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Abstract

We bound the number of orbits of strongly reduced branch points and the number
of orbits directions from a branch point in any small stable action of a finitely presented
group on an R-tree.

Consider an R-tree T with a minimal small stable isometric action of a finitely presented
group I'. The goal of the paper is to bound the number of orbits of branch points of 7" and
the number of orbits of directions from a branch point of T' by a constant 7'(T") depending
only on I'. See section 1 for definitions.

Let’s be more precise. The complexity C(x) of a point z € T is the number of orbits
of directions at = under Stab z.

Definition. A point © € T is reduced if C(x) # 2, or C(x) = 2 but no direction at x is
fized by Stabxz. We denote by Red(T) the set of reduced vertices of T.

Definition. A point x € T is strongly reduced if one of the following holds:
1. C(z) >3
2. C(z) =2 and no direction at x is fized by Stab z

3. C(z) =1 and Stabz contains a finitely generated subgroup which fizes no direction
at x.

We denote by Red'(T) the set of strongly reduced vertices of T.

Remark. If (T,T) is minimal, and if a point z has only one orbit of directions in 7', then
the whole Stab (z) cannot fix any direction: otherwise there would be exactly one direction
at z and T\ .z would be an invariant subtree. Thus if z is reduced but not strongly
reduced if and only if C(z) = 1, Stab z fixes no direction at  but every finitely generated
subgroup of Stab z does.

In small actions of hyperbolic groups, every reduced point is strongly reduced (see
section 1.1).

Of course, two points in the same I'-orbit have the same complexity and are reduced
(resp. strongly reduced) simultaneously. Thus, we can talk of the complexity of an orbit
of reduced points z = I'.z.
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Definition. The reduced complexity C(T') of T is the sum on each orbit of reduced ver-
tices I'.x of the number of orbits of directions at x:

cm= Y C@.

z€Red(T)/T

Similarly, we define the strongly reduced complexity C'(T') by

cm= > C@.

z€Red' (T)/T

Clearly, bounding the (strongly) reduced complexity bounds the number of orbits of di-
rections from a branch point and the number of orbits of (strongly) reduced branch points.

Several definitions of smallness appear in the literature. Say that a group H is
algebraically small (or simply small) if H does not contain any non-abelian free group of
rank 2. Say that a group H acts hyperbolically on a simplicial tree T if H contains two
hyperbolic elements o, 3 whose axes intersect in a compact set. Say that a group H is
treely small if H cannot act hyperbolically on any simplicial tree. Algebraically small
implies treely small but the converse is not true: SL3Z has property FA (i. e. fixes a point
when acting on any simplicial tree) but contains a free group of rank 2. In particular,
the class of treely small groups is not closed under taking subgroups. For a subgroup H
of a group I, this condition can be relaxed in the following way: H is treely small in T
if for any action of I' on a simplicial tree, H cannot act hyperbolically. Of course, treely
small implies treely small in any group. But if H; C Ho C I, and if Hs is treely small in
I', then so is H1. Moreover, the class of treely small subgroups of I is stable under treely
small extension: if H < H C T with H treely small in T, and H /H treely small, then H
is treely small in T'.

Theorem, Version 1. Let I' be a finitely presented group. Then there exists an integer
v/ (T) with the following property.

Consider a minimal stable action of I' on an R-tree T whose arc stabilizers are treely
small in T'. Then the strongly reduced complezity satisfies C'(T) < +'(T).

Our theorem is based on accessibility of finitely presented groups. Consider I' a finitely
presented group. Consider a class C of subgroups of I' which is stable under taking sub-
groups and under cyclic extension (i. e. if S € C and if S C T contains S as a normal
subgroup with § /S cyclic, then S e C). Say that T satisfies the accessibility condition
with respect to C if there exists a constant (T, C) such that every minimal action of I on
a simplicial tree T with edge stabilizers in C has a reduced complexity C(T') bounded by
v(T,0).

In [BF91a], Bestvina and Feighn proved accessibility with respect to small subgroups
for finitely presented groups.

Accessibility Theorem ([BF91a]). Let T be a finitely presented group and C the class
of subgroups which are treely small in T'. Then I' satisfies the accessibility condition with
respect to C.

Historically, the first accessibility result is Grushko Theorem [Gru40] claiming that
n(A * B) = n(A) + n(B) where n(T') is the minimum cardinal of a generating set of I". It



follows that every minimal action of a finitely generated group I' on a simplicial tree with
trivial edge stabilizer has complexity at most 6n(I") — 6.

Then Dunwoody proved that a finitely presented group satisfies the accessibility con-
dition with respect to the class of its finite groups [Dun85]. Linnell proved that the acces-
sibility condition holds for finitely generated groups with respect to the class of its finite
subgroups of order bounded by some positive number M (he actually proves something
more precise, see [Lin83)).

On the other hand, there exists finitely generated groups which do not satisfy the
accessibility condition with respect to the class of their small subgroups ([BF91b]) and
even to the class of their finite subgroups ([Dun93]).

Concerning group actions on R-trees, Jiang proved that in a free action of a finitely
generated group on an R-tree, there are finitely many orbits of branch points ([Jia93]).
Levitt and Paulin proved that any geometric action of a finitely presented group with
trivial arc stabilizer has only finitely many orbits of branch points (but this number
is not bounded only in terms of I') [LP97]. And Gaboriau and Levitt prove that the
complexity of very small action of the free group F), on R-trees is bounded by 6n—6 [GL95].

Our theorem bounds the complexity of group actions on R-trees under an accessibility
hypothesis.

Theorem, Version 2. Let I' be a finitely presented group, and C a class of subgroups of
I' stable under taking subgroups and under cyclic extension. Assume that T satisfies the
accessibility condition with respect to C with constant v = (T, C).

Then there exists a constant v' = +'(T',C) such that for every minimal stable action
of T' on an R-tree T with arc stabilizers in C, the strongly reduced complexity satisfies
C'(T) <+

We still can be more precise. Let % = {H;,...,H,} be a finite collection of finitely
generated subgroups of I'. We say that I is finitely presented rel # if H; has a presentation
(Si|R;) with #S; < 0o, and I" has a presentation of the form (SII.S;II...II S,|RIT R; I
...ITR,) with #S < oo and #R < co. We also say that (T', ) is a finitely presented pair.
An action of the pair (T, %) on an R-tree T is an action of I" in which every H; € H fixes
a point of 7. We denote by (T,T', 1) an action of the pair (I', %) on T'. Say that C < T"is
treely small in (I, H) if it cannot act hyperbolically in any action of the pair (I, ). Say
that the pair (T', H) satisfies the accessibility condition with respect to C if there exists a
constant y(I', H,C) such that every minimal action of the pair (I', ) on a simplicial tree
T with edge stabilizers in C has a reduced complexity bounded by (T, H,C).

It is worth noticing that the result of [BF91a] extends easily to the following result
(see section 1.2):

Relative accessibility result ([BF91a]). Let (I',H) be a finitely presented pair. Let
C be the class of treely small subgroups in (I, H).
Then (I',H) satisfies the accessibility condition with respect to C.

Theorem, Version 3. Let (I',H) be a finitely presented pair. Let C be a class of sub-
groups of T' stable under taking subgroups and under cyclic extension. Assume that (T',H)
satisfies the accessibility condition with respect to C with constant v = y(T',H,C).

Then there ezists a constant v'(T,H,C) = 15y 4+ 20t 2/2)=1 sych that for
every minimal stable action of the pair (', H) on an R-tree T with arc stabilizers in C, the
strongly reduced complezity satisfies C'(T) < (T, H,C)



A group is slender if all its subgroups are finitely generated. Equivalently, a group is
slender if any action of any of its subgroups on a simplicial tree fixes a point or a preserves
line ([DS99]). Note that an action with finitely generated stabilizers of directions is stable.

Corollary. Let T' be a finitely presented group. There exists a constant v'(T') such that
for every minimal action of I' on an R-tree T with slender direction stabilizer, the strongly
reduced complezity satisfies C'(T) < +'(T).

For a small action of a hyperbolic group, we have C(T') = C'(T).

Corollary. Let T be a hyperbolic group. There exists a constant +'(T') such that for every
minimal small action of T' on an R-tree T the reduced complexity satisfies C(T) < +'(T).

This corollary is used in [LL] to prove that for any outer automorphism & of a
non-elementary hyperbolic group, there are infinitely many classes of isogredience classes
representing .

The paper is organized as follows. Definitions are recalled in section 1. Section 2 deals
with the complexity of graphs of actions. Section 3 shows how to reduce to the case of
an almost geometric action which splits as a graph of actions with vertex actions dual
to measured foliations on 2-complexes. Section 4 shows how to read the complexity of a
foliated 2-complex. Sections 5, 6 and 7 bound the complexity of vertex actions of the three
possible type: exotic, surface, and homogeneous. Arguments are put together in section
8 to conclude.

Acknowledgement. This paper has been inspired by a manuscript by Bestvina and
Feighn ([BFa]). They contribution to the paper is thus very important. I would like to
warmly thank them for that.

1 Definitions and preliminaries

In all the sequel, I" will be a finitely generated group, H a finite collection of finitely
generated subgroups of I' so that I' is finitely presented rel H. C will denote a class of
subgroups of I satisfying the accessibility condition rel H, stable by taking subgroups and
by cyclic extension.

1.1 R-trees, directions, branch points

An R-tree T is an arcwise connected metric space in which any topological arc is isometric
to an interval of R. Simplicial trees endowed with a path metric provide examples of R-
trees. Let (T,T') be a group action on an R-tree (this notation is useful when several groups
act on the same tree). We will only consider actions by isometries. This action is minimal
if every non-empty I'-invariant subtree of T is T itself (we allow the trivial action of " on
a point as a minimal action). A morphism of R-trees is a continuous map f : T — T’
such that every compact interval of T' can be subdivided into finitely many sub-arcs on
which f is isometric. Given (71,T1), (T%,T'2) and a morphism ¢ : I'y — I'y, a morphisms
of R-trees f : Th — T» is p-equivariant (or simply equivariant) if f(v.x) = p(y).f(z). All
the morphisms we consider are equivariant.

A direction at x € T is a connected component of 7'\ {z}. Thus, two points y;,ys are
in the same direction from z if [z,y1] N [z, y2] contains more than one point. A vertez of
T is either



e a branch point, i. e. a point x € T from which there are at least 3 directions,

e a flip point, i. e. a point z with exactly two directions and such that there exists
~v € Stab x exchanging the two directions

e or a terminal point, i. e. a point £ € T from which there is just one direction.

Note that in a minimal action of a finitely generated group, there are no terminal
points, and there are at most countably many vertices. A flip point is always reduced. A
reduced point is always a vertex.

Lemma 1.1. If arc stabilizers are finitely generated and satisfy the ascending chain con-
dition, then any reduced point is strongly reduced.

Remark. Small actions of hyperbolic groups satisfy the hypotheses of this lemma.

Proof. Because arc stabilizers satisfy the ascending chain condition, every direction stabi-
lizer fix a non-degenerate arc.

Take z a point with C(z) = 1. Let Hy be the stabilizer of a direction 7y at z. By
minimality, there exists v € Stab z such that . # n. If z is not strongly reduced, then
the finitely generated group < v, Hy >C Stabz fixes a direction 7, at x. The group
H; = Stab 1, strictly contains Hy. By induction, we construct an infinite ascending chain
of arc stabilizers giving a contradiction. O

1.2 Reduced complexity
The original statement of [BF91a] is the following:

Theorem ([BF91a)]). Let I' be a finitely presented group. Then there exists a constant
¥(T') such that the following holds.

Consider a minimal action of I' on a simplicial tree with treely small edge stabilizers
such that every vertez is reduced. Then T has at most v(G) orbits of vertices.

The following remark is due to G. Levitt. We assume there is no vertex (in the
simplicial sense) in T with exactly 2 incident edges which is not a flip point. Consider a
non-reduced vertex v. Then there is exactly one edge e incident on v with same stabilizer
as v. We say that this edge is non-reduced. Consider the tree T’ obtained by collapsing
every non-reduced edge in T'. Then T has same reduced complexity as T' and every vertex
of T" is reduced. This allows to deduce the accessibility theorem given in the introduction.

Let’s give a check of the proof the relative version of the accessibility result. A Dun-
woody resolution of a minimal simplicial action (7',T") is simplicial action (S,I") with an
equivariant map f : Sy — 7 which embeds every edge and which is simplicial with respect
to some equivariant subdivision of S. The main result of [BF91a] may be restated this
way:

Assume that (T, T') is a minimal simplicial action of a finitely generated group. Assume
that T has a Dunwoody resolution (S,T') with at most n orbits of vertices. Assume that
edge stabilizers of T don’t act hyperbolically on S.

Then the reduced complezity satisfies C(T) < 188n + 468041 (T') + 12dim H(T;Z/2) —
280.

For a finitely presented group, the existence of a bound §(I") such that every minimal
simplicial action (7,T') has a Dunwoody resolution with at most §(I") orbits of vertices is



proved in [Dun85]. This immediately extends to actions of a finitely presented pair: T is
finitely presented rel # = {H1,..., Hp} if it acts freely on a simply connected 2-complex
X containing simply connected sub-complexes X; whose stabilizer is H;, whose orbits are
disjoint, and such that [X \ (UiXi@))] /T is finite. We first construct an equivariant map
f:X — T: send X; to a point fixed by H;, and extend it equivariantly to X(©). Extend
f linearly on edges, and extend f to X so that for each closed 2-simplex o, either f is
constant on o or its level sets are the leaves of a foliation which is either regular or has a
single 3-pronged singularity in its interior.

We consider the induced measured foliation on X (where simplices on which f is
constant are understood as being contained in a leaf). X being simply connected, the
space of leaves of X is a simplicial tree S and f : X — T induces a Dunwoody res-
olution. The preimage of a vertex of S contains at least a vertex of X or a singu-
larity in a 2-dimensional simplex. Thus, the number of vertices of S is bounded by

# (XO)1) + # [(X @\ (U, XZ-(2))) / I‘]. Therefore, the accessibility result for relatively
finitely presented groups holds.

1.3 Stable actions.

An interval (or a subtree) I C T is non-degenerate if it contains more than a point. A
non-degenerate interval I is stable if for every non-degenerate subinterval J C I, one has
equality between pointwise stabilizers Stab I = Stab J. The action (T,T) is stable if every
non-degenerate interval in 7' contains a stable interval. For example, if the set of arc
stabilizers satisfy the ascending chain condition, then the action is stable. In this case the
stabilizer of a direction fixes a non-degenerate arc.

2 Complexity of a graph of actions

2.1 Graph of actions

Definition. A graph of actions on R-trees G is a graph of groups with vertex groups 'y,
edge groups I'e and edge morphisms i : T'e — Ty, together with the following data:

e for each vertex v, an action (T,,T) of the corresponding vertex group

e for each oriented edge e incident to v = t(e), an attaching point p. € T, fixed by
ie(Te)

e a (maybe 0) length for each non-oriented edge of Q.

We define the fundamental group of G to be the fundamental group of the underlying
graph of groups. To a graph of actions G naturally corresponds an action (Tg,1(G)): it
is obtained from the universal cover G of the graph of groups underlying G by replacing
a vertex U of G by a copy of the corresponding vertex R-tree T,, by gluing equivariantly
edges incident to a verter v on T, according to the attaching points, and by collapsing the
0-length edges (see for instance [Lev94, Gui98]).

We say that an action (7,T") splits as a graph of actions if (7,T") is equivariantly
isometric to the action (Tg,m1(G)) corresponding to a graph of actions G. If T = Tg
is a splitting of T" as a graph of actions, then consider the equivariant family S of non-
degenerate subtrees of T' corresponding either to a non-degenerate vertex tree of G or to



an edge with positive length. Then S covers T and for S, 5’ € S, SN S’ contains at most
one point. Moreover, every arc in 7" is covered by finitely many elements of S. There is a
reciprocal to this observation:

Lemma 2.1. Let (T,T') be an action of a group on an R-tree. Assume that T is covered
by a family of closed non-degenerate subtrees S invariant under the action of I' such that

o for S£ S5 €8, 8NS" contains at most one point
e cvery arc in T is covered by finitely many elements of S.
Then T has a natural decomposition into a graph of actions.
Remark. The graph of actions obtained satisfies that
e the vertex action of an endpoint of an edge of positive length is a point
e edges of length 0 have exactly one endpoint whose vertex action is a point

e If e1,e9 are two different length-0 edges incident on the same vertex v such that T,
is non-degenerate then p., and pe, are not in the same orbit in (7, T)

We say that a graph of actions obtained by this lemma is a graph of actions in standard
form.

Proof. We say that an arc in an R-tree a simplicial arc if it doesn’t meet any branch point
of T except maybe at its endpoints. Let F4 be the subset of S consisting of simplicial arcs
which are not flipped by any element of . Let Vi1 =S\ Er. Let Vo ={z € T|3S # 5’ €
Sst.z e SNS'} and let By = {(z,5) € Vo x Vi|z € S}. If (T,T') is not minimal, we
may need to add to V some endpoints of simplicial arcs in F; if they are have valence
1inT. V=ViUVyand E = FE; U Ej are the sets of vertices and non-oriented edges of
a graph G: the endpoints of e = (x,S) € Ey are z € Vy and S € Vi, and the endpoints
of S = [a,b] € E; are the points a,b € V. We assign the length 0 to any edge in Ey/T,
and we assign the positive length of the corresponding simplicial arc in S to any edge in
E,/T. Clearly, G is a tree endowed with an isometric action of I'. Therefore, we naturally
get a graph of actions whose graph of groups is G /T, whose vertex actions are conjugacy
classes of the actions (S, Stab (S)) for S € V. O

2.2 The complexity of a graph of actions

Lemma 2.2. Consider a graph of actions on R-trees G in standard form, and assume
that every vertex action is minimal.

Let A be the set of oriented (length-0) edges e € E(G) whose attaching point p. is not
reduced in the corresponding vertex tree.

Let By be the set of vertices v € Vo(G) of valence 2 in G such that, both incident edges
have positive length and at least one of the edge morphisms is onto.

Let Bo be the set of vertices v € Vy(G) of valence 2 in G such that, some edge e incident
on v has positive length and i, is onto, and the other edge €' incident on v has length 0,
and pg has ezactly one orbit of directions in Tyer).

Let a = #A, by = #B1 and by = #By. Then

C(Tg) = Z C(Ty) + 2#{non-oriented edges of positive length} + 2a — 2(by + ba).
v
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Equivalently, if Go denotes the graph of groups obtained from G by collapsing length-0 edges
and Gy its Bass-Serre universal cover,

C(Tg) = C(Go) + D C(Ty) + 2a — 2by.

Remark. If vertex actions are not minimal then an additional term has to be included
because some other vertices in V;(G) may become non-reduced in Tg.

Proof. Consider (Tg,T') the action corresponding to the graph of actions G. Let S be the
collection of non-degenerate subtrees of Ty corresponding the decomposition of Ty into a
graph of actions. For z € Ty, let S; be the set of S € § containing . For § € S, let I'g
denote the setwise stabilizer of S, and let Cg(z) be the number of orbits of directions of
z in (S,T'g). Since any arc [z, z'] is covered by finitely many elements of S, any direction
at x € Tg corresponds to a direction at z in some S € S;. Thus,

S€S; /Stab (x)

CTg)= >, Cl)= ) >, s
z€Red(Tg)/T z€Red(Tg) /T’ SES;/Stab (z)
Therefore, the complexities C(S) for S € S/T" add up to the complexity of T(G) except
that a point £ which is reduced in Ty might not be reduced in Ts or vice-versa. This
translates into the following equality:

C(Tg)= Y, C(S)+ > Cs(z) — > C(z)

Ses/r {(2,9)€Eo(Tg)/T'|x¢Red(S)} {z€Vo(T)/T'z¢Red(Tg)}

= Z C(S) + 2#{(z,S) € Eo(Tg)/T |z ¢ Red(S)} — 2#{z € Vo(T)/T|z ¢ Red(Tg)}

Ses/r

Since a = #{(z, S) € Eo(Tg)/T|z ¢ Red(S)}, we have to prove that z € Vo(T) is not
reduced in Ty if and only if the corresponding vertex v € G lies in B; U Bo.

A point z € Vy(Tg) is not reduced in Ty if and only if C(z) = 2 and Stab (z) fixes a
direction 1y in Tg. Thus Stab (z) preserves the tree Sy € S, intersecting this direction.
Since z € Vp(Tg), = lies in some S; € Sz \ {So}. Since C(z) = 2, Cs,(z) = Cs,(z) =1,
and S; = {Sp, Stab (z).S1}. In particular, v is a valence 2 vertex in G. Moreover, 7 is the
only direction at z in Sy, so Sy cannot be minimal, and by hypothesis, Sy is a simplicial
arc. It is now clear that if S; is a simplicial arc then v € B;, and v € B otherwise. [

Hence,

We will use the previous Lemma in the following form:

Corollary 2.3. Let G and G' be 2 graphs of actions on R-trees having the same underlying
metric graph of groups G. Assume that every vertex action of G and G' is minimal and
that any arc stabilizer in (T,,Ty) fizes an arc in (T,,Ty).

Then we can move attaching points of G' so that

C(Tg) <C(Tg) + ) [C(Ty) - O(Ty)] +20(Go)
veV(Q)

where Gy is the graph of groups obtained from G by collapsing edges of length 0, and Gy
denotes its universal cover.



Proof. Lemma 2.2 implies that

C(Tg) = C(Tg) + Y. [C(Ty) — C(T)] +2(a — a') — 2(by — ).
veV(Q)

We can manage so that ¢’ = a in the following way: consider an edge e € E(G) having
an attaching point p. which is not reduced in T, where v = t(e). The stabilizer of p,
in (7,,T,) fixes an arc in Ty, so it also fixes an arc I’ in 7,. Thus, we can change the
attaching point p,, of e in T} to any point in I’, so we can choose an attaching point which
is not one of the countably many vertices. This way we get a = a’.

Since By = B, we just need to prove that b, < C (Go). Consider G the universal cover
of G. We first prove that if v is any vertex in G such that T} is non-degenerate, then its
image @ in Gy is reduced. Let z € T, such that (z,7,) € Eo(Tg). By minimality of vertex
actions, there is an element of I';, which does not fix . This means that I, fixes no edge
in G. Since the map from G to Gy consists in collapsing length-0 edges, we get that I'g
fixes no edge in Gy. Therefore, the image of v in C;o is reduced.

Let v € Bo, let €’ be the length-0 edge incident on v and let v = ¢(€'). T,y is minimal
and non-degenerate, hence the image of v’ is reduced in Gy. Consider the map from Bj to
E(Gp) sending a vertex v € By to the image in Gy of the edge positive length incident on v
in G. Then its image is contained in the set of oriented edges whose endpoint is reduced.
Since this map is one to one, we get that b}, < C(Go)- O

3 Strong approximations, finitely presented pairs and al-
most geometric actions.

The goal of this section is to reduce the proof of the Theorem to actions dual to pure
minimal systems of isometries.

3.1 Strong approximations are not less complex.

In this section we prove that if an action (7',T', ) is a strong limit of a sequence of actions
whose reduced complexities are bounded by M, then the strongly reduced complexity of
(T,T',H) is also bounded by M.

Definition ([LP97]). Let {T;}ien be a sequence of finitely generated groups with epimor-
phisms @;; : I's — IT'; for i < j so that @ o pij = @i for i < j < k. Let I' be the direct
limit imT'; and @; : Ty — T the natural morphisms.

%

A sequence of minimal actions on R-trees (T;,T';) converges strongly to (T,T') if

o for every © < j, there are equivariant morphisms of R-trees fi; : T; — T; and
f’i : 'Tz - T

o for everyi < j <k, fijxo fij = fix and fjo fij = f;

o for every finite subtree’> K in some T;, there exists j > i such that fj is an isometry
in restriction to fi;(K).

2a finite subtree is the convex hull of finitely many points



Remark. When T' is finitely presented, the morphisms ¢;; and ¢; are isomorphisms for
large enough 7, so I'; = I'. We will see that an action of a finitely presented pair (T', ) is
a strong limit of (almost-)geometric actions of the pair (I',’H) i. e. I'; = T', ¢;; = Id, and
elements of H are elliptic (see lemma 3.3, prop. 3.4).

Proposition 3.1. Let (T,I',’H) be an action of a finitely presented pair whose strongly
reduced complezity satisfies C'(T) > N for some finite number N. Assume that (T;, T, H)
converges strongly to (T,T',H). Then for i sufficiently large, the reduced complexity of T;
satisfies C(T;) > N.

Remark. We don’t assume a priori that the complexity of T is finite but this is a conse-
quence of Theorem 1 when T is a small stable action.

Proof. Consider a sequence (T;,T',H) converging strongly to (7,I',H). Denote by f; :
T; — T the corresponding morphisms of R-trees.

It is a standard fact that the definition of strong convergence implies that for any finite
tree K C T and any finite subset F' C I, we can isometrically /ift K and the action of F'
to some K; C T; in the following sense: fz| K; is an isometry between K and K;, and for
every v € F and every a,b € K;, v.a = b if and only if v.f;(a) = f;(b).

Indeed, take a finite set {z1,...,2p} C T whose convex hull is K. Choose a preimage
yi, of each zy in T}. Let K7 bet the convex hull of {vy.yy |y € F,k =1,...,p}. Then for i
large enough, K; = f1;(K7) embeds into T and provides the desired lift.

Claim 3.2. Consider a strongly reduced vertexr x € T, and a finite number n < C(z).
Then for large enough i, there is a preimage ' of = in T; such that x' is a reduced vertex
of T; and C(z') > n.

The claim implies the proposition since if 1, ...,z, € T denote some strongly reduced
vertices in distinct orbits such that C(z1) + -+ + C(zp) > N then we find some reduced
points z7,...,z, € T; for some i such that C(z}) +--- + C(z},) > N. Moreover, these
vertices are in distinct orbits since f;(z},) = z; and f; is equivariant.

So let’s turn to the proof of the claim. Consider a strongly reduced vertex x € T and
n < C(z) (take n = C(z) if C(z) < oo and n > 3 if C(x) = oo). Take a finite subtree
K C T containing {z} and at least n directions at = which are not in the same orbit under
Stab (x). Take 7 big enough so that K lifts to some K; C T; such that f; restricts to an
isometry on K; and let 2’ = (fZ|KZ)_1($) Thus C(z') > n. So we just have to check that

z' is a reduced vertex for large enough 3.

Let’s first check that z’ is a vertex in T;. If z is a branch point of 7', then n > 3 and
z' is branch point in K; and therefore in T;. If z is a flip point with g flipping the two
directions at x, we take K containing the two directions at  and 7 large enough so that g
flips the two directions at =’ in Kj;. If 2’ is not a branch point in T}, then it is a flip point
and hence a vertex.

Let’s prove that z’ is reduced. If z has at least 3 orbits of directions, then so does z'.
If = has exactly two orbits of directions (say Stab (z).n; and Stab (z).n2 with 71,72 C K),
then there exists ¢g1,g9o € Stab (z) which don’t fix 71 and 7o respectively. Take i big
enough so that g; and g fix z’. Since f; is equivariant, g; and g9 respectively don’t fix
the preimage under fz| K; of n1,m9 so &' is reduced.

Finally, assume that z has only one orbit of directions. Since z is strongly reduced,
there exists a finitely generated group H which fixes no direction at x. We assume that ¢
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large enough so that H fixes z'. If 2’ is not reduced, then Stab z’ fixes a direction at z’,
and so does H. Hence H fixes a direction at z, a contradiction.
The conclusion is that 2’ is reduced for large enough 4, and C(z') > N. O

3.2 Strong approximation by an almost geometric action.

We restate here the fact any action has a strong approximation by a geometric action
and that a geometric action splits into pure components (see [Gui98, prop. 4.1] or [BF95],
[GLP94)).

Foliated 2-complexes, geometric actions, systems of isometries.

Consider a foliated 2-complex ¥ (see [LP97]). Roughly speaking, a foliated 2-complex is
a 2-dimensional simplicial complex where 2-simplices are endowed with a regular mea-
sured foliation, and 1-simplices are assigned a measure the set of which is invariant under
holonomy.

Edges may be transverse to the foliation or contained in a leaf. Given a finitely
generated group I' and a morphism p : m3 — I, consider the corresponding Galois
covering ¥ of 3. The transverse measure of the lifted foliation on ¥ induces a pseudo-
metric on . The space Ty obtained by making this pseudo-metric Hausdorff is called
the leaf space made Hausdorff of ©. We say that leaf space of ¥ is Hausdorff to mean
that two different leaves are at a non-zero distance for this pseudo-metric. When ker p is
normally generated by free homotopy classes of loops contained in leaves of ¥, Ty is an
R-tree ([Lev93a, LP97]).

Definition. When every component of the preimage D of D in ¥ isometrically embeds
into Ty, we say that ¥ is tame.

Definition. An action of a finitely generated groupi(T, ') is geometric if it is isomorphic
to some (T5,I") where ¥ is tame (the leaf space of ¥ is not required to be Hausdorff) (see
[LP97]). We sometimes say that (T,T") is dual to 3.

Many foliated 2-complexes are obtained as the suspension of a system of isometries. A
system of isometries X on a metric graph D is a finite set of partially defined isometries
between non-empty compact connected subsets of D. A partial isometry ¢ € X is called
a generator. A generator is a singleton if its domain contains exactly one point. When
D is a multi-interval (that is a finite union of compact intervals), there is a corresponding

open system of isometries X which is the restriction of the generators of X to the interior
of their domain. We say that X is pure if X contains no singleton and if the X-orbit of

every point in D is dense in D.

The suspension ¥ of X is the foliated 2-complex obtained by gluing on D, for each
generator ¢ € X, a band (dom y) X [0, 1] where (z,0) and (z,1) are glued with z and ¢(x)
respectively. Each band is foliated by {*} x [0, 1], and we consider the transverse measure
which gives to every arc of D a measure equal to its length.

If an action (7,T) is geometric, then it is dual to the suspension of a system of isome-
tries induced by the generators of I' on a finite subtree K C T' ([LP97]). Moreover, if
T is finitely presented and if H7,... ,H]’, < I' are finitely generated subgroups which are
elliptic in 7', then it is dual to a foliated 2-complex ¥ where 7 (%) is normally generated
by curves contained in leaves, and each H] preserves a leaf in ¥. Such a presentation of
the action is said to be in standard form.
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Strong approximations of actions of a finitely presented pair

We now prove that actions of a finitely presented pair (I, ) have strong approximations
by geometric actions of the pair (I',H) (i. e. I'; = T, ¢;; = Id, and elements of H are
elliptic in T3).

Lemma 3.3. Let (T,T',H) be a minimal action of a finitely presented pair. Then (T,T',H)
is a strong limit of geometric actions of the pair (I',H).

Proof. Start with a sequence (T;,T;) of geometric actions of finitely presented groups
converging strongly to (T, T"). Since H is made of finitely many finitely generated groups,
by lifting the action of its generators to T; we can assume that for 7 big enough, there are
finitely generated groups Hj, ..., H, < T; such that ¢;(H}) = Hy and H}, preserves a leaf
in Ez

Consider ¥; a foliated 2-complex and p; : m1%; — T';, so that T is the leaf space made
Hausdorff of the corresponding Galois covering ;. We take this presentation of 7} in
standard form so that we can assume that 71%; is normally generated by curves contained
in leaves and Hj, fix a leaf in %;.

Since (T',#) is finitely presented, ker y; is normally generated by subgroups of
Hi,...,H, for large enough . Hence, ¥;/ ker @; is normally generated by curves con-
tained in leaves. So, its leaf space made Hausdorff 7} is an R-tree, endowed with an action
of the pair (I', ). Since the map f; : T; — T factors through 77, the sequence of geometric
actions (77,T',7) converges strongly to T;. O

Almost geometric actions

Definition. An action of a finitely generated group on an R-tree is almost geometric if it
splits as a finite graph of actions on R-trees G such that for every vertex action (T,,T,),
there is a normal subgroup N, < T, contained in the kernel of (T,,I',) and (T,,Ty/Ny) is
geometric. We use the notation Fg =Ty/N,.

Remark. If the subgroups N, are trivial, then the action is geometric (see [Gui00]).

An almost geometric action needn’t be geometric: a free action of Z™ on the real line
by translations is geometric. Now consider the action of the free group F;, on the real line
induced by a morphism F;,, — Z™. The obtained action of Fj, is not geometric since it is
proved in [GL95] that in a geometric action of F),, the set of fixed points of any element
is compact.

The following proposition is a restatement of the fact that a system of isometries splits
into pure components, and that a minimal component gives an action whose arc stabilizers
are contained in its kernel (under a stability hypothesis). It was proved in the setting of
finitely presented group in [Gui98] but adapts adapts immediately to finitely presented
pairs using 3.3 ([Gui98] Prop. 4.1, Lemma 4.2).

Proposition 3.4 (D. Gaboriau, [Gui98], prop 4.1). A stable action (T,T',H) of a
finitely presented pair is a strong limit of almost geometric actions (T3, T',H) having a
nice decomposition in the sense of the definition below.

Definition 3.5. An almost geometric action has a nice decomposition if it decomposes
into a graph of actions (Tg,T') with the following properties (using notations of the previous
definition).
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o Vertex groups I'y are finitely generated

e Every action (T,,TY) is minimal (it may be degenerate), it has trivial arc stabilizers,
and its orbits are dense in every segment.

o If T, is non-degenerate, then the following holds: there is a pure minimal system
of isometries X,, a T'-cover ¥, of its suspension ¥, such that 71(3,) is normally

generated by curves contained in leaves, and (T,,T) is the leaf space made Hausdorff
of .

o 3, is tame and the leaf space of ¥, is Hausdorff.

In view of Lemma 2.2 and Proposition 3.1 we want to analyze actions coming from
pure minimal system of isometries.

3.3 Pruning process and the 3 types of pure systems of isometries

There are 3 exclusive types of pure systems of isometries: homogeneous type, surface type,

and exotic type. When the X-orbits are locally the trace of a group of isometries of R, then
X is said to be homogeneous (or axial). This group of isometries is well defined by X up
to conjugacy. It is called the group of periods of X. An homogeneous system of isometries
may either be orientable or non-orientable according to the fact that its group of periods
is orientable or not. If X is homogeneous and if 7% has trivial arc stabilizers, then T¥ is
a line, and T is isomorphic to the group of periods (see [Gui98], [BF95], [Pau97]).

For the two other types of system of isometries we need to recall the definition of the
pruning process (or Rips Machine 1). A Rips move is an operation on X, D and ¥ which
doesn’t change T%, tameness, and the fact that the space of leaves of ¥ is Hausdorff.
Thanks to a theorem by Gaboriau, given a non-homogeneous system of isometries, one
can perform Rips moves on it so that it generators become independent: this means

that no word in the X-generators fixes a point in D (see [Gab97, Pau97, Gui98]). A
system of isometries with independent generators has the following property: the total
length of the domain D equals the sum of the lengths of the domains of the generators
([Lev93b, GLP94]). This means that

e cither every point of D but finitely many of them lie in the domain of exactly 2
generators,

e or the set E of points of D which lie in the domain of exactly one generator is
non-empty.

In the first case, ¥ is a surface with boundary with a measured foliation. In the second
case, F is a finite union of intervals; these intervals are open in D and their closures
don’t intersect by purity of X. So we can prune E: we define a new system of isometries
whose domain is D' = D\ E, and the new set of generators consists in the restrictions
of generators of X to D'. This pruning operation is a Rips move, generators remain
independent, and X' is still pure ([Gab96]). Note that the pruning operation removes all
the points in D which are terminal vertices in their leaf.

Therefore, either the suspension of the new system of isometries is a surface, or the
pruning operation can be iterated. If this pruning process stops, then the final 2-complex
is a surface and we say that X is of surface type (or interval exchange). Otherwise, X is
called ezotic (thin in [BF95]).
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We say that a pruning operation is an interior pruning if F doesn’t intersect 0D. Ac-
cording to [BF95, Gab96], all the prunings but finitely many of them are interior prunings.

4 Reading the complexity from the foliation.

Consider X a system of isometries, 3 it suspension, p : mY3 — I', and 7% the dual tree.
The goal of this section is to compute the complexity of T%, in terms of ¥ when ¥ is tame,
and its leaf space is Hausdorff. This section follows [GL95] which deals with actions of a
free group. Notations are those of section 3.2.

Let z be a point in Tk, £ the corresponding leaf in 3, and L its projection in ¥. £ and
L come with their natural graph structure. Note that Stab (z) is conjugate to p(i,(m1(L)))
where i : £ < Y denotes the inclusion.

Now consider the graph of directions DL of L: a vertex of DL is a direction in D
from a point v € £L N D. Here we think of a direction at v as a germ of isometric map
d : [0,e] = D with d(0) = v. We put an edge between two directions d,d’ at v, v’ for every
generator ¢ such that ¢ o d is defined on a non-degenerate interval and d’ = @ o d. We
denote by ¢ : DL — L the natural map sending d to d(0). Similarly, there is a graph of
directions DL of L: its vertices are directions from a point v € £ in D, we put an edge
between d and d’ for each band between d(0) and d'(0) whose holonomy sends d to d'. We
denote by ¢ the natural map DL — L. When the leaf space of ¥ is Hausdorff, we have
Stab (£) = Stab (), and DL = DL/Stab (L).

The following lemma computes the complexity of z € Ty in terms of the graph of
directions at £. This is a direct generalization of Lemma IIL.5 in [GL95].

Lemma 4.1. We assume that ¥ is tame, that the leaf space of & is Hausdorff, and that
arc stabilizers of Ty, are trivial.

o The set of directions at = € T5 1is in one-to-one correspondence with the set of
connected components of DL.

e The set of orbits of directions at = is in one-to-one correspondence with the set of
connected components of DL.

Since a complexity of a point an hence of the action can be read off 3 we will denote
by C(p) the number of components of DL, the graph of directions at a point p € . We
will also use the abuse of notation C(X) = C(T%).

Corollary 4.2. If L is a regqular leaf, then x is not a branch point. In this case, T is a
flip point if and only if L is transversally non-orientable.

Proof of the corollary. If L is regular, then DL is a 2-covering of £. Moreover, DL is not
connected because 3 is tame. Thus DL is a the disjoint union of 2 copies of £, so z is not
a branch point by the lemma. Now z is a flip point if and only if an element of Stab (x)
exchanges those two copies. This means that £ is transversally non-orientable. U

Proof of the lemma. Since ¥ is tame, there is a natural map A from DL to the set of
directions at z in Ts: just project on T a germ d : [0,¢] — D. Lemma 4.3 will say that
A is onto.

If d,d’ are in the same component of DL, then there is a segment in £ joining ¢(d) to
q(d") whose holonomy sends d to d' so that A(d) and A(d') define the same direction in
Ts.
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Conversely, if A(d) = A(d') then for n small enough, V¢ € [0,7], d(t) and d'(t) are in
the same leaf. By segment-closed property (see [GLP95, Th.2.3]), there exists ' < 7 and
a word w in the generators of X, such that the projections d, d’ of d,d’ in ¥ are such that
w o d'(t) = d(t). Thus w lifts to a band of leaves whose holonomy sends d to some ~.d'.
Therefore, for t < 7', v.d'(t) and d'(t) are in the same leaf. This means that v fixes an
arc in Ty so v = 1. Thus the band of leaves defined by w provides a path in DL joining
d to d'. This proves the first part of the lemma. The second part is clear since A is
Stab (x)-equivariant. O

Lemma 4.3. Any germ of isometric map d : [0,¢] — Ty can be lifted to D.
Remark. In this lemma, the fact that the leaf space of ¥ is Hausdorff is not necessary.

Proof. Consider two preimages a,b of d(0),d(¢) in D. Take a path « joining a to b in
¥ which is a concatenation of subpaths contained in a leaf or in D. Let t; be the last
instant for which «(tp) maps to d(0) in T%. Then for n small enough, the restriction of «
to [to,to + 1] is a desired lift. O

5 Complexity of exotic components.

Proposition 5.1. Consider (T,T',H) an almost geometric action of a pair with a nice
decomposition as a graph of actions G (definition 3.5). Then, for each exotic vertex action
(T,,TY), there is a simplicial action (T!,T%) with trivial arc stabilizer, in which every point
stabilizer of (Ty,T') fiz a point, and satisfying

C(T,) < C(T}).

Furthermore, there is G' be a graph of actions obtained from G by changing T, to
T) such that (Tg,T',H) is an almost geometric action with no exotic component, its arc
stabilizers are in C if those of T are, and we have

C(T) < C(Tg:) + 2v.
Remark. We actually construct 7, as an approximation of Tj,.

Lemma 5.2. Let ¥ be the suspension of a pure exotic system of isometries, and let
{L1,..., Ly} be a finite set of leaves of ¥. Then there exists a foliated 2-complex ¥’
whose leaves are compact, a finite set {L),..., L} of leaves of ¥ and a map f: %' — %
with the following properties.

(i) f is a homotopy equivalence, f(D') C (D), f is an isometry in restriction to each
component of D', and f sends any leaf of ¥’ to a subset of a leaf of .

(it) Vi =1,...,n, f(L)) CL; and f, : m (L) = w1(L;) is onto
(iii) C(X) < C(¥)

Proof of the Proposition using the Lemma. Consider a nice decomposition (7g,T') of T.
For each vertex v corresponding to a pure exotic system of isometries %,, let X! be
given by the lemma, where {L1,...,L,} is the set of leaves corresponding to attaching
points of edges incident on v in the graph of actions. Let T, = Ty, and T, = Tgy. f
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induces an equivariant morphism of R-trees between (T,,I'%) and (T!,I'0) showing that
edge stabilizers of (T7,T9Y) are trivial. Property (ii) says that stabilizers of attaching points
of T, fix a point in T}.

Let G’ be a graph of actions obtained by replacing T, by T for each exotic vertex wv.
In view of corollary 2.3, we may move attaching points to get C(T") < C(Tgr) + 2. O

Proof of the Lemma. Following [Gui98], because generators are independent, any loop in
a leaf is either nullhomotopic or contains a singular edge, i. e. one of the two sides of
a band which is contained in a leaf. Thus, any non simply-connected leaf £ is one of
the finitely many singular leaves, and it contains a finite graph K (L) whose fundamental
group generates () (if £ is simply connected, we set K (L) to one point).

We will narrow a band by a small amount § as in [Gui98, BFb]: given an edge e =
{b} %10, 1] in the boundary of a band [a, b] X [0, 1], narrowing this band at e means replacing
it by [a,b — 4] x [0, 1]. The obtained foliated 2-complex is denoted by ¥; and L, denotes
the ¥-leaf containing e. The condition (i) for inclusion ¥5 C ¥ requires that the map
induced by inclusion L, \ e < L, on fundamental groups is onto. During iteration of
the pruning process on Y., the number of singular edges keeps growing but the number
of singular leaves stays bounded, and for every non simply-connected leaf, K(£) remains
unchanged. Therefore, after sufficiently long iteration of the pruning process, there is a
boundary of a band e which does not belong to K (L) for any singular leaf L.

If ¢ is small enough, the part of the band removed (b — d,b] x (0,1) does not meet
K (L) for any non simply-connected leaf £. Thus, properties (i) and (ii) hold if we choose
for £ the ¥s-leaf containing K (L;).

To handle property (iii), we take extra care in the choice of e and § (but no extra
pruning will be necessary). Given a singular leaf £, consider the minimal connected graph
K'(L) C L containing K (L) and every singular edge in £. We choose e so that all singular
edges of L. \ e are on the same component of K'(L.) \ e. We denote by L, the Xs-leaf
containing all the singular edges of K'(L.)\ e. We choose § small enough so that for every
singular leaf £ # L., K'(L) C X, and K'(L,) \ e C X5. Moreover, we choose § so that
the new boundary e; = {b— ¢} x [0, 1] of the narrowed band is in a singular leaf of ¥ (this
still enables us to choose § as small as we want since the union of singular leaves is dense
in ¥ [Gab96]). We denote by L., the ¥;-leaf containing e;.

Consider a singular leaf £ # L., and let £’ be the Xs-leaf containing K'(L). Recall
that DL is the graph of directions of £ and that ¢ : DL — L is the natural projection.
Every connected component of DL contains a point whose projection in £ is the endpoint
of a singular edge. Thus, ¢ !(K'(£)) meets every connected component of DL. Therefore,
if £ # Le, then Cx,(L') > Cx(L).

Similarly, one has C(L.) > C(L.) — 1: this is because the preimage in DL, of the
component of K'(L]) \ e containing all the singular edges distinct from e meets all the
connected components of DL but one. This gives the inequality C(X5) > C(X) — 1.

Now remember that we chose § so that es lies in a singular leaf £ of 3, and look at the
leaf L. If £ # L., then we get Cx;(L.;) > Cx(L) + 1 because the new singular edge e;
disconnects a component of DL. Similarly, if £ = L., we get Cx,(Le;) > Cx(Le). Thus,
on the whole, C(X5) > C(X) and (iii) holds.

It is not quite true that ¥ has compact leaves but it is proved in [Gui98] that the
only minimal components that may appear in Y are exotic and that performing such
a band narrowing decreases the number of ends of singular leaves. Therefore, after a
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finite sequence of pruning and narrowing operations, we get a foliated 2-complex %' with
compact leaves (see [Gui98]). This proves the lemma. O

6 Complexity of surface components

Proposition 6.1. Consider (T,T',H) an almost geometric action of a pair with a nice
decomposition as a graph of actions G (definition 3.5).

Then, for each surface type vertex action (T,,TY), there is a simplicial action (T,TY)
with cyclic arc stabilizer, in which every point stabilizer of (T,,TY) fiz a point, and satis-
Jying

C(T,) < 3C(T)) +6.

There is a graph of actions G' obtained from G by changing T, to T, such that (Tg,T', H)
is an almost geometric action with no exotic or surface component, arc stabilizers are in
C if those of T are, and satisfying

C(T) < C(Tg) + 10n.

Proof. Unlike in the exotic case, we have now that for every length-0 edge e, its edge
group I'¢ in G is in C. This is because point stabilizers in a surface-type or homogeneous
action (T,,T?) are cyclic (at most Z/2 in the axial case) and C is closed under cyclic
extension. Therefore, G has at most v reduced vertices and hence at most y surface-type
and homogeneous components.

Let v be a vertex such that T, is of surface type, let 3, be the corresponding foliated
surface, and p, : m(%,) — 'Y defining the cover of X,. Ty is the fundamental group of
the orbifold with boundary obtained from ¥, by collapsing a boundary component B to
a conic point of angle 2w /n where n is the index of 71 (B) Nker p, in 71 (B) (when n = oo,
don’t collapse B). We rather consider the surface ¥} obtained from ¥, by collapsing to
a (regular) point each boundary components with n = 1. Each interior singularity s of
the foliation induced on X! corresponds to such a collapse. Because of the tameness, it
is a p(s)-pronged singularity with p(s) > 2. When p(s) = 2, it is a false singularity. For
boundary singularities, p(s) will denote the number of branches going into the interior of
¥, so that p(s) = 0 for regular points on the boundary (see [FLP79] for background on
measured foliations on surfaces).

Now let’s compute C(T,) using lemma 4.1. A singular leaf £ in ¥, is composed
of a circle made of k singular edges, and of a semiline made of regular edges coming
out of each vertex which does not lie in dD. Thus DL has C(L) = k — #(L N dD)
connected components. Thus, all those complexities add up to 2#{bands of ¥,} —#0D =
—2x(Z,). But some of these leaves correspond to non-reduced points: this occurs for each
singular leaf £ with complexity 2 such that 7 (£) C ker p,, in other words for false interior
singularities of ¥!. Hence,

C(T,) = —2x(Zy)— 2#{false interior singularities of 3}
= —2x(X!) + 2#{true interior singularities of ¥}

On the other hand, a standard Euler characteristic argument shows that
-2x(%,) = Yo k-2 + > pls)

. s interior , s boundary
singularity of X, singularity of 3/,

> #{true interior singularities of ¥}
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Thus, C(T,) < —6x(ZL)-

Consider on X! a maximal system of disjoint, one-sided, simple closed curves. Cutting
Y! along those curves gives an orientable surface with same Euler characteristic as X .
Decompose it into —x(X!) pants. The boundaries of these pants give at least —x(X]) — 1
not boundary-parallel disjoint curves in ¥/. Each vertex of the action (77,T?) dual to
this system of curves has a non-cyclic stabilizer, so must be reduced. Thus C(T}) >
—2x(X!) — 2. Therefore, we get the expected inequality C(T,) < 3C(T}) + 6.

Let G’ be the graph of actions obtained by replacing the vertex tree T, by T, for each
surface type vertex action 7T, (this is possible because fundamental groups of boundary
components of ¥} fix a point in 7}). In view of corollary 2.3, we get

o) < cg)+ Y (cm)-cm)) +2y

Ty surface type

< 0T+ Y (20)+6) +2y

T, surface type

If we replace homogeneous actions of G’ by trivial actions, the obtained simplicial action of
I has complexity at least > 7 (iigace type C(Ty) (use lemma 2.2 where one can take a = 0
since no vertex of T has a cyclic stabilizer). Thus > 7 iface type C(Ty) < 7- Since the
number of surface type vertices is at most y, we get C(T) < C(Tg) + 107. O

7 Complexity of homogeneous components

Proposition 7.1. Let (T,T',H) be an almost geometric action of a pair having a nice
decomposition as a graph of actions G with no exotic or surface component. Assume that
arc stabilizers of T are in C.

Then C(T) < 3y + 27 +dim Hi(T52/2)-1

Proof. Like in proposition 6.1, for every edge e of G, its edge group I in G is in C (even
if e has length 0). Therefore, the number of homogeneous components in G is bounded by
v. If we have a bound B for the complexity of a homogeneous component occurring in G,
we deduce from lemma 2.2 that

C(T) < C(Go) +2a+ Y _ C(T,) < 3y+19B.

Let v be a vertex corresponding to a homogeneous component in G. Since T, is a line,
C(T,) = 0 when v is an orientable homogeneous component. When v is non-orientable,
then T'Y ~ D), acts faithfully on R as a subgroup of Isom (R) generated by a reflexion and
n rationally independent translations. Since T3 has complexity 2", we just have to bound
n.

Let G' be the graph of groups obtained from the graph of groups underlying G by
killing edge groups and let I'' = 71(G’). T' maps onto I'' which maps onto I'} (T, is the
vertex group of v in G'). Let C be the subspace of H(T'); Z/2) generated by the images of
the edge groups of edges incident on v. Note that dim C < -~y since images of edge groups
in TY are cyclic. We have Hy(T;Z/2) = H1(T'%;7Z/2)/C and

n+1=dim H (% Z/2) = dim H,(I",; Z/2) + dim C < dim H,(T;Z/2) + 7.

Therefore, C(T,) is bounded by B = 2dim H1(I[32/2)+7-1, O
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8 Conclusion

Here, we put everything together to prove the Theorem. Consider a finitely presented pair
(T',H). Let C be a class of subgroups of I" stable by taking subgroups and cyclic extensions
such that (I', ) satisfies the accessibility condition with respect to C with accessibility
constant . Consider a stable action (7,T',H) with arc stabilizers in C.

By lemma 3.4, (T,T', ) is a strong limit of almost geometric actions (7;,T’, ) having
a nice decomposition. By Proposition 3.1, C'(T') < lim inf C(T;).

We now fix an index i and we bound C(T;). Propositions 5.1 and 6.1 provide from 7;
an action (77,T,H) without exotic components or surface components with arc stabilizers

in C such that C(T;) < C(T}) + 12vy. Proposition 7.1 concludes that C(T}) < 3y +
2'y+dimH1(I‘;Z/2)71' O
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