.XI state that (any) non-atomic,
completer -algebrall which satisfies thecc condition is notg-distributive, this theo-
rem states the equivalence of Souslin’s hypothesis with the non-existence of a Souslin al-
gebra. A modern version of this theorem by Maharam is stated in the following téfms:

Theorem (J.1). There exists a Souslin tree if and only if there exists a Souslin algebra.

This Boolean algebraic version of Souslin’s hypothesis will prove to be particularly
useful to provide a Boolean-valued model for set-theory for which this hypothesis is
true.

5. The independence of Souslin’s hypothesis
5.1. The place of the ramification hypothesis

We have remarked that the approaches of Kurepa, Miller and S&kipgave an
equivalent condition, but not a proof for Souslin’s hypothesis. Nevertheless, besides
these equivalences no systematic study was made concerning the relation of Souslin’s
problem to other unsolved set-theoretic propositions such as the continuum hypothesis
or the axiom of choice. We have pointed out that Kurepa opened his memoir of 1935
by stating what he considered the three most important problems in set theory. At the
end of this memoir he made some remarks concerning a possible relation between them.
The first one is that any of the 9 propositioRs(i = 1, ..., 9) of his theorenEOR.7
implies the following propositio?°

Proposition. (Q). For any infinite ramified tablg", the power of the family of all the
degenerate subsets Bfis greater than the power & itself.

Just by taking propositioR; it is possible to state that? = 2/7!, which is, after
Cantor’s theorem, greater th#h|.

After this statement he stated the conditions under which the 9 proposiii@asiid
be obtained-3°

Proposition. All the propositions P(i = 1, ..., 9) can be obtained from proposition
(Q) and the Generalized Continuum Hypothesis.
This can be easily seen from the following three facts:

2T > 1| Q)

2T — b7t (GCH)

128 Cf. Jech 1978, p. 220. Devlin K, Johnsbraten H 1975, p. 82.
129 Kurepa 1935, p. 133.
130 |pid.
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bT = |T| . (3.XVI)
From these three propositions it follows that
bT = |T| < 2T = bT)*

and, finally,bT = |T|.
After this proof Kurepa enunciated as a problem their possible relation:

A-t-on (GCH)— (Q)? et, par consequent (GCH) P,?'3!

A positive answer to this question would imply that Souslin’s hypothesis (the non-
existence of &ouslin ling is a consequence of the generalized continuum hypothesis.

At the end ofEnsembles Ordoras et Ramié§Kurepa concluded by giving his idea
about the relation between Souslin’s hypothesis and Cantor’s continuum hypothesis, as
well as his conviction concerning their logical role in axiomatic set theory:

En terminant nous exprimons la conviction que I'nygstl [du continu] de Cantor, et
I'hypothese de ramificationR;) ne sont pas abordables par desthodes et principes
connus de la Teorie des ensembles. Sont-elles logiquenggmntvalentes entre elles? ou,
sont-elles deux cas particuliers (€tgrineressants par leur structure logique) d’uame
principe, iréductible aux axiomes et principes usu&l$?

In the note delivered at thécaddmie des Sciences de Pavis January 20, 19363
Kurepa claimed once more that tremification hypothesishould have some relation
with Cantor’s continuum hypothesis, but also that apparently neither could be deduced
from the current axioms of set theory. Besides this relation between the ramification
hypothesis (and so, Souslin’s hypothesis) and the continuum hypothesis, Kurepa claimed
that the ramification hypothesis was not compatible with another set-theoretic conjecture
related to a problem on analytic and projective sets: the hypothesis, formulated in 1935
by M. Luzin, that any subséf C R having the poweR; should be the complement of
ananalytic seft3* The importance of this hypothesis is that an immediate consequence
of itis the following cardinal equality:

2% = 2%

Concerning the relations between the continuum hypothesis, Luzin’s hypothesis and
Kurepa’s ramification hypothesis, he said

11 s jt that (GCH) — (Q) and consequently (GCH)} P;?” Ibid.

132 *Finally we state our conviction that Cantor’s [continuum] hypothesis and the ramification
hypothesis P;) are not solvable through the known methods of set theory. Are they logically
equivalent? or are they two particular cases (and very interesting because of their logical structure)
of the same principle, which is not reducible to the axioms and usual principlds?. 134.

133 Kurepa 1936.

134 Luzin 1935, p. 129.
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Remarquons qukhypothése de ramificatioest dans une certaine correspondance avec
I'nypothese [du continu] de Cantor, et il semble qu'aucune d’elles néektatible aux ax-
iomes courants de la&glorie des ensembles. En particulier, il nous sembléd’queothése

de M. Luzines incompatible avec I'hypodise de ramification de@me qu’elle estincom-
patible avec I'hypotise de Cantdf®

But as we will see, Cantor’s continuum hypothesis is independent of Souslin’s hy-
pothesis and the latter, as shown by Martin and Solovay, it is completely “compatible”
with Luzin’s conjecture.

5.2. The non-provability of Souslin’s hypothesis

Other set theoretic and topological propositions related to Souslin’s hypothesis were
found in the fifties. A consequence which becaem well-known due to its importance in
point set topology was given by M. E. Rudin in 195% concerning the question of
whether everyT>) spacel is countable paracompaét’ This question can be answered
negatively if a negative answer to Souslin’s hypothesis is proved. In other words, the
existence of a Souslin line implies the existence dhaspace which is not countable
paracompact. Another important consequence implied in a remark made by Kurepa is
that a Souslin line is an example of a continuous ordered set which is not metrizable.

But a completely new direction for investigations of Souslin’s problem was given
when, in the language of model theory, the question was raised whether Souslin’s hy-
pothesis could be proved within the frame of set theoretic axioms. Two important and
completely independent studies on this question were stated by T. Jech and by S. Ten-
nenbaum.

In a series of notes published in theJIBETIN DE L'A CADEMIE DES SCIENCES
POLONAISE in 1965, P. Vognka announced a series of important proofs on the inde-
pendence of some set-theoretic propositions. These independent proofs were based on
a method, introduced in the first note, for constructing models for set theory. As part
of this series of studies, Jech published in 1967 a short p&pehere he showed the
non-provability of Souslin’s hypothesis. In fact, what Jech proved was the existence of
a model for set theory in which the existence of a Souslin tree was easily proved.

Jech opened his paper with a brief description of the theorems of Millet) @nd
Sierpinhski (S.J), called by him the “equivalent theorems” for Souslin’s problem. In order
to introduce his own version of these theorems, he defined a retatiothe setvg x w;.

First he defined, for an ordinal < w1, thea-throw of wg x w1 as the sek, = wo x {a}.
Now the relation: is aramified graphwhen it satisfies the following conditions:

135 “We should remark that themification hypothesis in some correspondence with Cantor’s
[continuum] hypothesis, and it seems that none of them is reducible to the current set theoretic
axioms. Particularly, it seems thifr. Luzin’'s hypothesiss incompatible with the ramification
hypothesis, as well as with Cantor’s hypothesis”. Kur€pa cit

136 Rudin 1955.

137 A spaceT is countable paracompadftfor every countable covering &f, any pointc € T
is in some open set which intersects only a finite number of sets of the covering.

138 Jech 1967.
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i) tis reflexive and transitive,

ii) if (x,y) er,andx € h, andy € hg, thena = g,

iii) if « < B andy € hg then there isc € hy with (x, y) € 1,

iv) if x # y belong to the same row, there is pwith (x, z) € rand(y, z) € r.

The obvious definition that two elementsandy arer-comparable ifx, y) € v or
if (y,x) € r, makes it possible to define a “chain” of the ramified graph as a relation
3 C r which satisfies conditions)&(iv), and which is a “linear order”; this means that
if (x,y) e sand(x,z) € 3then(y,z) € 30r({z,y) € 3. A subset of the domai®(v)
of r is an “anti-chain” when it contains only elements which are pairwise incomparable.
With this new definition Jech gave his own version for an “equivalence thecr&hm”,
obtained “after a simple modification of the Miller-Siempki theorem”.

Theorem (J.2). The necessary and sufficient condition for the existence of Souslin’s
continuum is the existence of an uncountable ramified graph, which has no uncountable
chains or anti-chains.

This equivalent theorem led Jech to the non-provability of Souslin’s hypothesis. To
be more precise, he constructed a model of set theory in which Souslin’s hypothesis
proved to be false. Taking into account the theorems of Miller and SigkpiJech
showed a model (¥-model constructed with the method introduced by P.&/t@) in
which an uncountable ramified graph (an uncountable tree) with no uncountable chains
or anti-chains exists. This uncountable graph appears to be the limit, and this is the key to
Vopénka’'s method, of a set of countable ramified graphs, ordered by inclusion, satisfying
the condition of beingegular, i.e. such that each point has at least two successor points
in any upper level. Jech’s conclusion is resumed in the main theorem of hisi§8per:

Theorem (J.3). Souslin’s hypothesis is not provable in set theory.

This theorem followed immediately from the construction of a model in which a
Souslin treeexists, since with this construction the “negation” of Souslin’s hypothesis
was proved to be consistent with the current set-theoretic axioms. For Jech his theorem
also showed the non-provability of another set theoretic hypothesis:

For the sake of completeness it is to be mentioned that in 1936 Kurepa formulated his
ramification hypothesis, which implies Souslin’s hypothesis and is therefore not prov-
able!#!

The construction of a model in which a Souslin tree exists was also carried out by
S. Tennenbaum in 1967 as an application of the forcing methods introduced by P.
J. Cohen for the proof of the independence of the continuum hypothesis. Tennenbaum
started his work in 1963 and the next year, in a series of lectures at Harvard University, he
presented the proof for the consistency of the negation of Souslin’s hypothesis. Although

139 |bid., p. 295.
190 |hid., p. 292.
11 |pid., p. 294.
142 Tennenbaum 1968.
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the method employed for the construction of his model is different from the one followed
by Jech, the first conclusion obtained by Tennenbaum is the same as the one obtained
by Jech: Souslin’s hypothesis is not provable in set theory. However, with Cohen’s
method Tennenbaum obtained another important fact: he was able to construct two
models of set theory in which a Souslin tree exists, but for one of these models the
continuum hypothesis holds, and for the other one this hypothesis fails. So Tennenbaum
gave, besides the non-provability of Souslin’s hypothesis, an answer to a problem posed
for the first time by Kurepa concerning its relation with the continuum hypothesis:
the continuum hypothesis is independent of Souslin’s hypothesis. The following two
theorems include these resulfs:

Theorem (T.1). There exists a model” of set theory such that” contains a Souslin
tree and satisfie®% = R, 1.

Theorem (T.2). There exists a modek of set theory such tha# contains a Souslin
tree but2® £ Ry,

The existence of the two models is proved in the same way: for thedreriiien-
nenbaum took first a countable transitive madéfor set theory where the generalized
continuum hypothesis holds —a model satisfying= L and so &« = X, 1— and then
he obtained from# a model.4" by adjoining a generic tre& C X1 x Xi. For the
theoremT.2 the same procedure is used by taking a modaihere 20 £ K.

Another proof of the consistency of the negation of Souslin’s hypothesis was given
by R. B. Jensen in 196&* when he showed that in the “constructible univergez L
there exists &ouslin treehis proof employed his combinatorial principle known as the
o—principle.

5.3. Souslin’s hypothesis and Martin’'s axiom

After the theorems by Jech and Tennenbaum, the independence of Souslin’s hy-
pothesis had to be proved by constructing another model for set theory in which this
hypothesis holds. This task was accomplished mainly in two articles by D. Martin, R.
Solovay and S. TennenbatifA which we will analyze briefly because their purpose,
the construction of a model where no Souslin tree exists, seems to us closely related to
Kurepa’s program to give a positive answer to Souslin’s problem: to show ttadanar-
mal ramified table could exist. The most remarkable fact is that the means with which
this task was completed has a peculiar relation with the means proposed by Kurepa to
accomplish his task.

The paper of Solovay and Tennenbaum was considered by their authors as a contin-
uation of Tennenbaum’s paper of 1968, where he announced that another paper would
provide the proof for the consistency of Souslin’s hypothesis:

143 |pid.
144 Jensen 1968.
145 Solovay, Tennenbaum 1971 and Martin, Solovay 1970.
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In a later paper, written with R. Solovay, Cohen’s method is extended to define models in
which the answer [to Souslin’s problem]affirmative!4

This proof by Solovay and Tennenbaum was given in two steps: first a new axiom A
is introduced and proved to be consistent with ZFC axioms, then Souslin’s hypothesis
is deduced from A- (2% > 8y).

Martin and Solovay in their turn considered their paper as a continuation of the paper
by Solovay and Tennenbaum, even though it had been published earlier, in the sense that
some other consequences of the axiom A are obtained, especially some consequences that
were previously deduced from the continuum hypothesis. This fact allowed them to state
that even if “the axiom arose from the consistency problem for Souslin’s hypothesis”, it
could be possible to ask about the possibility of considering the ai@s asubstitute
for the continuum hypothesis.

In order to introduce the new axiom A, which is due to D. A. Martin, Solovay and
Tennenbaum presented the following definition: for a partial ordered s&tsubset
X C P isdensdf it satisfies:

1. Foranyp € X, if p = g theng € X.
2. For anyp € P there exists alwayg € X such thap = q.

For a family# of subsets of? a subsetG C P is said to be ar# -generic filter on
P if:

1.Foranyp € G if ¢ = ptheng € G,
2.1f p1 andp2 € G then there is @3 € G such thatp; = pzandp2 = ps3,
3. If a dense subsef of P belongs to the family7, thenX N G # @.

Two elementg4 and p, of P arecompatibleif there exists a third elemenmpiz € P
such thatp; = p3z andp2 = p3. Otherwisep; and p2 are said to be incompatible. A
subse® C P whose elements are pairwise incompatible iaati-chainand P satisfies
the countable anti-chain conditioif every anti-chain ofP is at most countable.

They considered next the following statememt A

(Ay) If Pisapartially ordered set satisfying theuntable anti-chain conditioand#
is a family of dense subsets #fsuch thal.#| = R, then there is a# -generic
filteron P.

The axiom A formulated by Martin is the following statement:
Axiom (A). The propositiorAy holds ifR < 2%,

If the family # of dense subsets d? is countable, then it is easy to show the
existence of an# -generic filterG: for if # = {D,} is the countable family of dense
subsets then it is possible to tage € D1 and then to define by inductiag,+1 as an
element ofD, 1 such thatg,+1 = g, € D,; G = {g,} IS an % -generic filter. This
shows thatAy, is a theorem or else that the continuum hypothe¥is2 X1 implies A,
so that A is consistent with the Zermelo-Fraenkel axioms for set theory.

148 Tennenbaun®p. cit
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In their paper, Martin and Solovay proved thatif>= 2% then Ay fails.}4” So
the interesting case foky is when®; = X < 2%, Clearly in this casé\y should be
accompanied with the negation of the continuum hypothesis.

This remark is clear in the theorem where Solovay and Tennenbaum proved that
Souslin’s hypothesis can be deduced from axiogy: X2

Theorem (S-T.1). Assume Martin’s axiom A. Assume further ti28¢ > X1, then
Souslin’s hypothesis holds.

If the conclusion were not true then there would exist a Souslinfireée. a tree of
heightw1 with only countable chains and anti-chains. Clearly for this tree, which is a
partially ordered set, two elements are incomparable if they are incompatible, so the tree
T satisfies the countable anti-chain condition. For every w1 the setD,, is defined as
the union of all the levels abowe which is then a dense subsefafBy taking the family

F ={Dg;a < w1} ,

with the assumption thaf’® > R, then from the axiom A it is possible to deduce the
existence of a# -generic filterG on T . G is at the same time a chain Bf but in order
to be anZ -generic filter,G must intersect everp,, @ < w1, so thatG, as a chain, has
lengthw;. This fact contradicts the initial hypothesis tifats a Souslin tree.

Martin and Solovay declared in their paper that Martin’s axiom arose from the
consistency problem of Souslin’s hypothesis, although it had consequences in many other
fields. Some of its consequences, besides Souslin’s hypothesis, are the foltbing:

1. If « is an infinite cardinaly < 280, then Z = 280, So if 2% > Rq, 281 = 2¥o,

2. The union of less than®™2 sets of reals of Lebesgue measure zero (of the first
category) is of Lebesgue measure zero (of the first category),

3.1f 2% > Ry, every projective set of rea(sZ%) is Lebesgue measurable and has the
property of Baire,

4. 2% js not a real valued measurable cardinal.

In relation to Souslin’s problem, by assuming Martin’s axiom and the negation of the
continuum hypothesis, it is possible to “kill” any Souslin tree, since the generic filter,
whose existence is guaranteed by the axiom, becomes a chain of bgidiis means
that with this axiom it is possible to prove immediately propositi®agramification
hypothesis) an®, (reduction principle) of Kurepa’'s theoreBOR. 7

However, for the application of Martin’s axiom, two conditions play an important
role:

1. First of all the condition that the partially ordered set should satisfy the countable
anti-chain conditio???. This condition was clearly explained by Martin who showed

147 Martin, SolovayOp. cit, p. 149.

148 Solovay, Tennenbau@p. cit, p. 234.

149 Martin, SolovayOp. cit, p. 144.

150 Inrelation to Kurepa’s research, this countable antichain condition states that the “degenerate
subset” having the same power of the set should be a chain and not an anti-chain.
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that for a partially ordered sét which is not compelled to satisfy the countable anti-
chain condition, the proposition asserting the existence of egeneric filter, when
Z is a family of dense subsets &, gives a proof for the collapsing of cardinal
numbers.

2. A second important condition is the negation of the continuum hypothesis. Martin
saw clearly the role played by the condition

AL N1,

together with the axiom. Souslin’s hypothesis is derived from the axi@mwhich
guarantees the existence of an ordered subset of pewir every tree of height

w1 satisfying the countable anti-chain condition. This means that for the proof of
Souslin's hypothesis the proposition Asuffices, but in order to assure this propo-
sition, the negation of the continuum hypothesis is necessary.

Martin and Solovay also introduced in their paper a Boolean version for axiom A:

Axiom (By). If B is a (complete) Boolean algebra which satisfiesabecondition, and
{b;o} isadouble sequence of elementaf < w, o < R);there exists ahomomorphism
h B — {o,[}, (the two-element Boolean algebra) such that for every R,

h (\/ bia) = \/h (bia) -

The equivalence betweeny/and®By is shown by defining first a partially ordered
set? = B — {o} (reversing the order relation &) which satisfies the countable
antichain condition if8 satisfies thecccondition. This new version for Martin’s axiom
is introduced to underline the general correspondence between forcing and Boolean
algebras, but it clearly makes it possible to give a proof for Souslin’s hypothesis after
the equivalence given in theorevA.4.

6. Conclusion

The question raised by Souslin in 1920 involves two basic properties of the linear
continuum whose relation, at least in terms of logical implication, is easily proved in
one direction. But even if this question might seem quite simple to formulate, it was not
originally stated by Cantor or by any of the other “creators” of set theory. As we have
shown in the first part of our paper, these two conditions, the countable chain condition
and the separability condition, were conceived and characterized independently. Thiswas
due to the fact that while the first one was considered as a sirrivfsic geometrical
propertyof Euclideam-dimensional space, the second one was considered as a property
of some (continuous and linear) sets of points, and also for some (abstract) ordered set.

When Sierpiski first noticed the importance and the difficulty of Souslin’s prob-
lem, he linked it to the theory of order types and ordered sets. In this interpretation,
the problem asked for another (equivalent) characterization for the ordektypef

151 Also for the order typd.
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the linear continuum. But in some sense the problem of a possible relation between
the separability and the countable chain condition could hardly be formulated within the
original framework of the theory of ordered sets created by Cantor. The idea of a family
of non-overlapping intervals, and the power which corresponds to it, seemed to Cantor
an external notion having no connection with the idea of an order relation.

The changes of style we presented, the balance between different approaches, and
the partial results that we described, are all consequences of the fact that this problem
was never studied thoroughly in an extended treatise. The only exception is Kurepa’s
work. Specific and isolated equivalences and different alternative formulations were
given as consequences of indirect interest in the problem; therefore a global approach
was difficult to provide.

Along with the different attempts to give a positive answer to Souslin’s problem, it
became clear that a proposition which, at first sight, seemed quite obvious in the context
of continuous ordered sets, lost its self-evidence once it was interpreted in the realm
of partially ordered sets. For a continuous orderedRethe equalityp1 E = poE
seemed quite convincing to Kurepa when he began his study on Souslin’s problem in
1934, and certainly he had no argument other than a direct survey of continuous ordered
sets,separableor not. When he translated this condition on linear ordered sets to the
condition that every ramified table of height should benormal he realized that it
became more difficult to support his conviction on some kind of survey. Nevertheless,
Kurepa still believed in the truth of this condition, as he stated in his the@®Rriv.],
but he soon became aware of the difficulties involved in proving this last statement.

Even if we say that Kurepa’s first approach to Souslin’s problem should now be
considered as mathematically wrong — in the sense that contrary to what he claimed, he
provided no proof of Souslin’s hypothesis — this approach led him to the important shift
from the theory of order types to the theoryrafmified tablesThis is the main reason
why we explained Kurepa’s work in detail, even though it has now been more or less
forgotten. By following the context of the reformulation of the problem, we can see how
Kurepa made the most important contribution to our actual understanding of the nature
and the meaning of the question raised by Souslin.

Besides the obvious fact that Souslin's problem is, as the continuum hypothesis,
a proposition dealing with a property of the linear continuum, and despite the fact
that these two propositions are independent, it should be underlined that they both
share the particular feature of beingdecidablepropositions (within the frame of Z-

F axioms). Knowing the existence of set theoretic models where Souslin’s hypothesis
holds as well as models where it fails, it might seem, as happened with the continuum
hypothesis, that no definite answer exists. But, besides the fact that we are dealing with
an undecidable proposition of set theory, Souslin’s hypothesis is a proposition involving
two of the most basic properties of the linear continuum. And this certainly shows that
if no answer is possible, our knowledge of the set theoretic properties of the continuum
is still incomplete. We are certain that, like Cantor when he defined some of the basic
notions of settheory, Souslin, Kurepa and Siasgi were all convinced that the problems
with which they were dealing would find a definite answer one day.
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