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Abstract

In this paper, we show how the canonical JSJ splitting of a one-
ended hyperbolic group allows to understand all its small actions on
R-trees: they are obtained by blowing up the surface type vertices into
an action corresponding to a measured foliation on the corresponding
orbifold, by blowing up elementary type vertices into a finite tree with
bounded complexity, and by collapsing some edges. We deduce that
every small action of a one-ended hyperbolic group on an R-tree is
geometric. We also derive a strong uniqueness property of the JSJ
splitting.

1 Introduction, statement of results

In [Sel2], Z. Sela introduced the JSJ splitting of a torsion free one-ended
hyperbolic group. This splitting is inspired by the works of W. H. Jaco,
P. B. Shalen and K. Johannson on the characteristic submanifold of an
irreducible 3-manifold ([JaSh, Jo]). The JSJ splitting of a group I is a
splitting of this group over cyclic groups with some maximality properties.
Thus, every elementary splitting of I' can be read from the JSJ decom-
position (here, elementary splitting means amalgamated product or HNN
extension). In these splittings, the surface groups play a particular role
due to the fact that two splittings of a surface group corresponding to two
intersecting closed simple curves have no common refinement. Therefore,
the surface groups are considered as a whole and are not split in the JSJ
splitting. Since then, the JSJ splitting has been generalized by E. Rips and
Z. Sela to one-ended finitely presented groups ([RiSe]), by M. J. Dunwoody
and M. E. Sageev for splittings over slender groups with a one-ended like
hypothesis on I' ([DuSa]), and by K. Fujiwara and P. Papasoglu without
this hypothesis ([FuPal).



B. Bowditch gave a topological approach of this splitting in [Bo2]. It
deals with one-ended hyperbolic groups (maybe with torsion) over virtually
cyclic groups. This splitting can be read from the topology of the boundary
at infinity OT" of " and in particular from the structure of its local cut points.
This theorem uses the fact that JI' is locally connected, which was recently
proved by B. Bowditch and G. A. Swarup ([Bol, Bo3, Lev5, Swa, Bo4])
using a theorem by M. Bestvina and G. Mess saying that local connexity is
implied by the absence of global cut points ([BM]).

In this article, we use Bowditch’s approach of the JSJ splitting because of
its strong uniqueness properties. Qur main theorem shows how this splitting
allows to understand every small action of a one-ended hyperbolic group on
R-trees: they all can be read from the JSJ splitting, i. e. may be obtained by
blowing up the JSJ-tree in a special way (see definition 1.4). This allows us
to derive that small actions of a one-ended hyperbolic group are geometric,
thus generalizing Skora’s Theorem. To make those statements precise, we
need to introduce more precisely the JSJ-splitting.

The JSJ splitting of a one-ended hyperbolic group. Let’s first recall
some definitions. In all the sequel, we will use the terminology two-ended
for (infinite) virtually cyclic groups.

Definition 1.1. A fuchsian group I is a non-elementary group (i. e. infinite
and not 2-ended) together with a properly discontinuous isometric action on
H? (this action may not be faithful but its kernel is finite). Its convex core
is the smallest non-empty closed invariant convex subset of H2. T is convex
cocompact if I' acts cocompactly on its convex core. Its peripheral subgroups
are the setwize stabilizers of the boundary components of its convex core.

Remark. The quotient of the convex core of I' by the action of I' is a 2-
orbifold with boundary whose fundamental group is the quotient of ' by
the kernel of the action.

In the following, we blurry the difference between a splitting, a graph of
groups, and the action of its fundamental group on its universal cover. Note
that a small action of the one-ended hyperbolic group I' on a simplicial tree
is an action with 2-ended edge stabilizers because by Stallings’ theorem, the
one-ended group I' doesn’t split over a finite group.

Theorem 1.2 ([Bo2] th. 0.1, 5.28 and prop. 5.30). Let I' be a one-
ended hyperbolic group. There exists a canonical action (S,T') of T' on a
simplicial tree S with 2-ended edge stabilizers called the JSJ splitting with



the following properties. The vertices of S are of three types according to
their stabilizer:

e the elementary type wertices, whose stabilizers are 2-ended. Their
valence in S is finite.

e the surface type vertices, whose stabilizers are non elementary convex
cocompact fuchsian groups, and which are quasi-conver in I'. Their
peripheral subgroups are precisely the stabilizers of the incident edges.

e the rigid type vertices which are not of the previous types. Their sta-
bilizer don’t have any non trivial action on any simplicial tree T with
2-ended edge stabilizers such that the stabilizers of the edges incident
onv in S fir a point inT. In other words, the quotient graph of groups
S/T cannot be refined at a rigid vertex into a splitting over 2-ended
groups.

Moreover, two adjacent vertices in S are not of the same type and the action
of I' preserves the type. Hence it has no inversion. Moreover, if v is a valence
2 vertex in S then the two neighbours of v are of rigid type.

This splitting is canonical in the sense that for every automorphism o €
Aut(T") there is an equivariant automorphism between S.oc and S (if p: T —
Isom (S) is the morphism defining the action of T' on S, S.« is the action
of T on S defined by p' = po a).

The JSJ splitting is mazimal in the following sense: if ' splits over a
2-ended group FE, then E is conjugate to a subgroup of a vertex stabilizer of
S of surface or elementary type.

Finally, the JSJ splitting is invariant under any automorphism of T': for
every a € Aut(l'), there exists an automorphism hy : S — S such that
ha(g.z) = a(g)-ho(z) for every z € S,g € T.

Remark. It may happen that S is reduced to one point. Then I' is either a
cocompact fuchsian group, or a rigid group in the sense that it doesn’t split
over any 2-ended group. We won’t consider those cases in the sequel.

Reading small actions from the JSJ splitting An (isometric) group
action on an R-tree is small if the pointwise stabilizer of any non-degenerate
arc doesn’t contain a non-abelian free group. When the group considered
is hyperbolic, then arc stabilizers are finite or two-ended. A blow up of a
simplicial action S is an action obtained by replacing equivariantly every
vertex v of S by an R-tree T),, by gluing equivariantly on T), edges which



were incident on v in S, and by giving equivariantly a (maybe 0) length to
the edges of S. Equivalently, a blow up of S is the action corresponding to a
graph of actions on R-trees with underlying graph of groups S/T', and with
a (maybe 0) length for every edge in S/I' (see [Lev4, Gui).

The goal of this paper is the following theorem:

Theorem 1.3 (Reading Theorem). Every minimal small action of a one-
ended hyperbolic group T’ on an R-tree can be read from its JSJ decomposition
in the sense of definition 1.4.

Definition 1.4. Let (S,T") be a small action on a simplicial tree. We clas-
sify the vertices into three types according to their stabilizers: a vertex is
of elementary type if its stabilizer is 2-ended, it is of surface type if it is a
convex cocompact fuchsian group and if its peripheral subgroups are precisely
the stabilizers of the incident edges, and rigid otherwise.

Assume we are given a small minimal action (T,T'). We say that (T, T)
can be read from (S,T) if the edge stabilizers of S, the rigid groups and the
elementary groups fix a point in T and if there is an equivariant isometry
between (T,T') and the action corresponding to a graph of actions of the
following form: Let QQ = S/T' be the quotient graph of groups of the JSJ-
splitting, Ty, and I, the vertexr and edge groups, and i. the edge morphisms.

e For each surface type vertez in Q, take a small (maybe trivial) minimal
action (T,,T,) such that for each oriented edge e incident on v, i.(T.)
has a fixed point pe in Ty.

e For each elementary type vertex v in Q, consider an action of I'y on
a finite tree T, having a global fized point (it is not assumed to be
minimal), and take for each oriented edge e incident on v a point pe
fized by Te. We require T, to be the convex hull of the union of the
(finite) orbits of the points pe.

e For each rigid vertex v, we take T, to be the trivial action of I'y on a
point.

e We assign to every non-oriented edge of Q@ a maybe 0 length. We
require that the edges incident on an elementary type verter have 0
length.

Remark. We don’t assume in this definition that the rigid type groups are
actually rigid in the sense of Theorem 1.2 but this fact has to be true if
every small action can be read from (S,T).



By Skora’s Theorem, the small actions of a surface type group I', with
elliptic peripheral subgroups are well known: they are obtained by taking
the space of leaves of a I',-invariant measured foliation on its convex core (or
equivalently by taking the dual tree of an invariant measured lamination).
In particular, these actions are geometric. Roughly speaking, an action is
geometric if it comes similarly by taking the space of leaves from a cover
of finite 2-complex with a measured foliation (see [LP] or 5.1 for a formal
definition).

We then deduce from the Reading Theorem 1.3 a generalization of
Skora’s Theorem:

Corollary 1.5. FEvery small action of a one-ended hyperbolic group is geo-
metric.

The Reading Theorem 1.3 also implies a strong uniqueness property of
the JSJ splitting:

Corollary 1.6. Let I' be a one-ended hyperbolic group. The JSJ splitting
of T' is the only minimal small simplicial action (S,T') in which no edge
connects 2 elementary type vertices such that every small action of T' can
be read from S up to equivariant homeomorphism (i. e. up to subdivision of
edges and equivariant simplicial isomorphism).

Moreover, it is unique up to equivariant simplicial isomorphism (without
subdivision) if we add the requirements that no edge of S is adjacent to
2 wvertices having the same type and that the two neighbours of a valence 2
vertez have the same type (these properties are satisfied by the JSJ splitting).

The proof of the theorem goes as follows. Using the construction of the
JSJ-splitting, we first prove that edge stabilizers of the JSJ-splitting S fix a
point in 7. This implies that a rigid group I'(v) fix a point in T because Rips
Splitting Theorem would otherwise provide a splitting of I'(v) contradicting
its rigidity. This point is unique because the action on 7 is small so there is
no choice in the attaching points of the incident edges. We then study the
action of a surface type group I'(v) and show that the peripheral subgroups
fix a unique point in the minimal I';, invariant subtree T;. These points will
be the attaching points of the corresponding edges. We then associate to
an elementary vertex v € S the convex hull T, of the attaching point of the
edges originating from v. This provides a blow up of S with an equivariant
morphism of R-trees to T'. In the last part we check that this morphism is
an isometry.

In section 2, we recall some definitions. In section 3 we sum up
Bowditch’s construction of the JSJ splitting. The proof of Theorem 1.3 is



given in section 4, and the corollaries are proven in section 5.

This work is a part of a Ph.-D thesis, defended in Université Toulouse
III in January 98. I would like to warmly thank my advisor Gilbert Levitt
for encouraging me and carefully checking my work. Many thanks also to
Frédéric Paulin for his helpful comments.

2 Preliminaries

Generalities about R-trees may be found in [Sha2, Shal]. An R-tree is an
arcwise connected metric space in which any topological arc is isometric to an
interval of R. Simplicial trees endowed with a path metric provide examples
of R-trees. All the actions on R-trees we will consider are isometric actions
of finitely generated groups. We will often shortly say action to mean a
group action on an R-tree.

Given an isometric action (7,T"), we say that g € T' is elliptic if it has
a fixed point in 7. In this case Fix g is a subtree of T. Otherwise, we say
that g is hyperbolic, in which case there is a unique g-invariant line called
its azis on which g acts by translations. More generally, we will say that a
subgroup 'y C T is elliptic if it fixes a point in 7. The translation length
Ir(g) = infyer d(z, g.z) is reached on the axis of g if g is hyperbolic, and on
its fixed set if it is elliptic.

Two actions of I' on R-trees will be identified if there is an equivariant
isometry between them. Unless otherwise stated, we will always assume that
the actions we consider are minimal, i. e. have no proper invariant subtree.
We can always reduce to this case since when a finitely generated group I
acts on an R-tree T" with no global fixed point, there is a unique minimal
non-empty I' invariant subtree: it is the union of the translation axes of
hyperbolic elements of I' ([CuMo]).

A morphism of R-trees f between two actions (T,T), (T",T) is an equiv-
ariant map such that every arc in 7' can be subdivided into finitely many
sub-arcs in restriction to which f is an isometry. A map f : T — T’ pre-
serves alignment if x € [y, z] implies f(z) € [f(y), f(z)]. A typical example
of a map preserving alignment is the map induced by collapsing edges in a
simplicial tree. Also note that if a morphism of R-trees preserves alignment,
then it is an isometry.

Definition. A graph of actions on R-trees Q is a graph of groups @ with
vertex groups I'y, edge groups Ue and edge morphisms ie : I'e — T'y() together
with the following data:



e for each vertex v an action (Ty,Ty) of the corresponding vertex group

e for each oriented edge e incident to v = t(e), an attaching point p. € T,
fized by ic(Le)

e a (maybe 0) length for each non-oriented edge of Q.

We define the fundamental group of Q to be the fundamental group of Q.
To a graph of actions Q naturally corresponds an action (Tg,m1(Q)): it is
obtained from the universal cover Ty of the graph of groups @ by replacing
a vertex v of Tg by a copy of the corresponding vertex R-tree Ty, by gluing
equivariantly edges incident to a verter v on T, according to the attaching
points, and by collapsing the 0-length edges. The action (Tg,T') is called a

blow-up of (T, ™1 (Q))-

Finally, we will also need a topology on the set of actions of a group I'
on R-trees. The translation length topology is the weakest topology which
makes the functions 7'+ [ (7) continuous for every v € I'. In other words,
(T, T) converges to (T, T) if and only if for every y € T, I, (I') =25 Ip(T).
This topology is Hausdorff on the set of small actions of a finitely generated
group containing a non-abelian free group ([CuMo]).

A set of minimal actions of a fixed finitely generated group I" on R-trees
can also be equipped with the equivariant Gromov topology. This topology
roughly says that two actions are close if they look the same up to some small
¢ in restriction to a finite subset of T while only considering the action of
a finite subset of I'. More precisely, a neighbourhood basis for (7,T) is
given by the family Vr(e, F,{z1,...,z,}) for € > 0, F finite subset of I" and
T1,--.,%n € T defined as follows: T € Vr(e, F, {z1,...,z,}) if there exists
zl,...,zl, € T' such that for all 4,j € {1,...,n} and for all g,h € F

|d(g.z;, h.z;) — d(g.z}, b .zj)| < e.

This topology is often more convenient than the translation length topology
because it is more geometric. However, on the set of small actions of a group
I' containing a non-abelian free group, those topology coincide ([Pau2]).

We will use the following theorem which claims the density of simplicial
actions in the set of small actions of a hyperbolic group.

Theorem 2.1 ([Gui]). Let T be a hyperbolic group. Every minimal small
action of I on an R-tree can be approximated by a minimal small action of
T' on a simplicial tree.

Moreover, if I'1,...,Txy C T are finitely generated subgroups of I' which
fix a point in T, they may be asked to fir a point in the approximation.



3 Construction of the JSJ splitting (Bowditch).

Everything in this section can be found in [Bo2]. Bowditch’s construction
of the JSJ splitting both relies on the topology of the boundary OT of T
and on the dynamics of the action of " on OT'. Here, we assume that T" is a
one-ended hyperbolic group, which is now known to imply that 0T is locally
connected as proved by Bowditch and Swarup ([Bol, Bo3, Levb, Swa, Bo4]).
Thus, from the topological point of view, 91" is a connected locally connected
metrizable compact set (a Peano set —about Peano sets, see for instance
[HoY]) and the crucial point is the study of local cut points. From the
dynamical point of view, I" acts on 9" as a uniform convergence group. By
definition a group I' acts as a convergence group on JI' if for every infinite
sequence y; of distinct elements in OI', one can extract a subsequence -y,
whose dynamics is loxodromic, i. e. with two distinguished points called
repelling point and sink such that for every compact K not containing the
repelling point, <y, .K converges uniformly to the sink. This condition is
equivalent to saying that T' acts properly discontinuously on (0T')% minus
the big diagonal. The convergence group I' is a uniform convergence group
if it acts cocompactly on (8I')® minus the big diagonal.

3.1 Simplicial actions and quasi-convexity
Let " be a hyperbolic group.

Definition. A subgroup H of T' is quasi-convex if there exists a constant
C such that every geodesic in ' joining two points in H remains within
distance C from H.

Definition. A simplicial action is finitely supported if it has a finite sub-
tree meeting every orbit. For instance, every minimal action of a finitely
generated group is finitely supported.

Proposition 3.1 ([Bo2]). If (T,T') is a finitely supported simplicial ac-
tion with quasi-convex edge stabilizers, then the vertexr stabilizers are quasi-
conver.

A quasi-convex subgroup H of T" is hyperbolic, and its boundary 0H is
naturally identified with its limit set AH C 0T, i. e. the set of accumulation
points of H in OI'. An infinite subgroup of I' which doesn’t contain F» is
virtually cyclic (2-ended), quasi-convex, and its limit set consists of 2 points.
These points are the repelling point and the sink of the powers of any infinite
order element v in this subgroup. In this case, there is no need to take a



subsequence in the convergence property, so we can denote y©,y~ € OI'
the sink and the repelling point for the positive powers of y. The previous
proposition implies that the vertex stabilizers of a (minimal) small simplicial
action are quasi-convex.

Let T be a simplicial tree (or an R-tree). A ray in T is an equivalence
class of isometric applications r : [0,00) — T where r ~ 7’ if the intersection
of their images is not compact. The set of rays of T" is denoted 97. We also
denote I'(v) and I'(e) the stabilizers of a vertex v or an edge e in an action
(T,1).

Proposition 3.2 ([Bo2]). Let (T,I') be a simplicial action with quasi-
convezx edge stabilizers and let x be a base point. For every ray r of T,
consider a sequence vy; of elements of T' such that |[*,7;.%] N r| = oo (where
|.| denotes the length). Then ~y; converges to a point j(r) € OI' depending
only on r. Moreover, j induces an identification between 0T and

M\(UAH@).

veT

Remark. If r*,r~ denote respectively the positive and negative semi-axis of
an element v hyperbolic in 7', then j(r*) =~y and j(r~) =7~.

3.2 Splittings and local cut points.

From now on, we assume that I' is one-ended. We will use the local connexity
of " and the fact that it has no global cut point, i. e. no point a is such that
oI\ a is disconnected.

Proposition 3.3 ([Bo2]). Let (T,T') be a small simplicial action, and let
e be an edge in T'. Then OI'\ AI'(e) is not connected. More precisely, denote
T1 and Ty the two connected components ofT\é and consider fori € {1,2}

Ui=j(0T;) U | | AT(v) \ AT(e)

veT;

Then Uy and Uy are two nonempty disjoint open sets of OI' whose union is

8r \ AT(e).

Remark. We will often use this proposition in the following form: if v is
hyperbolic in a simplicial tree 7" endowed with a small action of T" and if e
is an edge in the axis of -y, then AT'(e) disconnects y* from v~ in JT.



Proposition 3.3 implies that the two points of AI'(e) are local cut points:

Definition. We say that x € O is a local cut point if the connected locally
compact locally connected set OT' \ {z} has at least two ends. We call valence
of z and we denote val(z) € NU {oo} the number of ends of OT \ {z}.

We denote OT'(2) the set of points of valence 2 in OT and OT'(3+) the set
of points of valence at least 3.

3.3 The structure of local cut points

Since dI" has no global cut point, for all =,y € dI', every connected compo-
nent of OT"\ {z,y} accumulates both on z and y. Therefore, the number of
connected components of JI' \ {z,y} is at most equal to val(z) and val(y).
Moreover, one can easily check (see [Bo2]) that the local connexity implies
that the number of connected components of dI" \ {z,y} is finite.

Definition. For z,y € 0I'(2), we denote z ~y if z =y or OT \ {z,y} has
2 connected components.

Theorem 3.4 ([Bo2], Lemma and Propositions 3.1, 5.15, 3.7, 5.18, 5.17).
The relation ~ is an equivalence relation on OT'(2). Moreover, if o is an
~-class with an isolated point, then #o = 2 and the setwise stabilizer of o

is 2-ended (hence infinite).

If o has no isolated point, we say that its closure ¢ is a necklace. Then
g\ o C OU'(3+). In particular, & = &' implies 0 = o'. Unless T is a
cocompact fuchsian group, ¢ is a Cantor set. The quaternary relation on o
“x,z} disconnects y from t in OI'” is a cyclic order which allows to see & as
a subset of a circle where {x,z} disconnects y from t in OT if and only if the
same 1is true in the circle. In particular, for z,y,z,t € 7, {z,z} disconnects
y from t in OT if and only if {y,t} disconnects x from z in OT'. Finally, the

setwise stabilizer QQ of & is quasi-convez and & = A(Q).

Definition. Let & be a necklace. We say that {z,y} C & is a jump if no
pair {z,t} disconnects z from y.

Remark. Since a necklace has no isolated point, two distinct jumps cannot
intersect.

Definition. Let ¢ be a necklace and @ its setwise stabilizer. We call pe-
ripheral subgroups of ) the setwise stabilizers of the jumps.

Theorem 3.5 ([Bo2], Propositions 4.9 and 5.21). If ¢ is a necklace,
then its setwise stabilizer Q) is conjugate to a convexr cocompact fuchsian
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group, the peripheral groups of Q) corresponding to the peripheral subgroups
of the fuchsian group.

We now recall the properties of cut points of valence at least 3.

Definition. If z,y € 9T'(34+), we denote z = y if val(z) = val(y) =
#mo(0T \ {z,y}).

Theorem 3.6 ([Bo2], Lemma 3.8 and prop. 5.13). Ifz = y and y =
z then © = z. We then say that {z,y} is a =~-pair. Every x € OI'(3+)
belongs to a =-pair, and the setwise stabilizer of this pair is 2-ended (in
particular infinite).

Theorem 3.7 ([Bo2], Propositions 5.6 and 5.21). If v is an infinite
order element in T’ then val(y") = val(y~) = #mo(0T \ {v*,v"})- If v or
v~ is a local cut point, then y© ~~y~ or yT =y~

Moreover, if J = {a,b} is a jump in a necklace &, then either a ~b € o
orax~bea\o.

3.4 Constructing a tree from the local cut points

Consider V, the set of ~-classes with cardinal 2 and of the ~-pairs, and V;
the set of the ~-equivalence classes with no isolated point. V. will be the
set of elementary type vertices, and Vs the set of surface type vertices. The
rigid type vertices will appear indirectly.

To construct the JSJ-tree S, B. Bowditch uses a betweenness relation
denoted zyz on V., U V,. Every subset of a tree with the relation “zyz <=
y € (z,z)” is an example of a betweenness relation (this kind of relation was
introduced by Ward).

Definition. The ternary relation xyz is a betweenness relation on a set X
if the following properties hold.

1. If xyz then x # z

2. xryz and xzy are never simultaneously true.
3. zyz if and only if zyx

4. If zyz and if w # y then zyw or wyz.

We say that a set together with a betweenness relation is a pretree.
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In a pretree, we call intervals the sets (z,z) = {y|zyz} and [z,z] =
(z,2) U{z,z}. A pretree is said to be median if for all z,vy, z, [z,y] N[y, z] N
[z,z] # 0 (then it contains exactly one point). A pretree is discrete if the
intervals are finite. To a discrete median pretree V naturally corresponds a
simplicial tree with vertex set V' by putting an edge between the points x,y
such that (z,y) = 0.

Given a discrete pretree V, one can naturally embed it in a discrete
median pretree: just add to V' the stars of V of cardinal at least 3. A star
of V is a subset F of V such that no point in V is between two points in £
and if z € V' \ E, there exists z,y € F such that zyz.

Now, on V, UV;, we define the ternary relation oi0903 if oy is distinct
from 01,03, and there exists 1 € o1, ag,by € 092 and z3 € o3 such that
{ag, by} disconnects z1 from z3 in JT.

Theorem 3.8 ([Bo2], prop. 3.20). The relation o10203 is a betweenness
relation which makes Ve UV; a discrete pretree. It is naturally endowed with
an action of T' (coming from the action of T' on OT).

Definition. Let S be the simplicial tree corresponding to the pretree Vo UV
made median. Its set of vertices is Vo [[ Vs [V, where V, is the set of stars
of VeUVs. This tree S is endowed with an action of I'. It is the JSJ splitting
of T.

This tree S is invariant by any automorphism o (and even any quasi-
isometry) of I since « induces an homeomorphism of JI'. Theorem 1.2 then
follows from the properties of local cut points.

4 Small actions of I' on R-trees can be read from
its JSJ splitting

In this section we prove Theorem 1.3. We consider (7, T") a fixed small action
of a one-ended hyperbolic group I' on an R-tree. We denote by (S,T") the
action of T' on the JSJ-tree.

4.1 Edge stabilizers of S fix a point in T
Proposition 4.1. Edge stabilizers of S fix a point in T.

Proof. Since any two adjacent vertices of S don’t have the same type, any
edge e is at least adjacent to an elementary vertex or to a surface type
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vertex. If e is adjacent to a surface type vertex v, then I'(e) is a peripheral
subgroup of I'(v). If e is adjacent to an elementary type vertex v, it has
finite index in I'(v). Therefore we just have to prove that elementary groups
and peripheral subgroups of surface type groups fix a point in 7". This is
done in Lemma 4.3 and 4.4. O

We first recall a useful lemma.

Lemma 4.2 ([Bo2|, Lemma 3.3 and 5.6). Let z,y € O such that  ~
y orx =y, and let Ty be a 2-ended subgroup for T'. We denote {a,b} = AT.
If {a,b} disconnects x from y then a,b,z,y € OI'(2) anda ~ b~ z ~ y.

Proof. Since {a,b} disconnects z from y, a and b are local cut points and
Theorem 3.7 says that a = b or a ~ b.

If z =~ y, then OT \ {z,y} has at least 3 connected components (by
definition of ~) and each of them accumulates on both z and y (because OT'
has no global cut point). Therefore, {a,b} can’t disconnect z from y which
is a contradiction.

If z ~ y and a ~ b, the symmetrical argument shows that {z,y} can’t
disconnect a from b. Hence a and b lie in the same component of oI\ {z, y}
and the closure of the other component connects z to y in JI' \ {a, b}, thus
contradicting the hypothesis.

We deduce that z ~ y and a ~ b. Then by Lemma 3.3 of [Bo2], the fact
that {a, b} disconnects z from y implies a ~ b ~ z ~ y. O

Lemma 4.3. The elementary groups of S fix a point in T'.

Proof. If v is an elementary type vertex in S, it either corresponds to a
~-pair or to an ~-class of cardinal 2 which we call ¢. Then by Theorems
3.6 and 3.4, the setwise stabilizer of ¢ is infinite and 2-ended. Let v be an
infinite order element in this stabilizer so that o = {y*,7~ }. We only have
to prove that « is elliptic in 7.

Assume on the contrary that <y is hyperbolic in T. By approximation
Theorem 2.1, we can approximate (7,T') by a small simplicial action (Tg,T).
If (Ty,T) is close enough to (T,T'), then « has to be hyperbolic in Ty. Now
take an edge e in the axis of v in Ty. Its stabilizer is not finite since I' is one-
ended. Let {a,b} = AT'(e). Proposition 3.3 implies that {a,b} disconnects
4t from ~. The previous lemma (4.2) then implies y* ~ vy~ ~ a ~ b thus
giving a contradiction with the fact that o is either a ~-pair or to an ~-class
of cardinal 2. O
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Lemma 4.4. Let v be a surface type vertex. Then the peripheral groups of
v are elliptic in T

Proof. Let o be the ~-class corresponding to v and & the corresponding
necklace. By definition, a peripheral subgroup of I'(v) is the setwise stabi-
lizer of a jump {z,y} C &.

Theorem 3.7 says that either z ~ y or z ~ y. In the first case, Stab {z,y}
is the stabilizer of an elementary vertex and we already know that it fixes
a point in 7. Now assume that x ~ y, and suppose that there is vy €
Stab {z,y} which is hyperbolic in T and argue towards a contradiction.

Now use Theorem 2.1 to approximate (7',I") by a small simplicial action
(To,T) in which  is hyperbolic. Consider an edge e in the axis of «y in Tp.
By Proposition 3.3, AT'(e) disconnects 4+ from ™. Since {z,y} = {v",7"},
Lemma 4.2 implies x ~ y ~ AI'(e) so that AT'(e) C 0. Therefore, {z,y}
cannot be a jump of & since Al'(e) disconnects z from y. O

4.2 Rigid groups fix a point in T

Lemma 4.5. If v is a rigid type vertezx, then T'(v) has a fix point in T, and
it 18 unique.

Proof. The maximality of the JSJ splitting claims that a rigid type group
I'(v) doesn’t have any non-trivial small splitting in which the stabilizers of
the incident edges in S are elliptic (Theorem 1.2). If I'(v) had no global
fixed point in 7', then Rips Relative Splitting Theorem would give such a
splitting and there would be a contradiction (see [BF2]).

This fix point is unique because I'(v) contains a non-abelian free group
hence can’t fix an arc in 7" since (7,T") is small. O

4.3 Action of surface type groups

Let v be a surface type vertex. We denote by 7T;, the minimal I'(v)-invariant
subtree of T'.

Remark. T, is well defined since if I'(v) has a global fixed point, it is unique
because (7',T") is small.

Lemma 4.6. Let T'y C T be a 2-ended subgroup, let v be a surface type
vertex and o the corresponding ~-class. If Ty fizes a non degenerate arc in
T, then ATy C o, Ty C I'(v) and ATy is not a jump in o.

This corollary is immediate:
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Corollary 4.7. Every finite index subgroup of a peripheral group of T'(v)
has a unique fized point in T,.

Proof of the lemma. If T'g fixes a non degenerate arc in T, there is a hy-
perbolic element v € I'(v) whose axis meets Fix Iy in a non-degenerate arc.
Theorem 2.1 shows that (T,T") may be approximated by a small simplicial
action (Tp,T') in which T’y is elliptic. Now if T} is close enough to T', v has
to be hyperbolic in Ty and it is an easy Gromov topology exercise to check
that for Ty close enough to T, I'y has to fix a non degenerate arc contained
in the axis of v in T.

Since T} is simplicial, Lemma 3.3 applies and shows that AI'y disconnects
4t from y~. Since v € I'(v), and since AT'(v) =&, " and vy~ lie in 5. And
Theorem 3.7 implies y© ~ 4~ or y* &~ 4~ since ¢ C I'(2) U OT'(3+). If
we set {a,b} = ATy, Lemma 4.2 implies that a ~ b ~ v+ ~ v~ € o since
&\ o C OT'(3+). Now since Ty preserves {a,b} € o, it must fix the ~-class
of {a,b} which is 0. Therefore I'y C I'(v) = Stab (o).

Now, since the relation “{z,z} disconnects y from ¢” is a cyclic order
relation on &, {y,y~} disconnects the two points of ATy which prevents
ATy to be a jump. O

Lemma 4.8. If v # v' are surface type vertices, T, and T, intersect in at
most one point.

Proof. If the lemma is false, there exists v € I'(v) and 7/ € I'(v') whose
axes intersect in a non-degenerate arc. Now take (7p,T") a small simplicial
approximation of (T,T') (Theorem 2.1). If Tj is close enough to T', v and v/
are hyperbolic in Ty and their axes still intersect in a non-degenerate arc.
Let e be an edge in this non-degenerate arc, and denote {a,b} = ATI'(e).
Let 0,0’ be the ~-classes corresponding to v and v’ so that y7,y~ € & and
v'*T,4'~ € &'. Proposition 3.3 shows that {a, b} disconnects y* from v~ and
Lemma 4.2 concludes that a ~ b ~ vT ~ . The same argument applied
to 4'T,4'~ shows that Y7 ~ 7y~ ~ 4T ~ 4~ sothat c =o' and v =o'. O

4.4 Assigning subtrees of 7" to vertices and edges of S

In order to blow up S, we now want to assign subtrees of T to vertices and
edges of S in an equivariant way. The subtrees assigned to edges should be
some arcs. We already defined a subtree 7, for every vertex of surface type.
If v if of rigid type, it fixes a unique point in 7" which we call T,. Now if e is
an (oriented) edge incident on a vertex v of surface type in S, its stabilizer
is a peripheral subgroup of I', and thus fixes exactly one point p, in T
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(Lemma 4.4, 4.7). If e is incident on a rigid type vertex v, we set p. to be
the only point in T},. Now if e is an oriented edge incident on an elementary
type vertex, we set p, = ps (where € denotes the edge in S with the opposite
orientation). It is well defined because two vertices of the same type in S
can’t be adjacent. So, for every edge e of S, we can define T, to be the arc
[pepe]- In this way, for every edge incident to an elementary type vertex, T,
is reduced to a point. This allows to give to an edge e in S the length of the
corresponding arc T.. Finally, if v is an elementary type vertex, we define
T, to be the convex hull of the finite set {p.|e incident on v}.

Clearly, this assignment is equivariant. Therefore, it defines a blow up
(S,T) of (S,T'). There is a natural equivariant map f : S — T which sends
vertex tree T, to itself via the identity, and sends an edge e (which may of
length 0) isometrically on T,. This map f is a morphism of R-trees since
every arc in S is a finite union of arcs contained in vertex and edge trees on
which f is isometric. Therefore, to show that f is an isometry, we just have
to check that f cannot identify two non-degenerate arcs I, I' contained in
some T, T for z,z' vertices or edges of S. Therefore Lemma 4.9 ends the
proof of Theorem 1.3.

Lemma 4.9. If z,x’ are vertices or edges of S such that T, N Ty contains
more than one point, then z = x'.

Proof. If z or ' is a rigid type vertex or an edge incident on an elementary
vertex, this is trivial since the corresponding tree is reduced to one point. If
both z and z’ are surface type vertices, Lemma 4.8 answers the question.

If z = v is a surface type vertex and z' is either an elementary vertex or
an edge not adjacent to an elementary vertex, then a finite index subgroup
Ty of I'(z') fixes Ty pointwise. Let o denote the ~-class corresponding
to v. If T, N T, is not reduced to one point, Lemma 4.6 implies that
AT(z') = ATy C o and AT'(z') is not a jump in . This is impossible
when z' is an elementary vertex because AT'(z') is either a ~-pair or an
~-class of cardinal 2. When z’ is an edge, it must be adjacent to a surface
type vertex v', AT'(z') being a jump of & (with obvious notations). Since
AT(z') C 0 C OT'(2) and '\ o' C OT'(3+), we have AT'(z') C o' so oNc’ #£ 0,
o =o' and v ='. Tt is a contradiction since AT'(z') is a jump in ¢’ and not
in &.

There only remains to look at the case when z and z’ are either elemen-
tary vertices or edges not adjacent to elementary vertices.

The following fact follows easily from Bowditch’s work.

Fact ([Bo2]). Ife is an edge of S such that I'(e) is commensurable to I'(v)
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for some (elementary) vertex v € S, then e is incident on v. [

Assume that z and z’ are either elementary vertices or edges not adjacent
to elementary vertices. Since the pointwise stabilizer of T, N T, must be
small, the groups I'(z) and I'(z’) must be commensurable so that AT'(z) =
AT (z").

This implies z = z' if z and z' are elementary vertices. If z is an
elementary vertex and z’ is an edge not adjacent to an elementary type
vertex, AT'(z) = AT (') implies that the edge z' is adjacent to the elementary
vertex = which is absurd.

Now assume that z and z’' are elementary edges adjacent to surface
type vertices v,v'. If v = v', since AT'(z) = AT'(z') are the same jump in the
necklace corresponding to v = v/, we deduce that = z’. On the other hand,
if v # 7', one gets with obvious notations @ Ng' D AT'(z) = AT'(z") # 0 and
adNa’ C OT'(3+) (otherwise o = ¢’). Hence AT'(z) = AT'(z') corresponds to
an elementary vertex which has to be adjacent to both z and z’, which is
once again a contradiction. O

5 Proof of the corollaries

5.1 Every small action of a one-ended hyperbolic group is
geometric

Let’s first give a precise definition of a geometric action.

Definition ([LP]). Take ¥ a finite 2-complex endowed with a measured fo-
liation F. Let p : w1 (2) — T be a morphism onto T'. Consider % the covering
of ¥ defined by this morphism. F lifts to a I'-invariant measured foliation
F on X. This induces a pseudo-metric § on ¥ obtained by integration of the

transverse measure. Let T(X) be the metric space obtained by identifying 2

points at §-distance 0. It is naturally endowed with an isometric action of
T.

We say that (T,T) is geometric if it is equivariantly isometric to T(%)
for some (%, F,p) such that every edge of ¥ transverse to the foliation is

isometrically embedded into T(X).

Given a geometric action (7,T) of a finitely presented group, there is a
standard way to represent it as above. Let < S||R > be a finite presentation
of I'. Let D be a big finite subtree of T' (i. e. the convex hull of a finite
number of points). For each generator g € S, consider the partial isometry
g = 9| png-1(p) Which is the maximal restriction of g going from D to D,
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and denote by X = (D, {p,}) the system of isometries with domain D and
generators {¢g}. We suppose that D is big enough so that each relation
in R “expresses itself” in X, i. e. if r is the relation corresponding to the
word g7" ... g5, then dom (@5} ... g, ") # 0 (domw denotes the domain of
definition of the partial isometry w).

We next build a 2-complex ¥ by gluing on D, for each generator ¢ of
X, a band (domey) x [0,1] where (z,0) and (z,1) are glued with = and
o(z) respectively. Each band is foliated by {x} x [0, 1], and we consider the
transverse measure which gives to every arc of D a measure equal to its
length.

Given any base point * in D, the fundamental group of X is canonically
identified with the free group with free basis S. So there is a natural
morphism p : 71(3,*) — I'. Let ¥ be the covering space of ¥ corresponding
to p endowed with the lift of the measured foliation on ¥. Let 7% be the
space obtained by making Hausdorff the pseudo-metric on ¥ obtained by
integration of the transverse measure (it is a quotient of the space of leaves
of £3). The edges of 3 transverse to the foliation embed into T%. The action
of T on ¥ gives a natural action of I' on T. Then it follows from [LP] that
if D is big enough, there is a natural equivariant isometry between T% and
T. We say that (3, p) is a standard form for (7, T"). If we are given finitely
many finitely generated subgroups I'; C T" fixing some points p; in T, we
may choose D big enough so that the domains of the words corresponding
to a finite generating set of T'; contain p;. Thus, every I'; fixes a leaf of &
which projects to p; into T'.

Now, here is a statement of the Theorem of Skora.

Theorem 5.1 ([Sko]). Let I be a non-elementary convex cocompact fuch-
sian group. Let (T,T') a minimal small action such that the peripheral groups
fix a point in T.

Then (T,T) is geometric and can be obtained as the space of leaves of a T'-
inwvariant measured foliation on the convex core of T such that the boundary
components are contained in leaves of the foliation.

This theorem was proved by Skora in the setting of actions of hyper-
bolic surfaces with boundary. The more general statement above follows
easily. Indeed, the kernel N of the action of I' on H? being finite and
normal, it must fix every point in 7. Thus we are reduced to the case
where T" is the fundamental group of a hyperbolic 2-orbifold. But Selberg
Theorem says that this orbifold has a finite cover which is a surface
S (see for instance [Zie]). This cover may chosen to be Galois so that
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m1(S) < T and I'/m1(S) acts on S. The Theorem of Skora applied to
(T, m1(S)) provides a measured lamination on S which must be invariant
under the action of I'/7(S) since (T, 71(S)) is also invariant. This lami-
nation thus lifts to the desired I'-invariant lamination on the universal cover.

In view of the Reading Theorem 1.3, proving Corollary 1.5 reduces to
the following proposition.

Proposition 5.2. Let T be a finitely presented group, and (S,T') a simplicial
action with finitely generated edge stabilizers. If (T,T") is a blow up of (S,T)
such that every vertex action is geometric, then (T,T) is geometric.

This result may be compared to the Theorem of Levitt-Paulin saying
that a simplicial action of a finitely generated group is geometric if and only
if edge stabilizers are finitely generated ([LP]).

Remark. In [GL], the authors construct a non-geometric action as a free
product of geometric actions of F), by using attaching points which are not
in the (minimal) tree but in its metric completion. This case doesn'’t fit the
hypotheses of the proposition because the completion of a geometric action
needn’t be geometric.

Proof. First for each vertex v of S/I" take a finite foliated 2-complex ¥ with
a morphism p; : m(25) — I in standard form representing (73,['5). Let
Y5 denote the corresponding cover of ;. We also assume that edges of py
transverse to the foliation isometrically embed into T5. Since edge stabilizers
are finitely generated, we may choose those 35 so that if & is an oriented
edge incident on 9, iz(T'(€)) fixes a leaf in 33 which maps to ps € Ty. Now
for each vertex v € S, take a copy %, of &5 (where © is the image of v in
S/T) so that T acts on the disjoint union of the %,,.

Now for every non-oriented edge € in S/I', take a finite graph G with
an onto morphism pe : 71 (Ge) — Te, and let G be the corresponding cover.
Take 3z to be the product [0,1(g)] x G foliated by {*} x Gz. For each edge
e of S, take a copy Z. of Iz so that I acts on the disjoint union of the
Y. If an oriented edge e is incident on v, let L. be a leaf in X, fixed by
I'(e) and projecting to p. in T. Choose any I'(e)-equivariant attaching map
fe:0x G, C 3, = L, and glue &, on %, along f.. This can of course be
done T'-equivariantly. Denote by 3 the 2-complex thus obtained.

Now the map T(%,) — T(X) induced by the inclusion ¥, C ¥ is an
isometry. Therefore, transverse edges of ¥ must embed into 7(X). Since

(T,T) is naturally isometric to T'(X), we get that (7, T") is geometric. O
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5.2 Uniqueness of the JSJ splitting.

Proof of Corollary 1.6. We have to prove that every minimal small simpli-
cial action (S’,T') in which every small action of T' can be read is isomorphic
to the JSJ-action (S,T) up to subdivision. The moreover part of the corol-
lary follows immediately since its hypotheses show where valence 2 vertices
should be.

We first prove that for every surface type vertex v of S, I'(v) fixes a
point in S’. Assume that this is not true and consider S; the minimal
['(v)-invariant subtree of S’. Denote by X, the orbifold with boundary
corresponding to v and ¥, its universal cover with the action of I'(v). Since
S’ can be read from S, the peripheral subgroups of I'(v) fix a point in
S’. Hence, thanks to the Theorem of Skora, (S.,T'(v)) corresponds to a
measured geodesic lamination £ on X,. Since S’ is simplicial, £ consists of
finitely many disjoint simple closed curves (or 1-orbifolds without boundary)
not boundary-parallel, and the transverse measure is just a positive integer
weight w(l) on each leaf . We denote by £ the lift of £ to 3,. Connected
components of 3, \ £ correspond to vertices of S! with valence at least 3.
Every leaf [ of £ corresponds to a maximal open segment of w(l) edges in
S! with w(l) — 1 valence-2 vertices.

Take [ any leaf in £ and consider an infinite order element y € T'(v)
preserving . Since «y fixes an edge in ', and because any small action can
be read from S’, v has to be elliptic in every small action of I'. We will
prove in Lemma 5.3 that there exists a simple closed curve (or 1-orbifold
without boundary) I’ which is not boundary parallel and which intersects
non trivially the projection I of I in %,. Thus in the action of I'(v) on the
simplicial tree induced by the one-leaf lamination {I'}, v is hyperbolic. This
contradiction proves that T'(v) fixes a point in S’

Now, using the Reading Property of S, consider a blow up S of S such
that S’ is obtained from S by collapsing its edges of length 0. Denote
by f: S8 — S and p: S — S the corresponding maps. For every non-
elementary type vertex v € S, since I'(v) fixes a point in S’, v is not blown
up in S. Therefore, S is simplicial, and the natural map p : S — S induces
a bijection between vertices v € S such that Stab (v) is not 2-ended, and
the non-elementary type vertices in S. Therefore, it will be convenient to
call non-elementary the vertices of S whose stabilizer is not 2-ended. We
denote by NE(S), NE(S) the set of non-elementary vertices of S, S.

We now argue that for u,v,w € NE(S), u,v,w are aligned in this order
if and only if p(u),p(v),p(w) are. Since p preserves alignment, the only if
part is clear. To prove the if part, assume that u,v,w are not aligned and
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consider the center ¢ of the triod they form. Since p does not collapse edges
incident to u,v,w (they come from S), p(u), p(v), p(w) and p(c) are all
distinct and p(u), p(v), p(w) can’t be aligned.

Therefore, we have 3 equivariant maps p,p~',f defined on non-
elementary vertices which preserve alignment. Symmetrically, we can read
S from S’ and get a simplicial blow up S’, and a map p' : S’ — S which
induces a bijection between NE(S') and NE(S') and f' : §' — S so that
p',p'~1, f' preserve alignment in restriction to the sets of non-elementary
vertices of the corresponding tree.

Take v € NE(S). Since all the maps considered are equivariant, we have
Stab v C Stab f(v) = Stab p'~!o f(v) C Stab f'op'~lof(v) = Stabp~lof'o
p' ! o f(v). Therefore, since Stab v can fix at most one point in S because
S is a small action, we get that p~ o f’ o p'~L o f is the identity on NE(S).
This implies the following fact which will be useful in the sequel:

Fact. 3 vertices u,v,w are aligned in this order in S if and only if their
images in S' under f o p~! are aligned in this order.

Call branch point in a simplicial tree any vertex with valence > 3. For
instance, every non-elementary vertex is a branch point because it has in-
finite valence (edge stabilizers have infinite index in non-elementary vertex
stabilizers). Call big edge a segment whose endpoints are branch points and
containing only vertices with valence 2 in its interior. We want to extend
fop~! to a continuous map g : S — S, sending linearly big edges to big
edges.

We need to recall how an elementary vertex v € S is blown up. If
{u;} C S denotes the (finite) set of neighbours of v, u; € NE(S), so I'(u;)
fixes a point u; € S’ (and u} = f o p~!(u;)). Then the tree T, used to blow
up v is the convex hull Conv({u}}).

The convex hull of {u;} doesn’t contain any non-elementary vertex dif-
ferent from the points u; themselves, and u; is a terminal vertex in this
convex hull. Since the property of being in a convex hull can be expressed
only in terms of alignment,! the convex hull of {u}} doesn’t contain any non-
elementary vertex not in {u}}. For the same reason, v/ is a terminal vertex in
Conv({u;}). Therefore every non-terminal vertex of Conv({u}}) is elemen-
tary. Since no 2 elementary vertices are adjacent in S’, either Conv({u}})
contains no elementary vertex and Conv({u.}) is an edge, or Conv({u}})
contains exactly one elementary vertex v', and every u] is a neighbour of v'.

e € Conv({w;}) iff 34,5 s.t. x € [us, u;]
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If v has valence > 3, we can naturally extend f o p'~! simplicially on

Conv({u;}) by letting g send u; to u, and v to v'. Where defined, g sends
branch points to branch points and big edges to big edges.

If v has valence 2, then fop~! naturally extends to the continuous map g
sending the big edge [u1, ug] linearly to [u}, uf)]. We have that [u],u)] is a big
edge since the property of being a big edge between non-elementary vertices
can be expressed only in terms of alignment of non-elementary vertices:
[u},uh] is a big edge if and only if for every w' € NE(S'), u),ub,w' or
ub, u},w' are aligned in this order (this uses the fact that Conv(NE(S")) =
S’ which is implied by minimality).

Now g : S — S’ is defined everywhere on S except on edges joining two
non-elementary vertices. If e = [u1,us] is such an edge, we make g send e
linearly to [f o p~!(u1), f o p~'(uz)]. The same argument as above shows
that [f o p~!(u1), f o p~!(ug)] is a big edge. Therefore, g : § — S’ sends
linearly big edges to big edges.

Symmetrically, f’ o p'~! extends to an equivariant continuous map ¢’ :
S’ — S sending branch points to branch points. Since an elementary vertex
with valence > 3 is characterized by the set of its neighbours, we have that
g’ o g restricts to the identity on the set of all branch points.

In restriction to a big edge e, g’ o g is linear and fixes the endpoints of
e. Hence, ¢’ o g is the identity on big edges. Therefore, ¢’ 0 g = Idg and by
symmetry g o g’ = Idg. O

Lemma 5.3. Let X be a hyperbolic 2-orbifold with geodesic boundary having
a simple closed geodesic ¢ which is not boundary parallel. Then there exists
a simple closed geodesic which is not boundary parallel and intersects ¢ non
trivially.

Proof. We denote by G the fundamental group of 32 and by c a lift of ¢ in the
universal cover 3 of 3. The fact that ¢ is not boundary parallel means that
the action on the tree dual to G.c is minimal. Therefore, there is an element
g € G having infinite order and whose axis A in 3 intersects ¢ transversally.
Consider such a g with smallest translation length for the hyperbolic metric
on . Note that the projection A of A in ¥ is a closed curve (1-orbifold
without boundary) which intersects ¢ non trivially. We want to prove that
X does not intersect itself (meaning that if h € G is such that h. AN X # ()
then h.A = A). Note that A cannot be boundary parallel because it intersects
¢ non trivially.

We give a proof in ¥ to avoid cases with orientability and singularities.
But its meaning if 3} is a surface is the following: there are 2 ways to change
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locally A into a shorter curve which has fewer self intersection points. One
of them gives a connected curve and the other one gives a curve with 2
connected components. We prove that one of the obtained connected curves
still intersects ¢ non-trivially.

So assume that there exists h € G such that h.\ intersects A transversally.
Denote by O the point in A N h.\ so that A.O € h.XA and h~1.0 € A. Up to
composing h by some power of g, we can assume that O € [h=1.0,¢.h710)]
(remember that A is the axis of g). For simplicity of notations, we set
A=h.0,B=h"1.0,C =gh !0 (see figure 1 and 2).

A=hO

h.c
h.P

B=h'0 P o) C=gh™0
=h'A

Figure 1: Case 1: when cN[OA] =0

We are going to consider the elements h and k! = gh™2 of G. Note that
h.B = O, h.O = A and h'.A = C. Denote by I(h) = min_ 5 d(z, h.x) the
the translation length of h. Then I(h) < I(g) since h.B = O and d(B,0) <
d(B,C) = l(g). Similarly, (k") < I(g) since d(4,C) < d(4,0) +d(0O,C) =
d(B,0) 4+ d(0,C) = l(g). Therefore, we just have to prove that either h or
h' is loxodromic and that its axis intersects G.c.

We are going to use the following criterion:

Criterion.  Assume that we have z € %, a geodesic ¢ and an element
v € G such that

o [z,vz]Nc#0 and [z,y.z]Ny.c=10
e cNvy.c=0 and 7.c lies in the component of ¥ \ ¢ containing .z
e The projection ¢ of ¢ in X is compact.

Then «y is lozodromic and its azis intersects c.
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Proof of the criterion. The third hypothesis implies that ¢ and «y.c cannot
meet at infinity. Consider the component C of ¥ \ ¢ not containing z. The
first hypothesis implies that ¢ disconnects x from .z and that ~y.c doesn’t.
Therefore, using the second hypothesis, v.c C C' and 7.C ;C,: C. Similarly, if
we denote by C' the component of 3\ ¢ containing z, we have that h~1.C’ S
C'. Therefore, y has infinite order and y must have a fixed point at infinity in
the closure of 7.C and a fixed point in the closure Ah~!.C". Those fixed points
have to be distinct, hence v is loxodromic and the endpoints at infinity of
its axis are in the closure at infinity of h.C' and h~1.C’ respectively. Thus,
the axis of v must intersect c. O

We can assume that G.c intersects [BO] since otherwise, it would inter-
sect [OC] and we could do a symmetric argument. We change ¢ to another
geodesic in its orbit so that ¢ intersects [BO] at a point P as close to O as
possible so that -y.c doesn’t intersect the open segment (PO) for any v € G.

We first assume that P # O and we consider two cases.

First case: if ¢ doesn’t intersect [OA]. Then h.c cannot intersect [BO]
(see figure 1) because it cannot intersect [PO] by choice of ¢ and h.c can’t
intersect ¢ so it has to exit the triangle AOB via [AB] (and h.c can’t intersect
[AB] twice). Therefore, the hypotheses of the criterion apply to z = B and
~v = h to prove that h is loxodromic and its axis intersects c.

A=ho C€=hc h'c'=gh’c

B=h"0 Ih"Q P O c=h'A |

Figure 2: Case 2: when cN[OA] # 0

Second case: if ¢ intersects [OA] at some point @ (see figure 2). The
geodesic ¢ enters the triangle AOC in @, but ¢ cannot intersect [OC] since
it already intersects A at P. Therefore ¢ must exit AOC through [AC]
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and denote by @' the point in [AC] N ¢. Then consider ¢ = h.c: we are
going to apply the criterion to z = A, v = h' for the geodesic ¢’. First ¢
intersects [AC]: it enters the triangle AOC at h.P and cannot intersect c.
Now we show that h'.c’ = gh™!.c doesn’t intersect [AC]. So assume that
h'.¢" intersects [AC] at some point R. Then R cannot lie in [Q'C] because
h'.c already intersects A at gh='.Q ¢ [BC], and h'.c’ would have to exit
PQ'C through [PC] C X which is impossible. But R cannot lie in Q'A
otherwise ¢ would enter the triangle RCgh~'Q and could only exit through
[Cgh~1@] C X thus intersecting twice A which is impossible. We conclude
that h'.c’ does not intersect [AC]. Thus we can apply the criterion to z = A,
v = h' and the geodesic ¢’ which concludes the second case.

When P=0. The treatment of this case is similar to the first case if
c intersects [AB]: note that h.c intersects AOB only at A and apply the
criterion for z € (BO). If ¢ doesn’t intersect [AB], the treatment is similar
to the second case: ¢’ = h.c (resp. h'c’) intersects AOC only at A (resp. C).
Moreover, h' sends the component C of f]\c’ containing O to the component
of £\ A'.¢ not containing O. Therefore we can apply the criterion with
in C close to A. O
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