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Abstract

A recurrent issue encountered in environmental, ecological or agricultural impact
studies is to provide fast and realistic simulations of atmospheric variables such as tem-
perature, precipitation and wind at a few specific locations, at daily or hourly temporal
scales. Spatio-temporal dynamics and correlation structures among the variables of
interest, as well as weather persistence and natural variability have to be reproduced
accurately in a distributional sense. This quest leads to a large variety of so-called
stochastic weather generators (WGs) in the literature. Here, we provide an up-to-
date overview of weather type WG models. Weather types classically represent daily
summaries of the relevant atmospheric information at hand. There are many ways
to build such weather states, either hidden or observed, and to infer their properties.
This overview should help statisticians as well as meteorologists and climate prod-
uct users to understand the probabilistic concepts behind weather type WGs, and to
identify their advantages and limits.

1 Introduction

Stochastic weather generators (WGs) are statistical models that aim at quickly sim-
ulating realistic random sequences of atmospheric variables such as temperature, pre-
cipitation and wind (e.g., Wilks and Wilby, 1999). Ideally, spatio-temporal dynamics
and correlation structures among the variables of interest, as well as weather per-
sistence and natural variability, have to be reproduced accurately in a distributional
sense by WGs.

At least three features distinguish WGs from numerical global climate models.
WGs focus on small spatial scales (typically a few sites within a region extending
over few kilometers), they have to be computationally very fast to provide numerous
random realizations and those outputs should have the same distributional properties
as observed time series, mainly at the daily or subdaily scales. In contrast, climate
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models have to reproduce the behavior of the whole atmosphere and its interactions
with other components of the Earth system (vegetation, oceans, etc.) at the global
scale and for a long time period. The price to pay for this inclusiveness is that only few
runs can be provided by global climate models and they do not correspond to a specific
site but live on large spatial grids. Those differences explain why WGs have been
adopted in impact studies as computationally inexpensive tools to generate synthetic
daily time series of atmospheric variables at local sites. Such simulated outputs are
then fed into process-based models, typically electricity demand models or crop models
(e.g., Kolokotroni et al., 2012; Launay et al., 2009). Non-linear interactions in process-
based models imply that small variations in weather inputs can lead to large output
discrepancies, and to counter intuitive behavior. For example, complex relationships
among sowing dates, temperatures, droughts and growth render very complex the
assessment of the weather impact on agricultural yields. To investigate the influence
of weather conditions on such crop models, it is essential to be able to explore the
weather parameter space via simulations. To a certain extent, such a strategy is not
new. It has been commonly used in geosciences, where it is referred to as simulators
or emulators (e.g., Lantuéjoul, 2002; De Marsily et al., 2005).

Current WGs can be broadly divided into four groups: resampling methods (e.g.,
Rajagopolan and Lall, 1999; Oriani et al., 2014; Yiou, 2014), Box-Jenkins methodol-
ogy (e.g., Box and Jenkins, 1976), point process models (e.g., Onof et al., 2000) and
hierarchical models. The latter encompass the weather type models which include a
discrete variable and multivariate statistical distributions modeling the climatic vari-
ables conditional on this discrete variable. This conceptual discrete variable is meant
to describe a limited number (typically from 2 to 6) of weather “states”, “types” or
“regimes”. Depending on the problem at hand and depending on the availability of
good descriptors of weather patterns, weather states can be considered as observed
or latent. They are said to be observed when they are extracted from external vari-
ables such as descriptors of large scale synoptic climatological patterns (Bardossy and
Plate, 1991, 1992; Wilson et al., 1992). Weather types are considered as latent vari-
ables when they are estimated on local variables by means of an a priori clustering
algorithm (Flecher et al., 2010), or when they are estimated as a hidden variable in
the statistical model. Modeling strategies for weather type models will be detailed in
Section 2

Quite often, it is possible to relate the latent states to typical weather patterns, a
simple example being the straightforward classification in three states corresponding
to dry days, days with light rain and days with heavy rain. Even though observed and
latent weather states correspond to quite different modeling options, they do constitute
a common framework for building stochastic weather generators that is today largely
prevailing in the literature due to its flexibility and interpretability. This review will
focus on this class of models since, based on our experience, it is the most versatile
approach for building multisite, multivariate weather generators. In the following we
shall use indistinctly “state”, “type” or “regime” to name the latent discrete variable.
We will restrict ourselves to daily stochastic generators. Even though subdaily precip-
itation models are not different to daily ones in essence, subdaily models for variables
such as temperature, solar radiation and humidity require a precise modeling of the
daily cycle. Adequate models are driven more by physical considerations than by
statistical ones, which is beyond the scope of this paper.

Historically, weather generators have been first developed for hydrological appli-
cation (Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975). Rainfall occur-
rences at a single site were described by a two-state Markov chain and their intensities
by independent exponential or Gamma random variables, leading to the so-called
”chain dependent model” (see also Katz, 1977). In this simple model, weather states
correspond to the states of the Markov chain, i.e. to dry and wet states. In a sem-
inal paper Richardson (1981) added the modeling of daily minimum and maximum
temperature and solar radiation to the generator in Katz (1977). After removing the
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seasonal cycle and conditionally on the weather type, residuals of these variables were
viewed as a multivariate autoregressive process independent on rainfall amounts. Fol-
lowing those early papers, numerous extensions have been proposed, and they were
summarized by two review articles published at the turn of the century. Wilks and
Wilby (1999) gave a detailed presentation of Richardson’s model and its extensions,
with a discussion of the advantages and drawbacks of these models and some appli-
cation issues. Srikanthan et al. (2001) provided a quite comprehensive list of models
for annual, monthly and daily climate variables at a single site together with some
remarks on multisite models. Recently, impact questions with respect to large scale
climate changes have spurred a strong interest in linking local and global climate vari-
ables, leading the way to the so-called downscaling methods. Maraun et al. (2010) and
Wilks (2010, 2012) discussed in detail the strong links between downscaling approaches
and WGs, mainly focusing on how to make the connection between circulation pat-
terns and local atmospheric variables at the daily scale. Our review departs from
those recent studies by zooming in on multisite weather type models and outlining the
principal ideas of the referred papers. Its outline follows the steps required to build
a weather type model. In Section 2, different strategies for choosing weather types
are discussed. Conditionally on the weather type, statistical models for the weather
variables are detailed in Section 3. The last section makes some propositions for fu-
ture research, regarding the modeling of the weather types, the space-time statistical
models for weather variables and the modeling of extreme values in this framework.

2 Modeling weather types

2.1 Defining weather types

As mentioned above, in the early days two weather types were introduced in order to
capture the dynamical changes between wet and dry days at a single site. In practice,
a day was qualified as wet if the precipitation amount was greater than a chosen level,
for instance 0.2 mm of daily total rainfall (Richardson, 1981). Beyond the natural
dichotomy between wet and dry events, weather types intend to capture recurrent
patterns by breaking spatio-temporal information into a finite number of blocks. For
example, daily weather patterns over Europe in winter are often linked to the North
Atlantic Oscillation (NAO) that consists of two pressure centers in the North Atlantic,
one typically located near Iceland, the other one being an area of high pressure over the
Azores. Such a configuration can be used to create four weather pattern, classically
referred to as NOA+, NOA-, blocking and ridge. By breaking the spatio-temporal
information into four blocks, one can assign a weather type for each winter day.

As impact study requirements and datasets at hand moved from one single variable
(e.g. precipitation) towards multivariate random vectors (precipitation, temperature,
wind, etc.), it was natural to wonder if the definition and the numbers of weather types
could benefit from the extended database. Flecher et al. (2010) decomposed the wet
and dry contrast into finer nuances. Sub-regimes of wet (respectively dry) days were
obtained by running a clustering algorithm on variables such as daily minimum and
maximum temperature, radiation and wind speed recorded at the same single site.

Additional large scale information such as pressure fields, synoptic patterns, etc.
can also improve the definition of weather types. Any given day can be attached to
a specific weather type, or circulation pattern, by running a clustering algorithm on
large scale atmospheric variables (e.g. Bogardi et al., 1993; Wilson et al., 1992; Hay
et al., 1991; Garavaglia et al., 2010). There is a large variety of possible approaches
to classify large scale atmospheric conditions. The most common one consists in per-
forming k-means clustering on the first empirical orthogonal functions of geopotential
anomaly fields (e.g. Cattiaux et al., 2010). The k-means algorithm is sometimes initial-
ized using hierarchical clustering (e.g. Garavaglia et al., 2010; Guanche et al., 2013).
More modern methods have also been implemented, such as fuzzy classification based
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on mixture models (e.g. Vrac et al., 2007) or simulated annealing optimization (e.g.
Bárdossy, 2010; Haberlandt et al., 2014). One advantage of linking weather types
with large scale data is that the practitioner can investigate the impact of large scale
changes on the weather type distribution. This road has been explored by researchers
working on statistical downscaling (e.g. Hughes and Guttorp, 1994; Haberlandt et al.,
2014; Wilks, 2012) and sea state condition generators (e.g. Guanche et al., 2013).
Time stationarity of this link remains usually a key assumption. Recently, some au-
thors (e.g. Jones et al., 2011) proposed to account for nonstationarity in the context
of climate change by re-estimating the parameters of the distributions for future con-
ditions based on corrected observations using a delta change approach with respect to
simulations from a regional climate model.

Imposing an a priori weather type, although interpretable, may be too restric-
tive and may not necessarily provide an optimal clustering to capture the stochastic
properties of meteorological variables of interest. A natural alternative consists in in-
troducing the weather type as a latent variable. Hidden Markov Models (HMM) have
been proposed in this context (Zucchini and Guttorp, 1991). With HMMs, the states
are optimally fitted to the data given the chosen parametrization. However they may
not always have a simple interpretation in terms of weather types. Furthermore, the
existence of the hidden variable complicates the statistical inference and, despite re-
cent progress, only relatively simple models can be considered to describe the sequence
of weather types and the distribution of the weather variables within weather types.
As a consequence, these models may be too simple to reproduce the complexity of the
data.

At this stage, one can already figure some issues met by the practitioner, in a
nutshell solving the various trade-offs between model complexity, inference efficiency
and interpretability. To discuss those points, classical approaches to represent the
temporal dynamics among weather types (hidden or not) have to be recalled.

2.2 Temporal models for weather types

The sequence of weather state is often modeled as a homogeneous first order Markov
chain. It leads to simple and interpretable models when the number of states is small.
Standard fitting procedures can be used even when the state is introduced as a hidden
process (e.g. Zucchini and Guttorp, 1991). However, such an assumption may be too
simplistic to catch some important properties of the meteorological data as discussed
below.

Meteorological time series are nonstationary with important seasonal and daily
components and some possible inter-annual variability. It is usual to treat each season
or month independently. This leads to a large number of parameters, which can be
a problem for small datasets. To overcome the difficulty of defining limits between
seasons, stochastic seasonality with seasons starting at random dates according to a
non-homogeneous HHMs have also been studied (Carey-Smith et al., 2014; Sansom
et al., 2013). In a Markovian world, the chain can become nonhomogeneous to capture
cycles and trends. Transition probabilities can be allowed to depend on time and other
covariates via a link function as in the Generalized Linear Model framework (e.g. Katz
and Parlange, 1995; Furrer and Katz, 2007; Ailliot and Monbet, 2012). In the same
spirit, large scale atmospheric variables or climate indices such as ENSO (El-Niño
Southern Oscillation) or NAO may also be introduced in the switching mechanism
parameters. It generally improves the description of the inter-annual climate variabil-
ity and offers a way to link WGs to global climate models (e.g. Hughes and Guttorp,
1994; Hughes et al., 1999; Bellone et al., 2000; Qian et al., 2002; Robertson et al.,
2004; Vrac et al., 2007; Zheng and Katz, 2008; Kim et al., 2012).

An other important limitation of first order homogeneous Markov models is that
the sojourn time in each weather state is distributed as a geometric random variable,
which may not allow reproducing long heat waves or long dry spells (Racsko et al.,
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1991). For daily rainfall occurrences, working with second or third order Markov
chains improves the fit significantly (e.g. Katz and Parlange, 1999; Jimoh and Webster,
1996; Wilks, 1999; Lennartsson et al., 2008; Chen et al., 2012), but this considerably
increases the number of parameters. Reduced models may alleviate this issue in some
cases (Zucchini and McDonald, 2009). Whenever interpretable and physically realistic
constraints can be identified, the risk of overparametrization diminishes in statistical
models that can easily allow covariates, e.g. the GLM approach. Semi-Markov models
have also been proposed in this context, with sojourn durations in the regimes modeled
by parametric (Racsko et al., 1991; Wilby et al., 1998) or semi-empirical distributions
(Semenov et al., 1998). Inference for semi-Markov models becomes difficult when the
weather type is viewed as a latent variable (e.g. Sansom and Thomson, 2001; Bulla
et al., 2010).

Overall, the joint choice of the number of states (hidden or not), the order of the
Markov chain and the sojourn time distribution remains a subjective task. In time
series analysis it is usual to consider residuals for the task of model selection, but
the residuals are not properly defined in mixture models and, although one could
construct pseudo-residuals, they are rarely used in the weather generator context.
Automatic criteria such as AIC, BIC (e.g. Brockwell and Davis, 2002) can help, but
the final choice will also depend on other criteria like interpretability, computing time,
robustness and adaptability.

2.3 Spatial models for weather types

In a multisite analysis, one can either view weather types as “local entities” or as a
“constant spatial feature”. In the latter case, all sites share the same regional weather
type at a given day and no spatial model is needed.

In the former case, one has to create local variabilities and spatial dependence in
the weather type space while being parsimonious in order to keep a small number
of interpretable parameters. This is not an easy task. At each time step, discrete
random realizations with a spatio-temporal structure must be drawn at each location
to represent the local weather type.

To reach this goal, in Wilks (1998), a collection of single-site chain-dependent mod-
els are tied together by drawing correlated random numbers at each time point. The
dependence among sites is based on a correlation index obtained from a spatially mul-
tivariate Gaussian vector. The weather at a given day is said to be wet at a given site
if the corresponding Gaussian coordinate is above a site-dependent threshold. The in-
ference method proposed in (Wilks, 1998) may lead to ill-defined covariance estimates.
Alternative inference schemes were discussed in Lee et al. (2010) and Thompson et al.
(2007) who reformulated the model as a HMM with the local weather types being dry,
light rain or heavy rain.

The idea of censoring a Gaussian vector is mathematically rich because it offers
a simple way to generate the space-time evolution of binary variables. For rainfall
occurrence modeling, Allard and Bourotte (2014) and Kleiber et al. (2012) followed
this approach. Censoring was also used by Khalili et al. (2007, 2009), but a moving
average of a white noise with uniform distribution, instead of a Gaussian one, provided
spatial dependence. The threshold for censoring can also depend on covariates (Qian
et al., 2002). It was also proposed to use the autologistic model (Hughes et al., 1999)
to describe the spatial structure of rainfall occurrence.

3 Modeling weather variables conditionally upon weather
types

Conditionally upon the weather type, the choice of the distribution describing the
meteorological variables of interest is of primary importance and is a complicated
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task. First, marginal distributions may be hard to model with complex features such
as a point mass at the origin for rainfall (corresponding to dry conditions), circular
variables (wind direction for example), heavy or bounded tails... Then, the depen-
dence structure among the meteorological variables is generally complex, even within
a weather type which corresponds to homogeneous weather conditions. For multisite
models, it is also necessary to add the spatial dependence to the model. The family
chosen for the joint distribution must be flexible enough to catch such features. Yet,
at the same time it must be simple enough in order to yield tractable and interpretable
models, especially when the weather type is introduced as a hidden process.

3.1 Single site models

Precipitation

Precipitation has always been a key variable of interest in hydrology and clima-
tology, in particular for the first WGs (e.g. Katz, 1977; Richardson, 1981). From a
statistical point of view, precipitation modeling is complex because it mixes a Bernoulli
random variable corresponding to dry or wet events with a positive random variable
corresponding to the rainfall intensity, therefore leading to a strong departure from
the classical Gaussian framework.

Given the weather type sequence, precipitation amounts have been classically as-
sumed to be conditionally independent in time (e.g. Richardson, 1981; Wilks, 1999).
More recent developments propose to take the temporal dependence into account. Dur-
ing wet days, a large class of distributions can be fitted to rainfall amounts. Since the
early exponential and Gamma distributions (Todorovic and Woolhiser, 1975; Katz,
1977), researchers have tried to move away from the classical Gamma distribution
family for at least two reasons.

First, the Gamma distribution may not be flexible enough to capture all rainfall
amount behaviors. For example, precipitation can be heavy-tailed at some sites. Al-
ternatives are thus needed to model extreme amounts. In Lennartsson et al. (2008), a
generalized Pareto distribution (GPD) modeled heavy rainfall above a high level. In
Furrer and Katz (2008), a stretched exponential distribution was used as an alterna-
tive to the GPD. Another approach consists in using a dynamic mixture of the Gamma
and GPD distributions with a weight depending on the amount of precipitation (Vrac
et al., 2007). Even for non-extreme events, imposing an unique parametric distri-
bution can be viewed as too restrictive. Mixtures of exponential random variables
(Wilks, 1998, and references therein) or semi-parametric distributions (Lennartsson
et al., 2008) can then be favored.

A second difficulty is the lack of a clear path on how to extend the Gamma distri-
bution to a multivariate and/or spatial setting. This leads to the idea of transforming
data into the Gaussian world that offers a simple dependence structure, the covariance
matrix. For example, the transfer function can be a power-transform (Katz and Par-
lange, 1995) or the powered exponential of a truncated Gaussian distribution (Allard
and Bourotte, 2014), or indeed any non parametric transform (Chilès and Delfiner,
2012). This is not limited to precipitation, and for instance the square root of the
wind intensity is often considered instead of its raw value. Although powerful and flex-
ible, these transformations complicate the assessment of uncertainties and render the
interpretability challenging, the measurement unit being lost. Another route consists
in modeling the Anscombe residuals, which are very often approximately Gaussian. It
is then natural to describe the dependence via a model for their temporal dependence
(Chandler and Wheater, 2022; Yang et al., 2005).

Overall, despite all these drawbacks, the Gamma density has still a lot of attrac-
tive mathematical properties and remains a strong candidate to capture basic rainfall
amount properties at the daily scale, and it should be viewed as an important yard-
stick.
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Dependence between successive rainfall amounts has been modeled by an autore-
gressive process (Hutchinson, 1995), by a parametric auto-correlation function (Flecher
et al., 2010) or a Gaussian copula (Lennartsson et al., 2008). Another extension con-
sists in assuming that the distribution depends on covariates such as the the season
Kim et al. (2012).

Other variables

Besides precipitation, other meteorological variables like minimum and maximum
daily temperature, solar radiation, humidity or wind intensity have been generally
modeled by a multivariate autoregressive model (Parlange and Katz, 2000). The
autoregressive parameters depend on weather types, and thus marginal distributions
may not be Gaussian anymore, even for linear models. In Flecher et al. (2010),
conditionally on weather types, the multivariate distribution of two successive days
was modeled by using the multivariate closed skew-normal distributions (González-
Faŕıas et al., 2004; Gupta et al., 2004). This family of distributions allows a rather
flexible modeling of the residual skewness generally observed in climate data. Markov-
switching autoregressive processes, for which the weather type is introduced as a
latent process, and autoregressive models are used to describe the weather condition
conditionally to the latent process for bivariate wind conditions (i.e. wind speed and
wind direction) in Ailliot et al. (2014). Hidden Markov models have also been proposed
for wind directions (Holzmann et al., 2006).

3.2 Multisite modeling

If only one single weather type drives a multisite weather generator, a simple multisite
modeling strategy is to assume that, given this weather type, the sites are mutually
independent in space and time (e.g. Zucchini and Guttorp, 1991; Hughes and Guttorp,
1994; Robertson et al., 2004). In Bellone et al. (2000), an autologistic model was used
to describe the spatial structure of rainfall occurrence. Still, rainfall amounts were
assumed to be Gamma random variables, conditionally independent in space and
time and also independent on the occurrence process. Such assumptions may not
be realistic for many datasets, in particular when the network of rainfall stations is
dense and when the topography of the area is diverse. Thus, modeling the dependence
structure within weather types becomes necessary, but is challenging even when only
a unique weather type is considered. Few tractable models for spatial processes exist
and Gaussian processes are often considered.

As marginals may not be normally distributed, Gaussian processes cannot be used
directly and marginal transformations may be needed. In the literature on multisite
WGs with regional weather type, different flavors exist to make the link between a
non-Gaussian multivariate random vector and its normally distributed counterpart
(e.g. Wilks, 1998; Brissette et al., 2007; Khalili et al., 2007; Thompson et al., 2007;
Khalili et al., 2009; Heaps et al., 2015).

For example, Bardossy and Plate (1992) and Ailliot et al. (2009) opted for a cen-
sored power-transformed Gaussian distribution for daily rainfall. Negative values of
the Gaussian vector correspond to dry days and the power transformation was applied
to the positive part of the distribution.

Kleiber et al. (2012) developed a multisite extension of the chain-dependent model
where rainfall amount at each site was modeled by Gamma distributions with shape
and scale parameters varying according to latent Gaussian fields. In these generators,
the spatial structure was described by both the weather type and the covariance of
the Gaussian vector.
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4 Trends and challenges

Comparing the various models presented above is a difficult if not impossible task
since they have been validated on different datasets and for different scientific purpose:
downscaling, prediction or simulation. Building a shared framework of datasets and
the associated statistical tools for comparing the different weather generators in various
contexts remains a hurdle but is an absolutely necessary step. In this context, it
might be useful to refer to the European Union VALUE network (http://www.value-
cost.eu/), an example of such a validation initiative.

Despite the recent progress on WGs, as already pointed out, there is still a strong
research needed to build multisite, multivariate generators that can accurately capture
the observed temporal and spatial coherence in meteorological data and the interre-
lationships among different weather variables.

Concerning weather types, clustering schemes could be refined to catch additional
features of the dependence structure and simplify the modeling of the residual de-
pendence inside the regimes. For example, the comparison of the numerical results
obtained on the same data set in Thompson et al. (2007) and Ailliot et al. (2009)
indicates that a local weather type models improves local persistence of rainfall oc-
currence, whereas a regional weather type models gives better results for the spatial
distribution of rainfall. This suggests including local weather states within regional
weather states. More generally, hierarchical models with several layers of weather
types corresponding to different space-time scales or kinds of dependence between
different weather variables could be further investigated. To close this paragraph on
weather types, one could also challenge the definition of weather types on dry and wet
days. Physically, rainfall behavior is rather a consequence of other variables (winds,
pressures, temperatures, etc.) than a cause of those variables. Hence, conditioning
on dry and wet days may be statistically convenient, but this classical modeling ap-
proach could miss important physical links among atmospheric variables. Koch and
Naveau (2015) investigated the impact of regional covariates such as humidity and
temperature to improve variability in simulated hourly multisite rainfall in northern
Brittany.

Another promising avenue to represent dependencies in precipitation modeling is
to take advantage of recent advances in copula modeling (e.g. Bárdossy and Pegram,
2009; Serinaldi, 2009; Serinaldi and Kilsby, 2014). Bayesian hierarchical modeling can
also offer a flexible framework to integrate different layers of complexity. For example,
Fuentes et al. (2008) merged different types of data, rainfall measurements and radar
outputs, by assuming hidden processes that drive the spatio-temporal dynamics.

A long-standing open problem concerns the reproduction of extremes by WGs.
Extremes can be observed in the intensity of the considered variables but also in the
duration of certain events types like long heat waves. WGs with Markovian structure
are not able to reproduce exceptionally long sojourns in a weather type, and other
modeling approaches have to be considered. Models with nonhomogeneous transitions
between the regimes could be investigated since they imply a more flexible dynamical
structure and since they can be inferred quite easily (e.g. Ailliot et al., 2014).

Concerning the joint modeling of multivariate extremes, especially for heavy rain-
falls, a strong research effort has been undertaken by the Extreme Value Theory com-
munity these last decades. Complex models based on max-stable processes exist and
have been used to analyze extreme rainfall (e.g. Davison et al., 2012; Thibaud et al.,
2013; Bernard et al., 2013). Still, it is not clear on how to make the link between the
upper tail behavior, either represented by block maxima or excesses above some high
threshold, and the bulk of the multivariate distribution. WGs aim at reproducing the
full range of observed atmospheric variables. This challenge is open, and a joint effort
between statisticians and climatologists is clearly needed here.
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