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Abstract

In this paper, we study the dynamics of the action of Out(F},,) on the bound-
ary 0CV,, of outer space: we describe a proper closed Out(F,,)-invariant subset
Fn of 8CV,, such that Out(F;,) acts properly discontinuously on the comple-
mentary open set. Moreover, we prove that there is precisely one minimal
non-empty closed invariant subset M,, in F,,. This set M,, is the closure of
the Out(F},)-orbit of any simplicial action lying in F,,. We also prove that
M., contains every action having at most n — 1 ergodic measures. This makes
us suspect that M,, = F,. Thus F, would be the limit set of Out(F},), the
complement of F,, being its set of discontinuity.

Outer space CV,, has been introduced by M. Culler and K. Vogtmann as an
analogue of Teichmiiller space for the group Out(F),) of outer automorphisms of
the non-abelian free group Fj. Outer space is the set of minimal free isometric
actions of F), on simplicial R-trees modulo equivariant homothety. It has a natural
compactification CV,, in the set of minimal isometric actions of F,, on R-trees. Both
CV, and CV,, are endowed with a natural action of Out(F},,) by precomposition.

Like the Teichmiiller space Tg of a closed surface S, CV,, is a contractible space,
the action of Out(F,) on CV, is properly discontinuous and not cocompact. The
quotient being a finite disjoint union of open simplices, it may be thought of as
having finite volume (see [CV]). Moreover, every outer automorphism of F, fixes a
point in CV,, (see [BH, Lus]).

Outer space has proven to be useful in the study of Out(F,). M. Culler and
K. Vogtmann computed the virtual cohomological dimension of Out(F;,) (|CV]) using
outer space. Furthermore, M. Bestvina and M. Feighn showed that Out(F,) is
(2n — 3)-connected at infinity by using some Morse theory on a bordified version of
outer space ([BF3]). However, outer space happens to be more complicated than
Teichmiiller space and not much is known about this space and its compactification.

Thurston theory shows that the mapping class group of a closed orientable surface
S acts with dense orbits on 07g, the boundary of Thurston’s compactification of
Ts (see |[FLP] for instance). When the surface is not orientable, there is an open
invariant subspace of full measure in 07 consisting of measured foliations having
a regular closed one-sided leaf ([DaNo]). The action is not properly discontinuous
on this set since infinite order Dehn twists fix some of its points. Surprisingly, it



seems to be unknown whether the mapping class group acts with dense orbits on the
complementary closed set.

In this paper, we try to understand the analogous problem in outer space: does
Out(F),,) act with dense orbits on the boundary of outer space ? The answer to this
question is no.

Definition. Let O, be the set of simplicial Fy-actions T such that
o T has trivial edge stabilizers
o T has cyclic vertex stabilizers
e whenever Stab v # {1}, Stab v acts transitively on the set of incident orbits.

Equivalently, T lies in O, if and only if every non-trivial group in the graph of groups
T/F, is cyclic and is attached to a terminal vertex of T/F,.

Figure 1: A typical action in O, (trivial groups are omitted)

Figure 1 shows a typical action in O,. Because of its friendly face with antennae,
I was suggested to christen the actions in O, Martian actions (many thanks to
Claire!). The set O, can also be seen to be the set of simplicial actions in CV,, with
finite stabilizer in Out(F),). It is clearly invariant under the action of Out(F},).

Theorem 1. The set O, is open in CV,, and Out(F,) acts properly discontinuously
on O.

Since CV,, G Oy, the closed set F, = CV,, \ O, is a proper invariant compact
subset of dC'V,,. M. Feighn pointed out that the intersection of the closure of the
spine of outer space ([CV]) with dCV,, is a subset of F,.

Theorem 2. Let n > 3. Let T be a simplicial action lying in F, and let T' be
a small action of F,, on an R-tree. Then there erists a sequence oy of elements of
Out(Fy,) such that

lim T'ap, =T

k—o0

This theorem has an interesting corollary about the dynamics of Out(F,) on
oCV,:



Corollary. Forn > 3, there exists precisely one minimal non-empty closed invariant
subset in CVy,. This set My, is the closure of the orbit of any simplicial action lying
in Fpn, under the action of Out(Fy,).

It would be interesting to know whether F, = M,. If the equality held, F,
would be equal to the intersection of the closure of the spine of CV,, with 9CV,,.
Moreover, F,, could be thought of as a limit set of Out(F,,) and O,, as a domain of
discontinuity like in the theory of Kleinian groups.

An argument by Bestvina and Feighn ([BF2]) shows that any action in C'V,, in
which there exists an arc with non-trivial stabilizer lies in M,,. Furthermore, since
any action in C'V,, can be decomposed as a graph of actions with dense orbits (see
[Lev2, GL|), proving F, = M, reduces to showing that any action in CV,, with
dense orbits belongs to M,,. We prove that this is true under a technical condition:

Theorem 3. Let n > 3 and let T € CV,, be an action of F, with dense orbits.
Assume that the Lebesque measure on T is the sum of at most n—1 ergodic measures.
Then T lies in M,,.

Remark. There is a bound coming from the topological dimension of dC'V;, for the
number of ergodic measures of an action in dCV,, (see [BF2, GL] and section 5.1).
This bound can be seen to be 3n — 4. Therefore, we suspect that Theorem 3 still
holds with no assumption on the Lebesgue measure so that F, = M,,.

We also note than if @ € Out(F,) is irreducible with irreducible powers, then
it has only two fixed points in CV,, ([Lus2]) which implies that they are uniquely
ergodic and hence lie in M,,.

After some definitions in section 1, we introduce in section 2 the folding to ap-
prozimate technique to obtain approximations of a simplicial action. This technique
rules out some natural candidates to be open, and leads to the definition of the set
Oy, In section 3, we prove that O, is open and that the action of Out(F,,) on O, is
properly discontinuous (theorem 1). In section 4, we use the folding to approzimate
technique to study the dynamics of Out(F,) on F, = CV,, \ O, and prove Theorem
2. In section 5, we introduce the tools of measure theory on R-trees needed to prove
Theorem 3.

This work is a part of a Ph-D thesis defended at the Université Toulouse III
in January 1998. Many thanks to my advisor Gilbert Levitt who encouraged me,
carefully checked my work, and suggested many improvements.

1 Preliminaries

1.1 Group actions on R-trees

Basic facts about R-trees may be found in [Sha, Sha2].



Definition. An R-tree is a metric space T such that between two points x,y € T,
there erists precisely one topological arc (denoted by [z,y]), and this arc is isometric
to an interval in R.

In this paper, every R-tree will be endowed with an isometric action of a finitely
generated group. For simplicity, we will denote by the same letter T the tree and the
action. We will also simply say action to talk about an action on an R-tree. Most
often, the group considered will be the free group F), on n letters. If an isometry g of
an R-tree has no fixed point, then it has a translation axis isometric to R and we say
that g is hyperbolic. When g has a fixed point, it is called elliptic. The characteristic
set Char g of g is either its axis or the set of its fixed points, depending on whether
g is elliptic or hyperbolic.

An action on an R-tree is said to be minimal if it has no proper invariant subtree
and if it is not reduced to one point. If an action of a finitely generated group I'
on an R-tree T has no global fixed point, then there is a unique invariant minimal
subtree of T and it is the union of the translation axes of hyperbolic elements in T'.
All the actions we consider are henceforth assumed to be minimal.

We will call simplicial R-tree (or simply a simplicial tree) a connected simply-
connected simplicial 1-complex together with a metric which makes it an R-tree. For
shortness’ sake, we will say simplicial action to mean a simplicial isometric action on
a simplicial R-tree. We will always assume that a simplicial action has no inversion
i. e. that no edge is flipped by any element of I' since one can reduce to this case by
performing a barycentric subdivision.

A morphism of R-trees f : T — T' is a continuous map such that every arc in
T may be subdivided into finitely many intervals which are isometrically embedded
in T" by f. We will also be interested in maps preserving alignment i. e. such that
a € [b,c] = f(a) € [f(b), f(c)]. Note that a morphism of R-trees which preserves
alignment is an isometry.

In an R-tree T', a germ at a point z € T is the a germ of isometric applications
[0,e] — T sending 0 to z. The set of germs at a point z € T is in one to one
correspondence with the connected components of 7'\ {z}. A point z € T is called
a branch point if there are at least three germs at z. In a simplicial tree, the branch
points are the vertices of valence at least three. We will sometimes use the projection
of a point x on a closed subtree S: it is the point in S closest to z.

1.2 The topology on a set of actions on R-trees

Two actions of a group I' on R-trees T' and T" are identified if there exists an equivari-
ant isometry between T and T”. Sometimes, in projectivised spaces, we will identify
T and T if there exists an equivariant homothety between them.

On any set of minimal actions of a fixed finitely generated group I', one can con-
sider the translation lengths topology. This topology is based on the length function
of an action (7,T'). It is the function Iy : ' — R, defined by

ir(y) = inf d(z,.2).
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The translation lengths topology is the smallest topology that makes continuous
the functions T' — Ip(7y) for v € I'. An abelian action is an action whose length
function is the absolute value of a morphism I' — R. For sets of non-abelian actions
of a finitely generated group, this topology is Hausdorff (see [CuMo]).

A set of minimal actions of a fixed finitely generated group I' on R-trees can also
be equipped with the equivariant Gromov topology. This topology roughly says that
two actions are close if they look the same metrically in restriction to a finite subtree
while only considering the action of a finite subset of I'. Here finite subtree means
a subtree which is the convex hull of finitely many points. Let’s give a definition to
make this more precise:

Definition. Consider two actions of a finitely generated group T' on two R-trees T
and T', and take € > 0, a finite subset F of T, and two finite subtrees K C T and
K' CcT'. An F-equivariant e-approximation between K and K' is a binary relation
R C K x K' satisfying the three following conditions:

e for every point x € K, there exists a point ' € K' such that xRz’
e for every point ' € K', there exists a point x € K such that zRz'

e if Rz and yRy', then for all g,h € F, the numbers dr(g.xz,h.y) and
dr (g.x', h.y') are e-close to each other.

When zRz’, we say that ' is an approximation point of z. If T is an action,
for any € > 0, any finite subset F' of I', and any finite subtree K C T, consider the
set Vp(e, F, K) consisting of actions (T”,T') such that there exists a finite subtree
K' ¢ T' with an F-equivariant e-approximation between K and K'. By definition,
the sets Vp(e, F, K) form a neighbourhood basis of T' in the equivariant Gromov
topology. Note that e-approximations behave nicely with respect to the Hausdorff
topology: an F-equivariant e-approximation between K and K’ such that K’ is
at a Hausdorff-distance n from K7, naturally defines an F-equivariant (¢ + 26)-
approximation between K et K.

The equivariant Gromov topology is always finer than the translation lengths
topology and is equivalent to the equivariant Gromov topology on sets of non-abelian
actions (see [Pau2|).

A group is said to be small if it doesn’t contain any subgroup isomorphic to the
free group F». An arc in an R-tree is called non-degenerate if it contains more than
one point. A small action is an action such that the stabilizer of any non-degenerate
arc is small. Note that throughout this article, the stabilizer of a set is understood to
be its pointwise stabilizer. We assume from now on that I" itself is not small. Then
any small action of I' is non-abelian. Moreover, the projectivised space of small
actions of I" is compact in both topologies (see [CuMo, Paul).

The set of actions of I' on R-trees is naturally endowed with a right action
of Aut(T') by precomposition. Since two actions are identified if there exists



an equivariant isometry between them, the subgroup Inn(T') of inner automor-
phisms acts trivially on this set, hence we are left with an action of the group
Out(T") = Aut(T")/Inn(T") of outer automorphisms of T'.

1.3 Outer space and very small actions

Definition. Outer space (sometimes called Culler-Vogtmann space) is the set CV,,
of free (minimal isometric) actions of F, on simplicial R-trees modulo equivariant
homothety.

CV, is invariant under the action of Out(F),). It is a disjoint union of open
simplices obtained by equivariantly modifying the lengths of the edges of a tree in
CV,, and Out(F},) preserves this decomposition.

CYV, is contained in the projectivised space of small actions of F,. Its closure
CV,, in this space is therefore compact. Moreover, M. Cohen, M. Lustig ([CL]) and
M. Bestvina and M. Feighn ([BF2|) have proved that CV, is exactly the space of
very small actions of F},.

Definition. An action of F,, on an R-tree T is said to be very small if
o it is small

e triod stabilizers are trivial (a triod is the convezr hull of three points which are
not aligned)

o for every k # 0 and every g € F,, Fix g* = Fix g.

2 Origami: folding to approximate

2.1 Definitions of folds

The goal of this section is to describe a tool which will be fundamental in this paper:
we use folds to get approximations of some simplicial trees. The idea of folding is
not new, J. R. Stallings already used this technique in [Sta|, and many others used
this notion (see [BF] and [Dun| for instance). However, we will consider not only
edge-folding but rather path-folding in simplicial trees. We first need some technical
conditions so that the folds behave nicely.

Definition. Let T be a simplicial action of F,, without inversion. Let o, be two
embedded edge-paths in T starting from the same point x. We assume that o and 3
run through the same number of edges and we denote by a,...,q, and by By,..., By
the edges of o and 3. We say that o and [ satisfy the hypothesis (H) if

(H1) for alli=1,...,p, a; and B; have the same length

(H2) a1 and By are distinct edges



(H3) there exists an equivariant orientation of the edges of T (called the folding
orientation) such that o; and B; are positively oriented fori=1,...,p. In this
case, we say that a and B are well oriented.

Clearly, (H3) means that there exists an orientation of the quotient graph T'/F,
such that the projections of @ and g are well oriented.

Definition. Let T be a simplicial action of F,, without inversion and let a1 and (q
be two oriented edges satisfying (H).

The elementary fold between «1 and (1 is the quotient of T by the smallest
equivariant equivalence relation in T which identifies a1 with B1 and also identifies
their terminal vertices. The simplicial complex T [ai~B: thus obtained is a tree (see
for instance [BF]), it has a natural metric and an isometric action of F, without
inversion. The quotient map f : T — T [ai~p1 is called the folding map.

Definition. Let T be a simplicial action of F,, without inversion and let o and (3 be
two edge paths satisfying (H).

The fold between o = a1...qp and f = «ai...qp is the quotient T /a~p of T
by the smallest equivariant equivalence relation in T which identifies «; with B; for
1 =1...p. It is a composition of elementary folds f;

f1 f2 f3 fo

T———T =T/ai~p —— To = Th/fi(a2)~fi(B2) — - -+ — T, = T [ a~p.

The elementary folds f; are called intermediate folds. We denote by ¢; = fio---0 f1 :
T —=T;and by g = fpo---o fi : T — T/a~p the folding map.

This decomposition shows that T'/a~p is a simplicial tree with a natural isometric

action of F,, with no inversion.

2.2 Preimage of an edge

We define the preimage of an edge ¢ of a simplicial tree 7' under a simplicial map
f:T — T to be the set f~!(e) of edges which map to e under f (and not the set of
points in 7" which are mapped to a point of the closed edge e). The main interest of
the hypothesis (H3) is the following remark.

Lemma 2.1. If f : T — T/ai~p: is the elementary fold between the edges a1 and (4
satisfying (H) then f~'(e) is either a single edge or a set of edges having the same
origin according to the folding orientation. We say that these edges are centrifugal.

Remark. If (H3) is not satisfied, then f~!(e) may be unbounded.

Proof. T'/ai~p: is the quotient of T' by the equivalence relation generated by the
binary relation ~q described by e ~q €’ if there exists g € F), such that {g.e,g.€'} =
{a1,B1}. One needs only to notice that if e ~1 €’ ~1 €”, then e, ', €’ are centrifugal.

O



Note that lemma 2.1 implies that if «, 3 satisfy (H) then none of the intermediate
folds can be isometries (i.e. the intermediate folds satisfy (H2)) because fi(ag) =
f1(B2) would contradict the lemma.

The following corollary is the tool which allows us to get approximations from
folds.

Corollary 2.2. Take two edge paths o and 3 in a simplicial tree satisfying (H), and
denote by q : T — T /a~p the folding map. Suppose that each intermediate fold f; is
a fold between two edges with trivial stabilizer.

If e, €' are two adjacent edges in T which are identified by q, then they are iden-
tified under the first intermediate fold f1.

Remark. The hypothesis on the intermediate folds f; can be weakened but the corol-
lary is false with no hypothesis at all on f;.

Proof. Assume on the contrary that there exists an index i > 0 such that g;(e) #
gi(e') and ¢;11(e) = ¢;+1(€'). This implies that g;(e) # ¢;(¢') are centrifugal.

Suppose first that ¢;(@;+1) and ¢;(8;+1) don’t lie in the same orbit of T;. Then, the
fact that Stab ¢;(a;4+1) = Stab ¢;(8;+1) = {1} implies that an edge is identified with
gi(ir1) and g;(Biy1) through fi11 only if it equals g;(cy1) or ¢;(Bit1). Therefore,
we can assume without loss of generality that g;(e) = gi(@i+1) and g;(€’) = ¢;(Bi+1)-
Thanks to the previous corollary, ¢;—1(e) and ¢;—1(a;+1) have the same origin, and
similarly for ¢;—1(¢') and ¢;—1(B;+1). But this prevents them from being adjacent,
which is a contradiction.

¢, ¢,m0

g, 0 Lo

O O
S0 £ g T

Suppose now that there exists an h € F), such that h.g;(a;t+1) = ¢i(Bi+1) (this
h is unique because Stab ¢;(c;+1) = {1}). In this case, the set of edges which
are identified with g;(csy1) by fir1 is exactly h%.¢;(cj; 1) so we can assume that
gi(e) = gi(ci41) and g;i(€') = ¢;(h*.cij11) for some k # 0. Now let A and B be the
preimages of g;(aj+1) and ¢;(Bi+1) under f;. The previous corollary implies that A
and B are two sets of centrifugal edges whose centers are p4 and ppg, the terminal
points of ¢;_1(;) and g;—1(8;). Now since ¢;_1(€') € h¥.A, and because ¢;_1(e) and
gi_1(e') are centrifugal, h*.A is a set of centrifugal edges with center p4. Therefore,
h* fixes ps and h sends p4 to pg, so h fixes the midpoint of [pa,pB] which is the
origin of g; 1(cy). Hence h¥ fixes g; 1(a;) which contradicts the assumption on the
fold f;. 0



2.3 Folding to approximate
We are now ready to prove the folding to approximate lemma.

Folding to approximate lemma. Let T be a simplicial action of F, without
inversion. Let a and (8 be two paths in T with origin = satisfying the (H) condition
such that Stab x is infinite. Let wy be a sequence of distinct elements in Stab z and
let T) = T [a~wy.8. Assume that each intermediate fold is a fold between edges with
trivial stabilizer.

Then T®) converges to T as k — oo.

Proof. We only need to prove that two incident edges e, ¢’ of T are identified by only
finitely many folds ¢®) : T — T®). As a matter of fact, this will imply that any
finite subtree of T isometrically embeds in T*) under ¢(¥). To prove the convergence
in the equivariant Gromov topology, take K to be a finite subtree of 7' and F' a finite
subset of F,, and let K’ be the convex hull of K and F.K. For k large enough, ¢(*)
is an isometry in restriction to K’ hence it gives an F-equivariant 0-approximation
between K and ¢(*) (K).

Now we prove that two incident edges e, e’ of T are identified by only finitely
many folds ¢®). Thanks to the previous corollary, we only need to check that they
are identified by finitely many of the elementary folds fl(k) between a1 and wg.01.

When «; and (3; are not in the same orbit, e and €' are identified by fl(k) if and
only if there exists g € F), such that g.{e,e'} = {1, w,.01}. This occurs for at most
one k since Stab a3 = {1}, g is unique.

When 31 = h.ay (h is then unique), e and €’ are identified by fl(k) for some index
k if and only if there exists g € F}, such that g.e = a; and g.e’ = (wy.h)%.ay for
some i), € Z\{0}. If ko and k are such indices, then g.e’ = (wy,h)%*0.a1 = (wph)™.cq
s0 (wgyh)*o = (wxh)™ and wyh lies in the finite set of roots of (wg,h)%o which can
hold for at most finitely many . O

3 An open invariant subset of outer space.

3.1 Looking for an open invariant subset.

This folding to approrimate lemma will be the cornerstone of section 4. But first,
this lemma will show us that some natural candidates for open and invariant sets
are in fact not open.

The first candidate for open set in CV,, is the set C, of very small actions 7T in
which there is a non-degenerate arc I containing no branch point of T and such that
Stab I = {1}. It is a natural candidate because the set of systems of isometries which
give an action in C, is precisely the set of systems of isometries whose suspension
have a family of compact simply-connected leaves, and this property is stable under
perturbation (see prop. IV.1 in [Lev]). Moreover, thanks to the exhaustive study
of CV, by M. Culler and K. Vogtmann, it is easy to check that Cy is open in CV5.
However, C,, is not open for n > 3: for instance if T' € C is the action shown on figure



2, a folding operation allows us to approximate 7' by a very small simplicial action
whose edge stabilizers are not trivial. Thus, this approximating action doesn’t lie in
Cn-

"=T/m wmdC,

Iﬂl,...,an_ID @vk’anlj

dy,...a,, ) —

Folding 0 k
onw,.U
d,,....a n VAV d,,-...a, 0 Ov,,a,0
o

&, 0

(k)

T/F, T'JF,

n

T € C, is approximated by T*) =T /a~ws.a ¢ Cy,

Figure 2: C, is not open in CV,, for n >3

In view of this example, we see that the presence of a non cyclic vertex stabilizer
allows many approximations, so we may consider a second candidate for open set:
the set C], of very small simplicial actions with cyclic edge and vertex stabilizers.
Once again, it is natural because one can prove that the set of systems of isometries
which define an action in C}, is open ([Gui, th. 4.4.5]). One also checks that C} is
open in CVy. But for n > 3, the folding to approzimate lemma shows that Cl is
not open (see figure 3). The reason is that one can perform folds at a vertex with
non-trivial stabilizer which is not terminal in the quotient graph T'/F,, (a vertex is
terminal if it has valence 1).

race, T%=T/0-400 c
Ry
ris E@ g~ @0 BHb D o\ g b
Folding ’ BT—
Oon b0
VA .
@0 B0 20 4,5 cb™0
k
T/F, T/F,
b0

T € C! is approximated by T*) = T/a~ws.5 ¢ C!,

Figure 3: C!, is not open in C'V,, for n > 3.

This leads us to consider the following set O,:

Definition. We define O,, to be the set of simplicial F,-actions T such that
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e T has trivial arc stabilizers
o T has cyclic vertex stabilizers
o whenever Stab v # {1}, Stab v acts transitively on the set of incident edges.

Equivalently, T lies in O,, if the edge groups of the graph of groups T/ F,, are trivial,
and if the only non-trivial vertex groups are cyclic and are attached to terminal
vertices of T/ Fy,.

3.2 O, is open in CV,,

Theorem 1. The set O, is open in CV, and Out(F,) acts properly discontinuously
on O,.

Folding
Oona".0
VAV
<a> C <q> <ak>C
1 k
{1} ! <ak> 0
T/F, T( )/Fz

T € O, is approximated by T ¢ CV,, D O,

Figure 4: O, is not open in the set of small actions.

Remark. Using the folding to approrimate lemma, one proves that O, is not open
in the whole set of small actions as shown on figure 4.

Proof of theorem 1. With no additional work, we will prove the well known fact that
CV, is open in the set of all actions of F;,. The proof of Theorem 1 goes as follows:
we start with an action T' € O,, and consider a fundamental domain D for this action.
Given an action 7" € CV,, close enough to T in the equivariant Gromov topology,
there is a finite subtree D’ in T" which approximates D. The main step is to build
a fundamental domain A for T” starting from D'.

Fundamental domain and adapted basis for an action in O,

Let T be an action in O,, and consider the quotient metric graph of groups @ = T/ F,,.
Let 7 be a maximal subtree of ) and 7 a preferred lift so that we get (using Bass-
Serre theory) an identification between Fj, and 71(Q, 7) and an equivariant isometry
between 7' and the universal cover of (). Now choose an orientation for every edge in
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Q@ \ 7 and one generator for every non-trivial vertex group of ). The set of elements
in m1(Q, 7) corresponding to the edges of @ \ 7 with the chosen orientations and to
the chosen generators of the vertex groups provides a preferred basis B of Fj,.

This basis B has the following property: for every v € BU B!, either .7 N 7
is a single point that we denote by x, (this happens when + corresponds to a vertex
group generator) or there is an edge joining 7 to .7 (when 7 comes from an edge
in @\ 7) in which case we call x, the midpoint of this edge. We define D to be
the union of 7 and of the segments joining X to 7 (y € BU B™!'). The following
properties clearly hold:

Lemma 3.1. For every v € BUB™!,

* 7.DND = {x,}
® Xy is a terminal point of D

® Xy = Xy-1 if and only if v is elliptic in which case x. is the only fized point of
v.

Observe also that D is a fundamental domain for 7" in the following sense:

Lemma 3.2. D meets every orbit in T and if x,y € D are such that y = w.z for
some w € Fy, \ {1}, then either

® T =Xy-1,Y =Xy, and w =y for some hyperbolic generator v € B U Bl

e orz=1y=xy and w =" for an ellipticy € BUB™!.

Constructing A from D’

We now define V.(T) a neighbourhood of T: we set F = {1} U BU B~! and set
V.(T) = Vr(e, F, D) to be the set of actions 7" € CV,, such that there exists a finite
subtree D' in T' with an F-equivariant e-approximation between D and D'. We are
going to show that if 7" € V,(T) for some small enough ¢, then T' € O,.

Denote by d the length of the shortest edge in D, and assume that ¢ is small
enough compared to d. Then any element v € B U B~! which is hyperbolic in T
must be hyperbolic in 7”. Note however that an elliptic element in BU B~! may be
hyperbolic in 77 (but its translation length must be small compared to d). We start
by changing D' into D} such that v.D} N D} = () for y € BU B™L.

Definition. Let K be a finite tree and § > 0. We call d-interior of K the set ints(K)
of points of K which are the midpoint of a segment of K of length 26.

Clearly, ints(K) is a finite subtree of K and if K has diameter at least 24, ints(K)
is non-empty and K lies in the §-neighbourhood of ints(K).

Lemma 3.3. Let § = 3¢, and let D} = intg(D'). If € is small enough compared to
d, then
Vye BUB™!  ~4.D|NnD)=0.
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Figure 5: the fundamental domain D C T, and its approximations, D" and D} C T"

Proof. Assume on the contrary that there exists y' = v.2/ € D] N~v.D} for some
v € BUB™! and argue towards a contradiction. By definition of the é-interior, there
are some points z, 74, y},v5 € D' such that =, 1z, 2}, (resp. y},y,y}) are aligned in
this order and d-far from each other (we say that a,b,c are aligned in this order if
b€ [a,c]).

Consider some approximation points z1, z, Z2,y1,y,y2 in D of =}, 2,z v, v, y}.
Since ¢/ = ~.2!, d(v.z,y) < e. But x, € [y.z,y] since .z and y lie in the two
subtrees 7v.D and D which intersect only in {x,}. Therefore, x is e-close to X, ! and
every branch point of D is at least (d — ¢)-far from z.

The distance from z to its projection p on the segment [z1, 2] is at most 3¢/2.
As a matter of fact, in an R-tree the distance from a point a to its projection on a
segment [b, ¢] is the Gromov product

(ble)a = % (d(a,b) + d(a, c) — d(b, ).

Now the fact that d(z,z1) and d(z,z2) are greater than § — e > 3¢/2 implies that
p has to be distinct from z; and zo9. Moreover, p cannot be a branch point of D if
¢ is small compared to d. This means that £ must lie in [z1,z2]. But then, since
[xy-1,z] doesn’t contain any branch point of D, either x,-1, %1, z,z3 or xy-1, 2, T, 21
are aligned in this order. Since d(z,z1),d(z,x2) > § — e > ¢, this prevents z from
being e-close to x,-1 which gives a contradiction. O

Since D' is in the d-neighbourhood of Df, there is an F-equivariant ;-
approximation between D and Dj for &1 = ¢ + 20 = 7e. Hence, we forget the
approximation between D and D’ and we concentrate on the approximation be-
tween D and Df. For every v € BUB ! we choose an approximation point x} € Df
of x-

It will now be easy to construct a fundamental domain A for 7" by adding to D}
the segments I, defined as follows (see figure 5):

13



Definition. For every v € BUB™!, we define the points 7y in T and the segments
L, C T as follows:

e if v is elliptic in T', we call T, = my-1 the projection of D! on Fixq v and we
take I, = L1 to be the segment joining D' to .

e if v is hyperbolic in T', we call 7, the midpoint of the intersection of Axis ()
with the segment joining D} to v.D} (so that y.m,-1 = m,). We then take I,
to be the segment joining D] to ..

We then define A = D U, cpup-1 Iy-

Remark. Note that by minimality, A meets every orbit of T": the fact that for all
v € BUB™!, v.ANA # () implies that F,,.A is connected and invariant, and hence
must be equal to T".

Lemma 3.4. The arc I, is contained in the £1-neighbourhood of XIV'

Proof. Since I, is contained in the segment joining D] to 7.D], every segment [p, q]
with p € D} and ¢ € 7.D] contains I,. Hence I, C [X'I)/?’Y'Xfy—l]a but since x, =

V-Xy-1, We get d(xr, VX, -1) < €1 O

This lemma implies that there is an F-equivariant (e¢2 = 3e1)-approximation
between D and A for which 7, is an approximation point of x,.

A is a fundamental domain for 7"

Lemma 3.5. If € is small enough compared to d, then m, is a terminal point of A,
and for all y € BUB™!,
Y. AUA = {m,}.

Moreover, one has my = my if and only if v =+ or v = '~' with v elliptic in T".

Finally, if 7 is elliptic in T', then the germ of A at my is not fized by vy, and if 7y is
hyperbolic, the germ of A at m, points towards the negative half-axis of .

Proof. By construction, it is clear that for all y € BU B!,
7. (DY UI,UL-1)N (D] UL, UL 1) = {m}.
To prove that 7. AN A = {m,} we just have to check that
vy Iy NA =0

for / € BUB™ '\ {v,7'}. But since I, is contained in the ej-neighbourhood of
7y, and since 7.x, is far apart from D (at least at a distance d), we see that .7
must be far apart from A.

Now by construction, 7, is a terminal point of D} U I, U I,—1 and must remain
terminal in A since the intervals added to D{ U I, UL, -1 are far from I, UI,-1. The
last claims follow immediately. O
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Tl

Figure 6: A and the germs 7,

To prove that A is a fundamental domain for 7", we use the same technique as
[CV2]. We first introduce some notations.

Definition. Let y € BU B~

o Ify is hyperbolic in T', we call 1, the germ of the positive azis of v at m,. We
also set

Sy ={w €T\ {m}| germ, (Imy,2]) =, } .

o Ify is elliptic in T, we call ny =n,-1 the germ of A at m,. We also set
S, = {:c € (T',Fy) \ {m,} | 3k >0 s.t. germ,_(my,2]) = 'yk.n,y}.

Lemma 3.6. If T is very small, or if T is free simplicial, and if € is small enough,
then the sets S, are pairwise disjoint and do not meet A.

Proof. Assume that v € B U B! is hyperbolic in T". Since 7y and the germ of A
at 7, point respectively towards the positive and negative half-axis of 7y, S, doesn’t
intersect A.

Assume now that v € BU B! is elliptic in 77. Then « has to be elliptic in T
(so that T is not free). Here we use the hypothesis that 7' is very small: since vy
doesn’t fix 7,, % doesn’t fix 7y so the germs v¥n are all distinct and Sy, 841 and
A are pairwise disjoint.

There remains only to prove that Sy NS, = 0 when 7, # 7. But then S, =
Sy U, is a subtree of 7" which cannot intersect S, because otherwise their union
would be connected hence would contain [, 7] C A which is impossible. O

Remark. We note the following facts:
® YT\m1 = Ty
e v.(A\{m,-1}) CS,
¢ 7.8y CS,yforally € (BUB )\ {v !}
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Corollary 3.7. The finite tree A is a fundamental domain for T' in the following
sense:

e A meets every orbit in T"
e assume that x,y € A are such that x = w.y with w # 1. Then

— either ¢ # y in which case T = 7
v € BUB™! hyperbolic in T'

1, Y = Ty and w = 7y for some

— orz =y ="y and w =P for some y € BU B! elliptic in T".

Proof. We have already noted that A meets every orbit. Now write w =, ...v1 as a
reduced word with y; € BUB™!. The previous remark shows that ;... v1.7 € Sy, U
{7, }. Moreover, if for some index 4, v;... 7. # L then vi11...7m1.2 € S, ;.
We thus get inductively that v, ...y1.x € S,, 80y ...71.7 can’t lie in A. Therefore,

T =T, and if p = 1, we are done. Otherwise, we have m,, = T, =1 which implies
1 2

2 = ¥ since w is reduced. We obtain recursively that w = 7, and 71 is elliptic in

T' since m,, = 7_—1. O
7 ;

v

O, is open in CV,

Proposition 3.8. O, is open in CV,, and CV,, is open in the set of all actions of
F,, on R-trees.

Proof. Take T" close enough to an action T in O,, and assume moreover that 1" is
very small in the case when T is not free. Then the set A constructed above is a
fundamental domain in the sense of corollary 3.7.

First of all, T" is simplicial because 71" is the union of the translates of A and
w.A may only meet wg.A in some wg.my. Moreover, if T' is free, corollary 3.7 shows
that T" is free.

If T is not free, corollary 3.7 implies that edge stabilizers are trivial and that
vertex stabilizers are cyclic. Now if z has non-trivial stabilizer, we may assume (up
to the action of F,) that z = m, and Stabz = ~% for some v € BU B~'. But
since A and the sets S, cover T”, the set of germs at m, is 'yZ.ny. This implies that
Stab z acts transitively on the set of edges incident to x. We thus conclude that
T € O,. O

The stabilizer in Out(F,) of every T € O, is finite.
Lemma 3.9. The stabilizer in Out(F,,) of every T € O, is finite.

Proof. Assume that o € Aut(F),) fixes T i. e. that there is an equivariant homothety
h between T and T.«. This homothety naturally induces a homothety of the finite
metric graph 7'/ F,,, which implies that h must be an isometry. Since Id : T' — T.«
is a-equivariant (i. e. Id(g.z) = a(g).Id(z)) f =Idoh : T — T is a-equivariant.

16



In [Bass|, it is proved that f induces an automorphism ¢ of the graph of groups
@ = T/F, in the following sense:

Definition. If Q is a graph of groups, an automorphism ¢ of Q consists in
e an automorphism @ of the underlying graph (an isometry in our case)
e an isomorphism @y : I'y = Ty for each vertex v € Q
e for every oriented edge e of Q, an isomorphism @ : I'e — 'y such that
Pe = Pe
e for each verter v € Q, an element -y, € 71(Q, (v))

e for every oriented edge e of Q, an element v. € w1 (Q, p(o(e))) such that 6, :=
70_(;76 € 1—‘o(e)
such that the following diagram commutes:

I, S Po(e)

Pe l[{selo(po(e)

1o (e)
Lote) —> Tp(ofe))

Remark. When edge stabilizers are trivial, the diagram automatically commutes.

Such a morphism ¢ induces a on the fundamental group of @ in the follow-
ing sense: one defines ¢* : m(Q,v) — m(Q,p(v)) by setting, for every loop
(90,€1,91,---,€n,9gn) in the graph of groups Q

(P*(QOel ce engn) =
(Yoo w0 (90)Vag ) (Verp(€1)72,") - - - (Yen(€n)V2") (Yom Pun (9n) Ve ) -

Then there exists a path p, in the graph of groups @ joining v to ¢(v) such that the
induced morphism I, : 1 (Q, ¢(v)) = m1(Q,v) is such that I, o ¢* induces o on
m1(Q,v) (see [Bass|).

Denote by Aut(Q) the group of automorphisms of the graph of groups @ and
Auto(Q) the finite index subgroup of Aut(Q) consisting of automorphism inducing
the identity on the underlying graph of ). We only have to prove that Auty(Q) has
finite image in Out(m1(Q,v)).

Let (go,€1,91,---,€n,gn) be a loop based at v in the graph of groups Q. If v; is
a terminal vertex of @), e;_1 = €; and since Iy, is abelian, 757} Yv; commutes with
¢, (gi). This implies

(Yeio1€i=172, ) (Vor 00; (9i)Va; ) (Ves €Yz, ) = Ves_1 €i-1Pu; (95)€iYer ;-
If v; is not a terminal point in ) then vé_iil'yvi el'y, ={1} so
(Yeir€i-172," ) (Fo:0; (96) V0, ) (Ves€iva, ") = Yes_r€im10v; (93)€iVz, -
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Therefore, when v = vy = v,, is not terminal (which we may assume without loss of
generality), we derive that

o (9061 < engn) = YvoPuvo (90)90(61)‘/’111 (91) s Pup g (gn—l)‘P(en)‘Pvn (971)711_01-

Therefore, the image in Out(m1(Q,v)) of Autg(Q) is a quotient of the direct product
of the automorphism groups of the vertex groups I'y,, which are finite since I, are
cyclic. O

The action of Out(F,) on O, is properly discontinuous

There is a natural decomposition of O,, into open simplices: if T € O,, we call
o(T) C O, the set of actions obtained by changing equivariantly the lengths of the
edges of T' (each length remaining non-zero). These open simplices form a partition
of O,, which is preserved by Out(F,). Moreover, there are finitely many orbits of
simplices since such an orbit corresponds to an unmarked graph of groups (with no
metric) which appears as a quotient of an action in Oy,

We also consider the set 6(7") (which may not be a closed simplex) of actions in
O,, obtained by changing equivariantly the lengths of the edges of T' (here 0 is allowed
but the action obtained must lie in Op). We then call St(T') the star of T, i. e. the
set of actions T” such that T' € 6(T"). Equivalently, St(T) is the set of simplicial
actions T” such that there exists an equivariant application from 7" to T which
preserves alignment. Of course, St(T) is a union of open simplices and if 7" € St(T),
St(T) C St(T"). This union is finite because if 0, was an infinite sequence of such
simplices, then up to taking a subsequence, there would exist o, € Out(F,,) sending
oy to og and stabilizing o(T"), but this contradicts the fact that the stabilizer of the
barycenter of o(T) is finite.

Proposition 3.10. For all T € O,,, St(T) is open in CV,,.

Remark. This proposition implies that an action T" in Oy, \ CV,, may only be approx-
imated in C'V;, by actions T" whose quotient graphs have a separating edge. Indeed,
for T' € CV,, close enough to T, T" lies in o(T') which means that there is an equiv-
ariant map 7" — T preserving alignment. The preimage of a terminal edge of T/ F,
is a separating edge in T"/F,,. Since the quotient graphs of the actions contained in
the spine of outer space have no separating edge, this means that the closure in CV,,
of the spine of outer space is contained in F,, = CV,, \ O,.

Proof. We consider T" close enough to T and A C T” the fundamental domain of T"
constructed above. We note that A is the convex hull of the points 7., for y € BUB™!
(because this convex hull meets every orbit of 7" by minimality of T").

To prove the proposition we have to find an equivariant map from 7' to T pre-
serving alignment. The following lemma gives a map from A to D, linear on each
edge of A, which preserves alignment and sends 7, to x,. Because of corollary 3.7,
such an application naturally extends to an equivariant map from 7" to T" which
preserves alignment. O
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Lemma 3.11. Let D and A be two finite trees together with an e-approrimation
between them. Assume that for every terminal verter m, of A there is an approzi-
mation point X, which is terminal in D. If € is small compared to the length d of
the shortest edge of D, then there exists a natural application f : A — D linear on
the edges of A, preserving alignment and sending m., to x.

Proof. We first define f on the terminal vertices of A by sending ny to x,. To
extend f to a branch point b of A, we consider a triod (7,,,7,,7,) such that
{b} = [my,, ™) N [y, my3] N [mys, ™y, ] and we want to set {f(b)} = [xy:,X7.] N
X~2> Xs) N [X~s> X1 )- Note that f(b) is either a branch point or a terminal point of
D (this happens when f identifies two terminal points of A) hence it is a vertex of
D.

The point f(b) is independent of the choice of the triod because f(b) is (3¢/2)-
close of an approximation point b’ of b and two vertices of D are at least at a distance
d. By construction, f preserves alignment in restriction to the set of branch points
and terminal vertices of D. just extend f linearly on edges to conclude. O

Proposition 3.12. The action of Out(F,) on O, is properly discontinuous.

Proof. Let K be a compact subset of O,. Since K is covered by a finite number of
stars St(7T;) each of which is a finite union of open simplices, K is covered by finitely
many open simplices. Since the decomposition of O, into simplices is equivariant,
the proposition reduces to proving that the stabilizer of an open simplex is finite.
Thus, the proposition follows from the fact that the barycenter of a simplex in O,
has finite stabilizer. O

This completes the proof of Theorem 1. O

4 Dynamics of Out(F,) on F,.

In this section, we study the dynamics of Out(F},) on the closed invariant subset
Fn = CVy \ Oy of the boundary of outer space.

Theorem 2. Let T be simplicial in F,, and let T' be any small action (n > 3). Then
there exists a sequence oy of elements of Out(F),) such that

lim T"ap =T

k—o0

The following corollary is a straightforward consequence of Theorem 2:

Corollary 4.1. For n > 3, there exists precisely one minimal non-empty closed
invariant subset of outer space. This set My is the closure of the orbit of any
simplicial action lying in F, under the action of Out(F,).
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{(}Q{) ..... _Q

n-1 circles, 3n-4 edges

Figure 8: A (3n — 5)-dimensional simplex in M,,

Remark. In [GL], D. Gaboriau and G. Levitt show that the topological dimension of
0CV,, equals 3n — 5, thus refining a theorem by M. Bestvina and M. Feighn ([BF2]).
It is easy to find a simplex of simplicial actions of dimension 3n — 5 in F,, and hence
in M,, (see figure 8). Therefore, the topological dimension of every open set in M,,
equals 3n — 5.

Another easy consequence of Theorem 2 is that the set of actions in M,, having
trivial stabilizer in Out(F},) is a dense G4 in M,,.

The proof of Theorem 2 is analogous to the proof of the minimality of the action
of the mapping class group of an orientable surface on the boundary of its Teichmiiller
space. The first step is a theorem by Cohen-Lustig about dynamics of Dehn twists in
CV,, which is the analogue of the fact that if i(c, F) # 0 for a curve ¢ and a measured
foliation F, then iterating Dehn twists around ¢ on F makes it converge to c. In a
second step, we introduce a particular kind of action which we call “special curve”.
A special curve T has the property that given any action 7' € CV,,, there exists
an automorphism ap € Out(F),) such that “i(T,T".ap) # 0”. Using the dynamics
of Dehn twists, we see that the Out(F,)-orbit of 7" accumulates on T'. In a third
step, using the folding to approximate technique, we show that any simplicial action
T € F, may be approximated by a “special curve”, which proves Theorem 3.

4.1 Dynamics of Dehn twists.

In [CL], M. Cohen and M. Lustig study the dynamics of multiple Dehn twists. This
theorem will be the engine enabling us to show that Out(F),)-orbits accumulate on
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some actions.

Definition ([CL]). Let Q be a graph of groups and ey be an oriented edge of Q.
Consider an element zg of the center of the edge group v.. We still denote by e the
element of the Bass group B(Q) corresponding to an edge e. The single Dehn twist
with twistor zy is the automorphism of m1(Q,v) induced by the automorphism D of

B(Q) defined by

e D(eg) = eg.iey(20), D(eal) = eal.ieal(zo)_l

e D(e) = e for every edge e distinct from eg, ey "
e D(r) =r for every element v of a vertex group.

The non-oriented edge corresponding to ey is called the twisted edge. A multiple Dehn
twist of Q is the (commuting) composition of single Dehn twists Dy, on distinct edges.

Recall that a graph of actions on R-trees Q is a graph of groups @ together with
the following data: for every vertex v € () there is an action of the vertex group T,
on an R-tree T), (which may be reduced to one point), and for every oriented edge
e, an attaching point pe € Ty fixed by 4.(Ic). A graph of actions naturally defines
an R-tree Tg endowed with an action of m1(Q) (see [Lev2|, or [CL, combination
lemmal).

If @ is a graph of groups, we denote by triv(Q) the set of edges of @ with trivial
edge group (it can be identified with the union of the open edges with trivial group in
the geometric realization of the graph underlying Q). If Q is a subtree of T, triv(Q)
is the set of edges of Q with trivial stabilizer.

Cohen and Lustig’s theorem about dynamics of Dehn twists ([CL])

The data. Let T be a very small simplicial action of F,, and let Q = T/F,
be the quotient graph of groups whose fundamental group is identified with
F,. Consider a union A of connected components of Q \ triv(Q). For every
component Ay of A, we consider an R-tree Ty, endowed with a small action of
T4, = m1(Ao) and an attaching point p, € T4, for each edge in Q\ A incident on Ay.

The construction. Let T' be the simplicial action obtained by collapsing to
one point every connected component of the preimage of A in T. The graph of
groups Q' = T'/F, is obtained by collapsing each connected component Ay of A
and the corresponding vertexr group is I'a, = mi(Ay). We denote by %TAO the
action obtained by dividing by k the metric of Ta,. We denote by Q the graph of
actions obtained from Q' by attaching to a vertex Ay the tree %TAO, and the trivial
action for any vertex of Q' which is not the image of a component of A. The at-
taching points are the points p.. We denote by Ty the F,,-action corresponding to Qy,.

The result. Under the hypothesis that every edge group in Ay has no fixed point in

T4y, there exists Dehn twists Dy, on Q such that the sequence of actions T}, = Tj,.Dy,
converges to T as k — oo (in the projectivised space).
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Here is a consequence of this theorem: take T is a very small simplicial action for
which none of the edge stabilizers is trivial, and assume that T” is a small action such
that for every edge e of T, the stabilizer of e has no fixed point in 7”. Then there

exists Dehn twists Dy, such that T'.Dy, N (just take A = T/F,,). Therefore,
we may think of an action T' € C'V,, whose edge stabilizers are all non-trivial as an
analogue of a (non-connected) curve in a surface. In this analogy, assuming that
every edge stabilizer of T has no fixed point in T” corresponds to supposing that
the intersection number of every connected component of a (non-connected) curve
(~ T) with a measured foliation (~ T") is non-zero. So, by analogy, (and to make
notations lighter), we will say “i(T,T") # 0” when it is satisfied. So we may restate
this particular case of the theorem as follows:

Corollary 4.2. If T € CV, is a “curve” and if T' is a small action such that
“(T,T") # 07, then there exist Dehn twists Dy such that T'.Dy, converges to T.

Remark. We have no satisfactory definition of what could be an intersection number
i(T,T") for reasonable actions T, T" € CV,,, that’s why we keep quotes in the notation
“Z.(T, TI) # 077_

4.2 “Special curves” some actions on which every Out(F},)-orbit
accumulates

Definition. We say that an action T € CV,, is a “special curve” if it is a “curve”
(i. e. it is simplicial, very small, and every edge stabilizer is non-trivial) and if there
exists a basis (ai,...,an) of Fy, such that for all g € F, fixing an edge in T, g or
g~ ! is a conjugate of a positive word in the a;’s.

This condition is essentially technical. However, it is useful in the following
proposition:

Proposition 4.3. Let T € CV,, be a “special curve”. Then the Out(F,)-orbit of any
small action accumulates on T'.

Proof. Using corollary 4.2 we only have to prove that there exists a € Out(F,) such
that “4(T,T".«) # 0”. We know that there exists a basis B of F;, such that every edge
stabilizer of T' is generated by a conjugate of a positive word in B. Therefore, the
problem reduces to showing that there exists a basis B’ of F), such that every non-
trivial positive word in this basis is hyperbolic in T': one can just take o to be the
automorphism sending B to B’. So we just have to prove the following lemma. O

Lemma 4.4. For any small action T of F,,, there exists a basis in which every non-
trivial positive word in this basis is hyperbolic in T.

Proof. We first show that for any action of Fj, with no global fixed point, there exist
a basis of F,, containing a hyperbolic element. Start with any basis (a1, ..., a,) of F},
and assume that every a; is elliptic. Then a;a; is elliptic if and only if Fixa;NFixa; #
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0. If for every i # j, the basis (a1,...,ai—1,@iaj,@i+1,-- ., ay) is composed of elliptic
elements only, then T" has a global fixed point (Serre’s lemma).

We now prove that any small action has a basis composed of hyperbolic elements.
We first notice that if a is hyperbolic and b is elliptic, ab is hyperbolic unless Fix b N
Axis a contains exactly one point z. Moreover, if b.Axisa # Axisa, one easily
checks that for k large enough, ab is hyperbolic. But if b.Axisa = Axis a, then
b? and ab’a~! fix this axis and don’t commute which contradicts the fact that T
is small. Now, starting with a basis (a,...,a,) of F, such that a; is hyperbolic,
there exist integers k; such that the basis (a1, alfz ag, ... ,a'f” an) consists of hyperbolic
elements.

From this basis (b1, ...,by), we can deduce another basis consisting of hyperbolic
elements whose axes have a common non-degenerate segment I and whose orienta-
tions coincide: take I to be any non-degenerate interval in Axis (b1) and note that
for k; large enough, b’fibiblf" is hyperbolic and its axis contains I. So one may take
a basis of the form (by, (B¥2byb) 1, . (BFnb,b¥)E1). To prove that every positive
word in this basis is hyperbolic, we just to notice that if @ and b are hyperbolic
isometries such that the intersection of their axes contains a non-degenerate interval
I and whose orientations coincide, then ab is hyperbolic, its axis contains I and its
orientation coincides with those of a and b. O

4.3 Approximation of a simplicial action in 7, by a “special curve”.

Because of proposition 4.3, the proof of Theorem 2 reduces to the following propo-
sition:

Proposition 4.5. The set of “special curves” is dense in the set of simplicial actions
n F,.

To prove this proposition, we will proceed in three steps. In the first step, we
essentially approximate a simplicial action T' € F,, by a simplicial action T € F,, with
trivial edge stabilizers and cyclic vertex stabilizers using the dynamic of Dehn twists.
In the second step, using the folding to approrimate technique, we approximate 1"
by an action T" with trivial edge stabilizers and whose quotient graph is a tree.
Finally in the third step, using once again the folding to approximate technique, we
approximate T"” by a “special curve”.

First step: approximation to get rid of components of @ \ triv(Q) with
non-cyclic fundamental group

Remember that triv(Q) denotes the set of edges of Q) with trivial edge group.

Proposition 4.6. Any simplicial action T € F,, may be approzimated by a simpli-
cial action T' € F,, whose quotient graph of groups Q' = T'/F,, has the following
properties:

e cvery component of Q' \ triv(Q’) has cyclic fundamental group (as a graph of
groups)
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e At most one component of Q" \ triv(Q’) is not reduced to one point.

Proof. Consider the union A of the components of @ \ triv(Q) whose fundamental
group is not cyclic (as a graph of groups). Consider a component Ay of A, T4, its
fundamental group and m > 2 the rank of this free group. We consider a simplicial
action T1'40 of Ag whose quotient graph of groups is a (m — 1)-rose whose edge
stabilizers are trivial, and whose vertex stabilizer is infinite cyclic. We choose any
attaching points for edges of @\ A incident on Aj.

To apply Cohen and Lustig’s theorem, we need the edge groups of Ag not to fix
any point in T4,. To achieve this, we apply the following lemma to a set {g1,..., 9k}
consisting of one generator of each edge group of Ay and we change T4, to Ty,.c.

Lemma 4.7. Let g1,...,gx be a finite set of elements of I'a,. If Ta, is an action
as above, there exists an automorphism « of I 4, such that g1,...,gr are hyperbolic
i Ty,-o.

Proof. There is a natural basis (a1, ..., an) of I' 4, such that g € I 4, is elliptic in T4,
if and only if g is conjugate to a;. If ¢ is the automorphism of I' 4, fixing as,...,an
and sending a; to ajag, then for every g € I'4, there exists at most one p € Z such
that ¢P(g) is conjugate to aj, so that we can take « to be a power of . O

Now consider the sequence of actions 7}, constructed in the theorem about dy-
namics of Dehn twists. We know that T}, converges to T'. But T}, is simplicial, very
small, and lies in F, since there exists a non-terminal vertex of @} = T} /F, with
non-trivial group (by choice of the actions Ty,). By construction, no component
of @) \ triv(Q}) has a non-cyclic fundamental group. This proves the first part of
proposition 4.6.

Now assume that 7" satisfies the first part of proposition 4.6 and not the second
one. Then take A to be the union of all but one connected components of @\ triv(Q)
not reduced to one point. For every component Ay of A, we consider a free action
of the cyclic group m1(A4g) on a line Ty,. Using the theorem about dynamics of
Dehn twists, we get an approximation of 7" which is very small and which lies in F,
(because it has a non-trivial edge stabilizer). This conclude the proof of proposition
4.6. O

Second step: approximation by an action whose quotient graph is a tree

Proposition 4.8. For n > 3, any simplicial action in F, may be approrimated by
a simplicial action T' € F,, with trivial edge stabilizers such that T'/F, is a tree.

Proof. Thanks to Proposition 4.6, we may assume that the quotient graph of
groups @) = T'/F,, satisfies the following: every component of @ \ triv(Q) has cyclic
fundamental group and @ \ triv(Q) has at most one component not reduced to
one point. Therefore, either T has trivial edge stabilizers or @ \ triv(Q) contains
exactly one component not reduced to one point, and this component has cyclic
fundamental group (as a graph of groups). First of all, we approximate 7" so that
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the lengths of its edges are all rational. We then multiply the metric by an integer
and maybe subdivide some edges so that every edge in T has length 1. We first
consider the case when T has trivial edge stabilizers: the treatment of the other
case is similar but is a bit more technical.

WHEN T HAS TRIVIAL EDGE STABILIZERS.

Since T has trivial edge stabilizers and cyclic vertex stabilizers, the hypothesis
T € F, means that there exists a non-terminal vertex Z € () with non-trivial stabi-
lizer. We prove the proposition by induction on the number of edges in T'/F,,: the
idea is to perform on T a folding to approximate operation from such a vertex and
to choose the folding paths so that the folded action has trivial edge stabilizers and
contains a vertex with non-trivial stabilizer whose projection in the quotient graph
of groups is not terminal. The following lemma tells us about the length of paths
required to perform such an interesting fold.

Lemma for folding sub-paths. Let T be a simplicial action with trivial edge
stabilizers and whose edges all have length 1. Let & = @@z ... and = [1B2... be
two (maybe infinite) paths in Q@ = T/F, with same origin  and well oriented with
respect to an orientation of Q. Assume that the vertex T has non-trivial group and
that a1 # 1. We also suppose that one of the following conditions is satisfied:

1. @ and B are infinite
2. a is strictly longer than B and the terminal vertex of B has a non-trivial group

Then there exists sub-paths &, of &, with the same (non-zero) length such that
for any lift o and ' of & and 8 with same initial vertez x and for every sequence of
distinct elements wy, € Stab z, the actions T*) = T /o ~wy.8 converge to T, T®) has
trivial edge stabilizers, and its quotient graph of groups T*) /Fy, has a non-terminal
vertex with non-trivial group (in particular, T®) € F, ).

Remark. The action T®*) still has edges of length 1 and its quotient graph T(k)/ F,
has strictly fewer edges than T

Proof. We denote by Tz-(k) the action obtained after the ¢-th intermediate fold of «
with wy.0, ng) = Ti(k)/Fn, g :T — Ti(k) the folding map and (jgk) Q- ng) the
induced application.

We first notice that if for 4 > 1 the edges ¢;—1(a;) and g;—1(wg.5;) C Tz(f)l that
define the i-th intermediate fold are in the same orbit, then their common vertex z;
has non-trivial stabilizer, and its projection Z; 1 € QZ@I is not a terminal vertex since
it belongs to the interior of the well oriented hence immersed path ¢;—1(@;—1 U ;).
Moreover, the fact that those edges ¢;—1(;) and g;—1(wg.5;) lie in the same orbit
does not depend on wy since the fold between two paths is the quotient by the
smallest equivariant relation identifying them.
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Therefore, if there exists an index 7 such that ¢;—1(;) and ¢;—1(wg.5;) lie in the
same orbit, we consider the smallest such i (i9 > 1) and take o' and ' to be the

restriction of o and (8 to the first 49 — 1 edges. Therefore, every Tz-(k) has trivial edge
stabilizers for ¢ < 49 and we can apply the folding to approzimate lemma to conclude.

If there is no such index ¢, we can apply the folding to approzimate lemma to
any of the Ti(k), but we are looking for an index ¢ such that Qz(.k) has a non-terminal
vertex with non-trivial group. In this situation, every intermediate fold reduces by
one the number of edges of the quotient graph which prevents « and (8 from being
both infinite. Hence the second assumption must hold. This implies that we can
take i = |B] (i. e. f/ = B and ' is the restriction of a having the same length as

B). Indeed, if v denotes the terminal vertex of 3, qgk) (v) lies in the interior of the

(k)

well oriented arc ¢; () so its projection in Qz(-k) is non-terminal and has non-trivial

group. [l

Now, going back to the proof of proposition 4.8 in the case that 7' has trivial
edge stabilizers (and edges with length 1), we argue by induction on the number of
edges in T'/F,, using the lemma for folding sub-paths.

To apply this lemma, it is sufficient to find an infinite path & in @ = T'/F,, which
is well oriented for some orientation of the edges of & in @), starting at a vertex Z
with non-trivial group and such that there exists an edge € in @ with origin Z not
contained in &. As a matter of fact, we can then inductively construct a well oriented
path 3 starting at €, by following any edge with the right orientation (whenever it
is already in @ or 3). The only case where this can’t be done is when 3 reaches
a terminal vertex of (), but the stabilizer of this vertex has to be be non-trivial by
minimality. Therefore, in this situation, we can apply the lemma for folding sub-paths
to conclude.

We may assume that @ is not a tree because otherwise there is nothing to prove.
Hence, there exists an embedded circle in (). If there exists such a circle C' not
containing z, we define & to be the path following a simple arc joining Z to C before
turning around C infinitely many times. Since Z is not terminal in @), there exists
an edge € with origin  which is not in . A similar argument works if Z has valence
at least 3 and z € C.

Therefore, the only remaining case is when Z has valence 2 and every embedded
circle in () contains z which may only happen when () has the homotopy type of a
circle (as a simple graph). Let C be the unique embedded circle in Q (Z € C by
hypothesis). We distinguish two cases. If there exists a vertex o # Z in ) whose
group is non-trivial and such that the length of the two simple paths & and 3 joining
Z to v are distinct, we can apply the lemma for folding sub-paths.

If no such vertex exists, it means that () can be obtained from C by gluing
finitely many trees (maybe 0) on the point @ which is antipodal to Z in C (% may
not be a vertex if |C| is odd in which case @ = C). In this case, we take @ and f to
be the two simple paths joining z to w in C (maybe in the barycentric subdivision
of Q). We consider two lifts o« and 8 of & and 3 with same origin z and wy a
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sequence of distinct elements in Stab z. It is clear that every intermediate fold of
q(k) T — Tk = T /a~wy.8 is a fold between edges with trivial stabilizers so we
can apply the folding to approzimate lemma. Moreover, Q®*) = 7k /Fp is a tree
so we just have to check that ) ¢ Op. If g*) denotes the map induced by q¥)
on the level of quotient graphs, the group of cj(k)(ﬂ) is always non-trivial. It is even
non-cyclic when the group of @ is non-trivial. Therefore, T() € F, as soon as the
group of 4 is non-trivial or when @ is not a circle (because g*) () is not terminal in
Q(k)). In the remaining situation where ) is a circle and the group of @ is trivial,
the only vertex with non-trivial group is Z. This implies that the group of z is free
of rank n — 1, and hence cannot be cyclic for n > 3. Therefore the stabilizer of
q(k)(z) is non-cyclic and T*) € F, which concludes the proof of proposition 4.8 in
the case when T has trivial edge stabilizers.

WHEN T HAS NON-TRIVIAL EDGE STABILIZERS.

In this case, we show how to approximate 7" by an action satisfying the hypotheses
of the previous case, i. e. an action with trivial edge stabilizers and such that there
exists a non-terminal vertex in its quotient graph with non-trivial group.

We denote by @ the quotient graph of groups T'/F,, as usual. As before, we
can assume that edges of T have length 1, that every component of @ \ triv(Q) has
cyclic fundamental group and @ \ triv(Q)) has exactly one component I which is
not reduced to one point. Since the fundamental group of I as a graph of groups
is cyclic, and since its edge groups are non-trivial, m1(I) has a global fixed point
in T, so I must be a tree (an HNN extension is never trivial). Moreover, the fact
that T is very small says that [ is an interval and that every edge morphism is an
isomorphism onto the corresponding vertex group which means that the connected
components of the preimage of I in T' are intervals. We are going to prove a folding
to approzimate lemma for edge stabilizers by performing a fold on an action obtained
thanks to Cohen-Lustig’s theorem about dynamics of Dehn twists.

In order to apply Cohen-Lustig’s theorem, we set A = I, and take T to be a
line with a non-trivial action of 71(I) ~ Z by translations. We choose a point z in
Tt and take every attaching point p, to be z. We consider T} and T} = Tj.Dy, as
in Cohen and Lustig’s theorem. Note that the graphs of groups Qy = Ty/F, and
Q}, = T}/ F, may be obtained from Q = T'/F, by collapsing I to a vertex o7 and by
adding an edge ey and gluing its endpoints to v;.

Folding to approximate lemma for edge stabilizers. Let T be a very small
simplicial action in F, such that every component of Q \ triv(Q) has cyclic funda-
mental group and Q \ triv(Q) has ezactly one component I which is not reduced to
one point. Let T}, the sequence of actions constructed in Cohen and Lustig’s theorem
with A =1 as above.

Assume that & and B are two paths in Q) \ er with origin vr. We choose some
lifts &'®) and B®) of & and B and we assume that they satisfy condition (H) and that
when folding o'®) on B*) | every intermediate fold is a fold between edges with trivial
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stabilizer.

Under the assumption that the first edges &, and B, of & and B correspond to
edges in Q with distinct initial points, the actions T®) obtained from Ty, by folding
a®) along %) converge to T as k — .

Proof. We prove convergence in the translation lengths topology. The theorem about
dynamics of Dehn twists tells us that 7}, converges to 7T'.
If g € F), has a fixed point in 7" then its translation length in T} approaches 0 when

k tends to infinity, and since a folding map decreases distances, Iy (g) koo,

If g € F, is hyperbolic in T, then for large enough k, it is hyperbolic in T}.
Moreover, because @; and f; correspond to edges in Q with distinct initial points, a
path in @ entering I from (the edge corresponding to) @; ! and leaving I through 3;
will be twisted more and more so that the corresponding path in @}, will go through
er more and more often between &; ~! and 3;. A similar fact holds for a path entering
I from B3;~! and leaving I through &;. This implies that for k large enough, the
projection of the axis of g in Q) never successively runs through a; ! and B or
G~ and @;. Corollary 2.2 says that two adjacent edges which are not identified
by the first elementary fold are not identified in T®*) = T/a®~p®) . Therefore, for
large enough k, the folding map isometrically embeds the axis of g into T so
Lrogy =l (¢9) and therefore converges to Ir(g). O

The folding to approzimate lemma for edge stabilizers allows us to prove a version
of the lemma for folding sub-paths for edge stabilizers:

Lemma for folding sub-paths for edge stabilizers. Let T' be a simplicial action
whose edges have length 1, such that every component of Q \ triv(Q) has cyclic
fundamental group and Q \ triv(Q) has ezactly one component I which is not reduced
to one point. As above, consider T} an approzimation of T provided by Cohen and
Lustig’s theorem.

Let & = a1@s... and B = Pif2... be two (possibly infinite) paths in Q) \ ey with
the same origin T, well oriented with respect to an orientation of Q and such that oy
and 1 correspond to edges in Q with distinct initial points.

We also suppose that one of the following conditions is satisfied:

1. @ and 8 are infinite
2. @ is strictly longer than B and the terminal vertex of B has non-trivial stabilizer

Then there exists sub-paths &, of &, with the same (non-zero) length such that
for any lift o/ and B' of & and ' with the same initial vertez x, the actions
Tk) = T} /o'~ converge to T, T*) has trivial edge stabilizers, and its quotient graph
of groups (k) /Fn has a non-terminal vertex with non-trivial group (in particular,
T®) ¢ Fp).

The proof is similar to the proof in the trivial-edge stabilizer case. With this
lemma for folding sub-paths for edge stabilizers at hand, we just have to repeat
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the argument used when 7 had trivial edge stabilizers to find some paths @ and 3
satisfying its hypotheses. The only additional case is when @} \ er is a tree. This
means that @ is a tree, and by minimality, I doesn’t contain any terminal point of Q.
We then consider two endpoints 3, and 53 of Q) lying in two distinct components of
@}, \ U1 corresponding to non-adjacent components of @ \ I. We take & and 3 to be
the simple paths joining vy to s, and 54 respectively. If their lengths are distinct, we
can apply the lemma for folding sub-paths for edge stabilizers and we are done since
we thus get an approximation of T lying in F,, with trivial edge stabilizer to which
we can apply proposition 4.8 (already proved in the case of trivial edge stabilizers).
If @ and A3 have the same length, we approximate 7' by changing some edge lengths
slightly (keeping them rational) so that the lengths of & and 3 become different.
After subdivision, we can once again apply the lemma for folding sub-paths for edge
stabilizers to conclude. This concludes the proof of proposition 4.8. O

Third step: approximation by a “special curve”.

Proposition 4.9. For n > 3, any action T € F,, with trivial edge stabilizers and
whose quotient graph is a tree may be approrimated by a “special curve”.

Thanks to proposition 4.8, this proposition will conclude the proof of Proposition
4.3 and therefore of Theorem 2.

Proof. Recall that a “special curve” is a very small simplicial action such that there
exists a basis (ai,...,a,) of F, in which every edge stabilizer is non-trivial and
generated by a conjugate of a positive word in (aq,...,a,).

As above, up to approximation, subdivision and rescaling, we can assume that
every edge in T has length 1. We are going to perform folding operations on T' to
create non-trivial edge stabilizers, and we will argue by induction on the number of
orbits of edges with trivial stabilizer. As above, we denote by Q = T/F,, and by
triv(Q) the set of edges in @ with trivial group. We also denote by triv(Q) the union
of triv(Q) together with the vertices of @ adjacent to an edge of triv(Q).

The induction hypothesis is the following: we assume that we know how to prove
the proposition for every action T" € F,, whose quotient graph @' is a tree such that

#triv(Q') < #triv(Q) and

1. triv(Q’) is connected

2. triv(Q’) is empty, or contains a vertex whose group is not cyclic, or a vertex
with non-trivial group which is not terminal in triv(Q’)

3. there exists a free basis (a1, . . ., a,) of F,, a lift Q' of Q' and for every connected
component C of @'\ triv(Q'), a possibly empty subset B¢ C {a1,...,a,} such
that

a. for all a; € Bc, a; fixes a point in C
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b. the stabilizer of every edge or vertex in C has a basis composed of positive
words in Bg.

Note that condition 3a implies that two sets B¢ and B¢ are disjoint for C # C’,
and condition 3b shows that the union of the sets B¢ equals {a1,...,a,}. The action
T we are starting with satisfies the induction hypothesis: choose any lift Q of Q in
T, and for every component C of Q \ triv(Q) (which is a single vertex) consider a
free basis B¢ of Stab C' and take (a1, ...,a,) to be the union of the Bo. Moreover,
if an action T satisfies the induction hypothesis and triv(Q) is empty, then T is a
“special curve” so there is nothing to prove.

First case: triv(Q) contains a vertex £ which is terminal in triv(Q) and has non-
cyclic group (see figure 9 where bold edges correspond to edges with non-trivial
stabilizer). Let z be the lift of Z in @, let s, and sg be two terminal vertices of

triv(Q) distinct from z. Note that Stab s, and Stab sg must be non-trivial since
either s, is terminal in @ or it is the endpoint of an edge of Q with non-trivial
stabilizer. Let o and 3 the paths joining = to s, and sg respectively. Since we want
triv(Q) to remain connected after folding, we choose s, and sg so that |a N G| is
minimal, which means that « and 3 bifurcate as soon as they meet a branch point
p of triv(Q). In particular, we take s, = sg only if triv(Q) is a segment. If o and
(B do not have the same length, we shorten the longest one so that this condition is

satisfied.
8y
8’y
N\ W/’<<

®
<w> | q (p)
5(10

Figure 9: Folding « and § in the first case
Edges with non-trivial stabilizer are represented in bold face.

Sg

To apply the folding to approrimate lemma (section 2.3) to o and [, we just
have to choose a sequence of distinct elements wy € Stab z. Let C be the component
of @ \ triv(Q) containing = and let {g1,...,g,} be a basis of Stab z consisting of
positive words in Be. Since Stab z is not cyclic, we can choose a sequence wy of
positive words in {g1,...,gp} which are not proper powers in F;, and which are not
conjugate to elements of Fj, that already fix an edge in T

The hypotheses of the folding to approzimate lemma are clearly satisfied, so
T®k) = T /a~wy.8 converge to T'. Hence, we just have to prove that Tk) satisfy the
induction hypothesis. Recall that [z, p] denotes aN [ and that g% T — T®) ig the
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folding map. The stabilizer of q(k)([a:,p]) is generated by wy, and Q) = T(k)/Fn
may be obtained from @ by gluing o\ [Z, §] on 8\ [Z, p]. Therefore, Q) is a tree, and
k)

triv(Q(*)) is connected since [, p] is a terminal segment of triv(Q). Moreover, T
is very small since wy, is not a proper power and Fix ) wy, = ¢%*)([z,p]) contains no
triod. Condition 2 is also satisfied by T®): if s, = 58, triv(Q™®) is empty; if so # s
and if dr(z, sa) = dr(z,sg) then ¢*)(s,) has non-cyclic stabilizer and its projection
to QW) lies in triv(Q®); if s, # sg and if dr(z,s4) < dr(z,sg) (without loss of
generality), then ¢(®)(s,) has non-trivial stabilizer and is not terminal in triv(Q(*)).

To see that condition 3 is satisfied, we consider the component Sg of Q\ {p}
containing sg. We obtain a lift Q™ of Q) by taking ¢*)(Q \ Sg) U q(k)(wk.Sg).
We change the basis (a1, ...,a,) by conjugating by wy the elements of B¢ for each
component C of Q \ triv(Q) contained in Sg. It is a free basis because wy may be
written in the basis (a1,...,a,) without using the letters of B¢ for C C Sp. It is
now clear that T*) satisfies the induction hypothesis.

Second case: triv(Q) contains a vertex Z with non-trivial stabilizer and which
is not terminal in triv(Q). Let x be the lift of Z in Q and let s, and sz be two
terminal points of Q lying in distinct components of Q \ {z}. Note that Stab s, and
Stab sg must be non-trivial. Let o and 8 be the simple paths joining = to s, and
sg respectively. If @ and 8 do not have the same length, we shorten the longest one
so that this condition is satisfied. We take any sequence wy, of distinct elements in
Stab z and we consider the folded actions T"®) = T'/a~wy.6. It is an approximation
of T when k is large enough thanks to the folding to approrimate lemma.

The quotient graph Q®*) = T(¥) /F, is obtained from @ by identifying & and 3,
and the stabilizers of the edges contained in ¢*)(a) = ¢(*)(8) are trivial. Therefore,

triv(Q(¥)) is connected, T®) is very small, and Q%) is a tree. Since the stabilizers

of 54 and sz are non-trivial, triv(Q(*)) contains a non-terminal point with non-
trivial stabilizer when d(z, so) # d(z, sg) and a point with non-cyclic stabilizer when
d(z,s,) = d(z, s3)-

To see that condition 3 of the induction hypothesis is satisfied, we consider the
component Sg of Q\ {q} containing sg. As above, we consider the lift Q™) of Q)
defined by

QW = ¢™(Q\ Sp) U g™ (wk.Sp).

We change the basis (a1,...,a,) by conjugating by wy, the elements of B¢ for each
component C of Q\ triv(Q) contained in Sz. We get that T%) satisfies the induction
hypothesis which ends the proof of Proposition 4.9 and hence of Theorem 2. O

5 Does Out(F,) act with dense orbits on F,?
We still don’t know whether Out(F,) acts with dense orbits on F,. This question

is equivalent to asking whether M,, = F,,. To prove this equality, it would be
sufficient to approximate every non-simplicial action by a simplicial action lying in
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Frn- In [BF2|, Bestvina and Feighn show how to approximate a very small action
T by a simplicial very small action T". Their argument shows that if T has a non-
trivial arc stabilizer, then 7" may be assumed to have a non-trivial edge stabilizer
so T' € F, and T € M,,. They also prove that if a geometric approximation of T'
has an orientable surface component, then 71" can be approximated by a very small
simplicial action with a non-trivial edge stabilizer and hence lies in M,,.

If T is a very small action of F,,, Gaboriau and Levitt show in [GL] that T
has only finitely many orbits of branch points. Therefore, we can apply [Lev2] to
conclude that 7" may be seen as the action corresponding to a graph of actions on
R-trees whose vertex actions have dense orbits. Therefore, proving that M,, = F,
reduces to showing that any very small action with dense orbits lies in M,,. The
following theorem partially answers this question (see section 5.12 for definitions):

Theorem 3. Let n > 3 and let T be a very small action with dense orbits. If the
Lebesgue measure on T is the sum of at most n — 1 ergodic measures, then T € M.

We will see in section 5.1 that because of the topological dimension of CV,,, the
Lebesgue measure is always a sum of at most 3n — 4 ergodic measures.

Remark. Let a be an irreducible automorphism of F,, with irreducible powers. This
means that no power of « fixes a free factor of F,, up to conjugation. Then Lustig
has proved that o has exactly two fixed points in C'V,, and no other periodic point
(|[Lus2]). This implies that those fixed points are uniquely ergodic. As a matter of
fact, there is a natural way to associate to an action T' € CV,, a simplex o(T') C CV,,
built on its set of invariant measures. If 1" is not uniquely ergodic, this simplex is
not reduced to one point and some power of « fixes this simplex pointwise which
is impossible. Therefore, Theorem 3 implies that the fixed points of an irreducible
automorphism with irreducible powers must lie in M,,.

5.1 Measures on R-trees
Length measures and uniquely ergodic actions

The classical measure theory is not adapted to R-trees because they are no locally
compact. In [Pau3| is proposed an alternative called length measure. For shortness’s
sake, we will sometimes use the shortcut measure to mean a length measure.

Definition. A length measure y on an R-tree T consists of a finite Borel measure
pr for every compact interval I of T such that if J C I, py = (pur)z-

If T is endowed with an action of a group I', we say that a length measure is
invariant if pgr = (gr)«p1. The Lebesgue measure of an R-tree is the collection of
the Lebesgue measures of the intervals of T'. If T" acts by isometries on T, then the
Lebesgue measure is invariant. If y is a length measure on an R-tree T', we write
p(I) for pr(I). We say that p is non-atomic or positive if every uy is non-atomic or
positive.

32



Remark. It may happen that an action with dense orbits has an invariant measure
with atoms, but this is impossible if every orbit is dense in the segments.

Let f : T — T’ be a map such that every segment I in T' may be subdivided into
finitely many intervals on which f preserves alignment (this is the case when f is a
morphism of R-trees or a map preserving alignment). Any non-atomic measure u' on
T' may be carried to a measure u = f*u’ in the following way: let I be a segment in
T and subdivide I into finitely many subsegments I, on which f preserves alignment.
Then take p; to be the only (non-atomic) measure on I such that for every interval
J inside some I, 1 (J) = plypy (f(J))-

Measures and maps preserving alignment

From now on, we only consider positive invariant measures.

Let T be an R-tree with an isometric action of I'. If ¢ : T — T" is an equivariant
1-Lipschitz map preserving alignment, by carrying to T the Lebesgue measure of 1",
we obtain an invariant positive measure whose density with respect to the Lebesgue
measure is at most 1. Conversely, given a invariant positive measure y on T' whose
density with respect to the Lebesgue measure is at most 1, we consider the pseudo-
metric on T given by d,(z,y) = pu([z,y]). One easily checks that making this pseudo-
metric Hausdorff gives an R-tree T},. This tree is naturally endowed with an isometric
action of I' and the quotient map ¢ : T' — T, preserves alignment. Note that by if u
is obtained by pulling back p’ under f: 7T — T" then T}, is isometric to 7".

Here are some simple properties of maps preserving alignment:

Lemma 5.1. Let T and T' be R-trees endowed with an isometric action of a group
I and let q: T — T' be an equivariant map preserving alignment.

Then the preimage of a conver set is conver. For every v € I', Charp v =
q(Charr ). Moreover, if v is hyperbolic in T and elliptic in T' then ~ has only one
fized point a = q(AxisT ) in T".

Proof. Let K' be a convex set in T and let a,b € K = ¢ (K'). Every = € [a, b
is sent by ¢ to a point in [g(a),q(b)] so K is convex. Now, ¢(Chary ) C Chargr vy
because a point a lies in the characteristic set of y if and only if a € [y~.a,v.a]. If v
is hyperbolic in 7", then g(Charr 7) is connected and ~y-invariant, so it must contain
the axis of y in T". If «y is elliptic in 7", then the preimage of a fixed point of v in
T' is connected and y-invariant. Hence it must intersect the characteristic set of 7
in T. Therefore, Chary v = g(Charr «y) and + fixes at most one point in 7" when
it is hyperbolic in T'. O

Corollary. Let T and T' be two minimal F,, actions and q : T — T' be a map
preserving alignment. If T is very small then so is T".

Proof. From the previous lemma, 7" is small because any element fixing the non-
degenerate arc [z,y] fixes the arc joining the subtrees ¢ !(z) and ¢ !(y). The pre-
vious lemma allows one to deduce that Fixqs v = Fixq» ¥ from Fix7 v = Fixp ~*.
Finally, Fixp v = q(Fix7 7) shows that v may not fix any triod in 7". O
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Ergodic measures

A homothety of a length measure p is the multiplication of every u; by a same
positive real number.

Definition. We say that an R-tree endowed with an isometric action of a group T’
is uniquely ergodic if the Lebesgue measure is the only non-zero positive invariant
measure on T up to homothety.

In particular, if 7' is uniquely ergodic, and if ¢ : T — T" is equivariant and
preserves alignment, then ¢ is a homothety.

If T is an action of a group I', we denote by M (T') the convex cone of invariant
positive measures on 7'.

A subset E C T is said to be measurable if each intersection of E with an arc of
T is measurable. Thus, a function f : T'— R is measurable if its restriction to every
interval of T' is measurable. We say that a measurable subset £ C T has p-measure
0 if for every arc I of T, uy(ENI) = 0, and E has p-full measure if T'\ E has measure
0. A function f : T — R is constant p-almost everywhere if there exists ¢ € R such
that f~!(c) has full y-measure.

Definition. A measure p € M(T') \ {0} is said to be ergodic if the following equiv-
alent conditions hold:

1. every I'-invariant measurable function is constant p-almost everywhere

2. every measure v € M(t) with density at most one with respect to yi is homothetic
to u

3. w is extremal in M(T), i. e. if p = p1 + po with py, pe € M(T), then py and
o are homothetic to p

4. every measurable invariant subset of T' either has full or 0 measure with respect
to p.

Proof of the equivalence of the conditions. 1 = 2 because if v € M(T) has density
at most one with respect to u, on every arc I we may write v; = frur for some
measurable functions fr defined pr-almost everywhere, and the f; are the restrictions
p-almost everywhere of an invariant measurable function f : T - R. 2 = 3 = 4
are clear. If f is a I'-invariant measurable function which is not constant almost
everywhere, then there exists M € R such that neither AT = {z € T|f(z) > M}
nor A~ ={z € T|f(z) < M} have y-measure 0. O

Note that if T' is uniquely ergodic, then the Lebesgue measure is ergodic. We
denote by Mjy(T) the set of non-atomic invariant positive measures on 7' and
M (T) C My(T) the set of invariant positive measures with density at most 1 with
respect to the Lebesgue measure. Both My(T') and M;(T') are convex.
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Lemma 5.2. A non-atomic measure p is ergodic if and only if My(T,) has dimen-
sion 1.

Proof. The measure y is ergodic if and only if every non-zero measure whose density is
at most 1 with respect to u is homothetic to . Now there is a natural isomorphism
between the set of measures on T with density at most 1 with respect to u and
the set of measures on 7T) with density at most 1 with respect to the Lebesgue
measure: if ¢ : T' — T, denotes the quotient map, the isomorphism is given by
v e M(T,) — q*v. O

Weak topology on sets of measures

The set M(T) is naturally endowed with the weak topology (see [Pau3]). For this
topology, a sequence u®) of measures converges to y if and only if for every interval
I and every continuous function f : I — R,

[ ran® == [ .

This topology is not projectively compact in general. One should keep in mind the
following phenomenon ([Pau3|): if I is an arc in 7', if b € I\ 01 is a branch point of
T, and if d, is the Dirac measure at zy ¢ I with z; — b, then §) does not converge
to the Dirac measure at b.

If T is a minimal action of a finitely generated group, then there exists a finite
tree K C T such that every arc I of T' may be subdivided into finitely many sub-arcs
which may be sent into K by an element of I". Therefore, the set My(T') of non-
atomic length measures on 7' is naturally identified with the set of (usual) measures
@ on K which are I'-invariant i. e. such that for all y € T,

(’Y\Knrl.K)*M\Kmrl.K = HKny.K-

The topology induced on My(T') by the weak topology coincides with the usual
topology on the space of invariant measures on K. This implies that M;(T) is
compact (but it contains the null measure). This identification may be extended to
the set of measures for which no branch point of T' has non-zero measure, but we
won’t need this fact. Note that on My(7T'), the applications p — u(I) are continuous
for every arc I (because the measures in My(7T') have no atom).

Measures and simplices

Lemma 5.3. Let T be a minimal action of a non-abelian finitely generated group T
with dense orbits. Then the map or from My(T) \ {0} to the set of actions of T on
R-trees modulo equivariant isometry defined by or(n) =T, is one-to-one.

Remark. This lemma is of course false if we don’t assume that 7" has dense orbits.
This map o7 is linear in the following sense:

ld(t1u1+t2u2) = tlla(ul) + tZla(m) for all t1,t2 > 0.
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The map o7 is continuous on My(T') because p +— wu(I) is continuous for every
interval I.

Proof. We can assume that 7' is not a line since we know in this case that T is
uniquely ergodic. Since T' is minimal, every 7T}, is minimal (the preimage of an in-
variant subtree is an invariant subtree). Assume that f : T),, — T}, is an equivariant
isometry for some p1, us € Mo(T). We denote by ¢; : T — T),, the quotient maps.

For 7,0 € T, we denote by bridger (y,0) the segment joining the characteristic
sets of v and ¢ (if they are disjoint) or their intersection point when they meet in
exactly one point. We don’t define bridge (7, d) if the intersection of their charac-
teristic sets contains more than one point.

'Y ,Yl 6 8!

Let z,y be two distinct points in 7. We want to prove that p1([z,y]) = pe([z,y]).
Since the orbits of I' are dense in T, and since T' is not a line, the branch points of

T are dense in every segment: if I is an arc and if x € I , we find a branch point
in I close to x by projecting to I any branch point of 71" that is close enough to z.
Now, since T' is non-abelian, every segment is contained in the axis of a hyperbolic
element (see [CuMo]| or [Pau2, Lemma 4.3]). This implies that for every ¢ > 0, we
can find elements 7, v/, d,d' € T hyperbolic in T whose axes are pairwise disjoint and

x € bridge, (7,7') and vy € bridge, (4,4")

with
p; (bridger (v,7")) , s (bridgep (6,6")) <e fori € {1,2}.
One has g;(bridger (v,7')) = bridges, (v,7') and ¢;(z) € bridge, (v,7') (and
similar facts for y with §, ¢’ instead of ,+"). This implies that

pil(e,y]) — d (bridger, (7,7, bridger, (6,8))| < 2e.

But f sends bridger, (7v,7') and bridges, (4,8") respectively to bridger, (7v,7)
and bridger, (6, §"). We deduce that pi([z,y]) is 4e-close to po([z,y]) and this

holds for every € > 0 so that pu; = po.
O
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Corollary 5.4. Let T be a very small Fy-action with dense orbits. Then My(T) is
a finite dimensional convex set and My(T') is projectively compact. Moreover, T has
at most 3n — 4 non-atomic ergodic measures (up to homothety), and every measure
in My(T) is a sum of these ergodic measures. Moreover, My(T) is compact, and op
and (o1)|a(T)\fo} define two simplices in outer space.

Proof. First notice that if ui,...,u, are ergodic measures which are mutually not
homothetic, then they are linearly independent in M (T"). This is because there exist
disjoint measurable sets Eq,..., E, that cover T" such that E; has full y;-measure.

On the other hand, the set of very small actions of F;, which are not free simplicial
(i. e. the non-projective boundary of outer space) has topological dimension 3n — 4
(see [GL]). Since oy is linear, continuous and injective, My(7') has dimension at most
3n — 4, and T has at most 3n — 4 non-atomic ergodic measures up to homothety.

We now prove that any measure p is a sum of ergodic measures. The set of
measures M, (T) with density at most 1 with respect to p is compact since it is
isomorphic to the set of invariant measures on a finite tree K with density at most 1
with respect to y. The Krein-Millman theorem shows that u is a convex combination
of extremal points of M, (T) [Lang, Th. IV.1.5 p. 88]. Such an extremal point must
be ergodic (if non-zero). O

5.2 Limits and maps preserving alignment
The following proposition is crucial in this section:

Proposition 5.5. Let T' be a minimal non-abelian action with dense orbits of a
finitely generated group ', and assume that T is not a line. Assume we are given
actions Tp, T, and T' such that T 120 7 and T, 1720, 7! and assume that we
have equivariant 1-Lipschitz maps preserving alignment qp : T;, — TI’,.

Then there exists a natural equivariant 1-Lipschitz map q : T — T' preserving
alignment.

Remark. This proposition can easily be checked to hold under the weaker assumption
that gp is 1-lipschitz and has a backtracking constant going to 0 as p tends to infinity.

Proof. Let K, and K}, be two exhaustions of T' and T' by finite subtrees, F, an
exhaustion of I' by finite subsets, and ¢, a sequence of numbers decreasing towards
zero. By passing to a sub-sequence, we may assume that

e there is an Fj-equivariant e,-approximation R, between K, C T and H, C T,
e there is an Fj-equivariant e,-approximation R, between K, C T" and H,, C T.

Here is a method to construct ' = g(z) € T'. Take z € T and assume that p
is large enough so that x € K. Let x, € H, be an R,-approximation point of z
and let z;, = g,(zp). Let y, be an Rj-approximation point of the projection of z;, on
H,,. We are going to prove that d(zj,, H,) 7%, 0 and that y, converges in T" to
a point which we will define to be ¢(z).
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As in the proof of lemma 5.3, for every € > 0, we can find hyperbolic elements
7,8 € I" such that

e Axis (y) N Axis () =0
e 1 € bridger (v, d)
e the diameter of bridges (v, d) is at most e.

An easy argument about the Gromov topology shows that for p large enough, v and
0 are hyperbolic in T}, their axes don’t intersect, they are at most 2e-far from each
other, and z, is e-close to bridger, (7,0).

Lemma 5.1 implies that the characteristic sets of y and § intersect in at most
one point. Moreover, gp[bridge;, (v,6)] = bridgeTé (7,9). Since g, is 1-Lipschitz,
d(m;,,bridgeTI,) (7,0)) < e and the diameter of bridger (7,0) is at most 2e. To
show the first part of the claim, just notice that for p large enough, HI’, contains
bridge (77, 6) because it meets Char y and Char § (this is a simple argument about
the Gromov topology).

Let z;, be the projection of z;, on Hj, and let y;, be an approximation point of
x, in T'. The condition #(Char~y N Chard) < 1 being a closed condition in the
equivariant Gromov topology (see for instance [Pau2]), Charys yNCharg § contains
at most one point. Moreover, since the diameter of bridgeTé (77, 6) is at most 2¢ for
every p, so is the diameter of bridges (7, d). For sufficiently large p, y;, is 2e-close
to bridges (,6), which implies that for p,q large enough, d(y,,y,) < 6¢, so y, is
Cauchy. Note that 7" may not be complete (and in this case its completion is not
minimal). But the argument above shows that if 7o, §p are fixed hyperbolic elements
of I' such that x € bridge (y0,d0), d(y,, bridge (70, 00)) tends to 0 as p tends to
infinity. Since bridgeq~ (7o, d0) is compact, i, converges to a point in this set which
proves the claim.

The limit g(z) of y, is independent of the choices made since we may apply
the claim to the sequence obtained by alternating the terms of two sequences y;,(l)
and y;,@) corresponding to different choices. The fact that ¢ is equivariant and 1-
Lipshitz is clear. To prove that g preserves alignment, pick a,b,c € T aligned in
this order, i. e. such that (alc), = 0. Some approximation points ay,bp,c, in T,
satisfy (ap|cp)p, < 3ep/2. Since a 1-Lipschitz map preserving alignment decreases
the Gromov product, (ap|cp)y < (aplcy)y, < 3ep/2 where ay, by, ¢, are the images
through ¢ of ay,by, ¢, and ay, b, c; are their projection on H,, (this projection is
1-Lipschitz and preserves alignment). We deduce that (g(a)|g(c))qer) = 0, and ¢
preserves alignement. O

5.3 Approximation of actions with few ergodic measures

Theorem 3. Let n > 3 and let T be a very small action with dense orbits. If the
Lebesgque measure on T is the sum of at most n— 1 ergodic measures, then T € M.,,.
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Remark. There exist actions for which the Lebesgue measure is non-ergodic since
Keynes-Newton and Keane have shown how to build interval exchanges for which
the Lebesgue measure is non-ergodic ([KeNe, Kea]). In fact, the number of ergodic
measures of an orientable measured foliation on a compact orientable surface with
fundamental group F, is at most n—1 and equality is reached (see [Sa] for instance).
The number of ergodic measures of a non-orientable measured foliation on a non-
orientable surface with fundamental group F;, is at most 3n — 4. More recently,
Martin proved that there exists non-ergodic systems of isometries of exotic type
([Mar]). There is a very easy way to construct non-geometric very small actions
with dense orbits for which the Lebesgue measure is not ergodic: start from two
non-geometric free F3-actions 77,7 with dense orbits. Given two base points 1

and *9 in 17,7y, the action T'=T, * Ty of F3 * F3 has dense orbits and is free.
*1=%9

The Lebesgue measure of T' is not ergodic since one may multiply by A; and A the
metrics on 17 and T5.

Proof. We have to approximate T by simplicial actions in F,,. We first prove the
theorem when the Lebesgue measure on T is ergodic, since the proof is simpler.

Take a sequence of very small (or even free) simplicial actions 7T}, converging to
T. Given an edge e, € T, we consider the action TI’, obtained by collapsing to a
point every edge which is not in the orbit of e, (7, may be seen as (T}),, where p,, is
the restriction of the Lebesgue measure on Fy,.e,). The collapsing map ¢, : T, — TI',
is 1-Lipschitz and preserves alignment.

We show that e, may be chosen so that a subsequence of Tlﬁ converges to a very
small action T" (without rescaling the metric on T}): take g € F;, hyperbolic in 7',
Since Tp has at most 3n — 3 orbits of edges, there is an edge e, of T}, whose orbit
contributes at least 1/3n — 3 to the translation length of ¢ (if I is a fundamental
domain for the action of g on its axis, [I N Fy.ey| > Ir,(ep)/3n — 3). Compactness
of C'V,, and the fact that lT;’w (g) remains bounded away from 0, implies that up to
taking a subsequence, we may assume that TIQ converges to a very small action T".

Proposition 5.5 and ergodicity then show that 7" is homothetic to T'. Morever,
since the quotient graph of ng has exactly one edge, Tz; cannot lie in O, ng being
simplicial, we get that T, € My,. Therefore, T' (and hence T) lies in M,

Now let’s turn to the proof of the general case. First, Bestvina and Feighn show
that T" may be approximated by simplicial very small actions T, such that there
exist equivariant morphisms of R-trees fp : T, — T ([BF2]). Let A be the Lebesgue
measure on 7', and let uq,...,ur be ergodic measures such that A = puy +--- + pg
for some k < n — 1. Denote by v/ = [p1i the pull-back measure on 7Tj,. The density
of ¥ with respect to the Lebesgue measure on T}, is at most 1. Let Tlﬁ = (Tp),,lp be
the corresponding simplicial action.

We show that TIf converges to T}, when p — co. For every g € Fy, I (9) <l1,(9)
so if g is elliptic in T then Iri (9) converges to Ir, (g) = 0. When g is hyperbolic
in T, g is hyperbolic in T}, for large p. Let I be an interval of length Ir,(g) in
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Axist, (g9) and subdivide I into sub-intervals isometrically embedded in T through
fp- This subdivision may be refined so that there exists a finite union E of the
sub-intervals such that f,(F) is an interval of length l7(g) contained in Axist (g),
and such that f, is one-to-one in restriction to E \ 0E. This implies that f, is
isometric in restriction to each component of E, so that the Lebesgue measure
of I'\ E is I,(g) — IT(g) and thus tends to 0 as p tends to infinity. In the same
way, I (9) — Iz, = v2(I'\ E), hence tends to 0 since v¥(I'\ E) is smaller than the
Lebesgue measure of (I'\ E). This shows that T} converges to T, when p — oo.

The argument in the ergodic case tells us that for each i € {1,...,k}, up to taking
a subsequence, we can collapse edges in Tiﬁ to obtain actions T;i having exactly one
orbit of edges, and which converge to some action 7" homothetic to T),, since the
Lebesgue measure of T),, is ergodic. Let 0 < ¢; < 1 be such that 7" = ¢;.T),,. We
denote by aif the measure on T}, corresponding to this collapse: af’ is the restriction
of ¥ to the non-collapsed edges. With these notation, Tlﬁi = (T}) o?

Now consider the measure o on 7T}, defined by

k
9p = Z
=1

Then (7})s, tends to T as p tends to infinity. Since each o? is non-zero on at most 1
orbit of edges, (Tp)s, has at most £ < n— 1 orbits of edges. To conclude, just notice
that any very small simplicial action having at most n — 1 orbits of edges cannot lie
in O,,. [l

| =

i
Up.

o~

%
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Titre Frangais :
Dynamique de Out(F},) sur la frontiére de ’outre-espace.

Résumé :

Dans cet article, nous étudions la dynamique de laction du groupe Out(F,,) sur
la frontiére CV,, de 'outre-espace : nous décrivons un sous-ensemble fermé pro-
pre F,, de 0CV,, invariant sous l’action de Out(F,) et tel que Out(F),) agisse pro-
prement discontiniment sur ’ouvert complémentaire. Nous prouvons ensuite qu’il
existe un unique fermé non-vide invariant non vide M, dans F,. Cet ensemble
M,, est I’adhérence de l'orbite de toute action simpliciale appartenant a F,,. Nous
démontrons enfin que M, contient toutes les actions ayant au plus n — 1 mesures
ergodiques. Ce dernier résultat rend probable 1’égalité de M,, et de F,,, de sorte que
F, serait ’ensemble limite de Out(F},), le complémentaire de F,, étant son domaine
de discontinuité.
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